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Generics vs. Overloading [again] 

• Parametric polymorphism: 

– Single algorithm may be given many types 

– Type variable may be replaced by any  type 

– If f::t->t then f::Int->Int, f::Bool->Bool, ... 

 

• Overloading 

– Single symbol may refer to more than one algorithm 

– Each algorithm may have different type 

– Choice of algorithm determined by type context 

– + has types Int->Int->Int and Float->Float->Float, 

but not t->t->t for arbitrary t 

 

Lecture 9 CSE P505 Autumn 2016  Dan Grossman 3 



Why overloading? 

Many useful functions are not parametric 

 

• Can member work for any list type? 

 

No!  Only for types a for that support equality 

• Can sort work for any list type? 

 

No!  Only for types a that support ordering 

 

• Can serialize work for any type? 

 

No!  Only for types a that support ordering 
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member :: [a] -> a -> Bool 

 

sort :: [a] -> [a] 

serialize :: a -> String 



How you do this in OCaml/SML 

The general always-works approach is have callers pass 

function(s) to perform the operations: 

 

 

 

 

 
 

Works fine but: 

– A pain to thread the function(s) everywhere 

– End up wanting a record of functions, a “dictionary” 

– Now have to thread right dictionaries to right places 

– Types get a little messier? 
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member :: (a -> a -> Bool)-> [a] -> a -> Bool 

member _ [] _ = False 

member eqFun (x:xs) v = eqFun x v  

                        || member eqFun xs v 



See code Part 1 

• Part 1 of lec9.hs does “explicit dictionary passing” 

– Works fine in Haskell and would work fine in OCaml too 

– Lets us use write “generic” algorithms provided caller gives a 
dictionary (e.g., double or sumOfSquares) 

– Can even use dictionaries to build other dictionaries (e.g., 
complexDictMaker) 

– Funny dictionaries can produce funny results (e.g., 
fortyTwo) 
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Enter Type Classes 

Type-classes are built-in support for implicit dictionary-passing  

 

• Concise types to describe [records of] overloaded functions 

• Sophisticated standard library of type classes for [all the] common 

purposes 

• But nothing “privileged” in the library/language: Users can declare 
their own type classes (nothing special about ==, +, etc.) 

• Interacts well enough with type inference [won’t study the  “magic”] 

 

And/but: 

• Ends up “taking over the language and standard library” 

• Lots of fancy features that are super-useful, but we’ll have time for 

just a quick exposure beyond the basics 
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Type Class Design Overview 

• [Step 0: Do not try to compare these things to OOP classes and 

such; they are different.  Will study OOP next.] 

• Step 1: Type class declarations 

– Define a set of [typed] operations and give the set a name 

– Example: The Eq a type-class has operations == and /= 

both of type a -> a -> Bool 

• Step 2: Instance declarations 

– Specify the implementations for a particular type 

– Examples: for Int, == is integer equality, for String, == is 

string equality (but could have decided case-insensitive) 

• Step 3: Qualified types 

– Use qualified types to express that a polymorphic type must 

be an instance of your type class 

– Example: member’ :: Eq a => [a] -> a -> Bool 
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Qualified types 

member’ :: Eq a => [a] -> a -> Bool 

 

• Very roughly like a bound on the type variable 

– Caller must instantiate type variable with a type that is known 

to be an instance of the class 

– Callee may assume the type is an instance of the class (so 

can use the operations) 

– So “fewer” callers type-check and “more” callees type-check 

 

• At run-time, the right dictionary will be implicitly passed and used 

– Call-site “knows which dictionary” 

– Calls in callee “use the dictionary” 
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More Examples 
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sort        :: Ord a           => [a]   -> [a] 

reverse     ::                    [a]   -> [a] 

square      :: Num a           => a     -> a 

squarePair  :: (Num a, Num b)  => (a,b) -> (a,b) 

stringOfMin :: (Ord a, Show a) => [a]   -> String 

 



Our own classes and instances 

• The class declaration gives names and types to operations 

• An instance declaration provides the operations’ implementations  
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class MyNum a where 

   plus'  :: a -> a -> a 

   times' :: a -> a -> a 

   neg'   :: a -> a 

   zero'  :: a 
 

instance MyNum Int where 

   plus'  = (+) 

   times' = (*) 

   neg'   = \x -> -1 * x 

   zero'  = 0 
 

instance MyNum Float where 

   plus'  = (+) 

   times' = (*) 

   neg'   = \x -> -1.0 * x 

   zero'  = 0.0 



Then use them 

• Use qualified types to write algorithms over overloaded operations 
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member' :: Eq a => [a] -> a -> Bool 

member' []     v = False 

member' (x:xs) v = (==) x v || member' xs v 

 

double' :: MyNum a => a -> a 

double' v = (plus' (plus' v v) zero') 

 

sumOfSquares' :: MyNum a => [a] -> a 

sumOfSquares' [] = zero'  

sumOfSquares' (x:xs) = plus' (times' x x) (sumOfSquares' xs) 

 

i8  = double' 4 

f8  = double' 4.0 

yes = member' [3,4,5] 4 

no  = member' ["hi", "bye"] "foo" 



