CSE593 Transaction Processing, Winter '99

1/19/99


Assignment 2 

· Due: January 26, 1999. Email your solution to nspring@cs.washington.edu and philbe@microsoft.com.

· Read Sections 6.1 - 6.2 and the Appendix of Chapter 6 of the textbook.

· Background (i.e. non-required) reading on recoverability and strictness is in Chapter 1 and 2 of Concurrency Control and Recovery in Database Systems, by P. A. Bernstein, V. Hadzilacos, and N. Goodman. You can get this from the web at http://research.microsoft.com/pubs/ccontrol.

Problem 1

Consider the following history:

H = w0[x] w0[y] w0[z] c0 r1[x] r