Compositionality of functions 

• Overloaded functions can be defined using other overloaded 

functions 

 

 

 

 

 

 

 

• quadAndFour “doesn’t know” what dictionary it was passed, 

but it knows which dictionary to pass to each of its calls to 
square 
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square :: Num a => a -> a 

square x = x * x 

 

quadAndFour :: Num a => a -> (a,Int) 

quadAndFour x = (square x * square x, square 2) 

 

eg = quadAndFour 3.0 -- (81.0, 4) 



Compositionality of Instances 

• Can use qualified instances to build compound instances in 

terms of simpler ones 
 

• Simple example from standard library: 

 

 

 

 

 

 

 

 

• A little more complicated example: see lec9.hs for 

         instance MyNum a => MyNum (Complex a) ... 
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class Eq a where 

  (==) :: a -> a -> Bool 
 

instance Eq Int where 

  (==) = intEq     -- intEq primitive equality 
 

instance (Eq a, Eq b) => Eq (a,b) where 

  (==) (u,v) (x,y) = (u == x) && (v == y) 
 

instance Eq a => Eq [a] where 

  (==) []     []     = True 

  (==) (x:xs) (y:ys) = x==y && xs == ys 

  (==) _      _      = False 



Subclasses 

• Can specify “any instance of class Foo must also be an instance 

of class Bar” 

– Example: Ord a subclass of Eq 

– Example: Fractional a subclass of Num 

• (Fractional supports real division and reciprocals) 

• Easy to define: 

 

 

• An instance must provide everything in the superclass (too) 

• Makes a qualified type “provide more” 

 

• This still isn’t OOP classes [we are defining and passing 

dictionaries separately and with static type resolution] 
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class Eq a => Ord a where -- defines Ord a 

  ... 
 



Default methods 

• A class declaration can provide default implementations 

– Including in terms of other implementations 

– Instances can override the default or not 

– Example: not-equal as not of equal 

– Example: >= as > or == 

– Example: arbitrary result like 42 

 

 

 

 

 

• This still isn’t OOP classes [we are defining and passing 

dictionaries separately and with static type resolution] 
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-- Minimal complete definition: (==) or (/=) 

class Eq a where 

    (==) :: a -> a -> Bool 

    x == y  =  not (x /= y) 

    (/=) :: a -> a -> Bool 

    x /= y  =  not (x == y) 



No, really, it’s not OOP 

• Dictionaries and method suites (vtables) are similar 
 

But… 
 

• As we have said: 

– Dictionaries “travel” separately from values 

– Method resolution is static in Haskell, based on types 
 

• Also:  

– Constrains polymorphism, does not introduce subtyping 

– Can add instance declarations for types “retroactively” 

– Dictionary selection can depend on result types: 

 fromInteger :: Num a => Integer -> a 
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Topics to skip 

Very useful for practical programming but a bit off our trajectory: 

 

• deriving to get automatic instances from data definitions 

– Example: Show a tree 

 

• Support for numeric literals using the fromInteger operation 

that lets you use 0, 3, 79, etc. in any instance of Num 

 

• Interaction with type inference 

– Mostly “works fine” 

– Various details, including do not reuse operation names 

across classes in same scope 
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Now constructor classes 

• Recall: 

– Int, [Int], Complex Int, Bool, Int -> Int, etc. are 

types 

– [-], Tree, etc. are type constructors (given a type, produce 

a type) 
 

• We can define type classes for type constructors 

– Nothing really “new” here 

– Harder to read at first, but “arity” of the constructor is inferred 

from use in class declaration 
 

• See Part 3 of lec9.hs for instances and uses of this example: 
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class HasMap g where 

   map' :: (a -> b) -> g a -> g b 



Now back to monad 

• Monad is a constructor class just like HasMap (!!) 

– “Required” operations are >>= and return 

– Default operations for things like >> 

– IO is “just” one “special” instance of monad 

– There are many useful instances of monad 

– Any instance of monad can use do-notation since it’s just 
sugar for calls to >>=  

 

• See Parts 4, 5, and 6 of lec9.hs to blow your mind  
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Summary of all that (!)  

• “Part 4” 

– Monad is a constructor typeclass  

– Instance Monad Maybe’gives intuitive definitions to >>= 

and return 

– do-notation for “maybe” can be much less painful than life 

without it 

• “Part 5” 

– Naturally, can write code generic over “which monad instance” 

– So can reuse combinators like  

    sequence :: Monad m => [m a]-> m [a] 

• “Part 6” 

– State monad definition is purely functional but looks-and-feels 

like imperative programming when using it 
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Other cheats 

• So type classes seem to work pretty well 

– Haskell has, over time, committed to them ever-more fully 
 

• Without them, you can: 

– Do explicit dictionary passing 

– “Cheat” in various ways: 

• SML: special support for Eq and nothing else 

– Oh also +, *, etc. for int and float 

• OCaml: cheat on key functions like hash and = being 

allegedly fully polymorphic but can fail at runtime and/or 

violate abstractions 
 

• C++: OOP or code duplication, neither of which is the same?? 
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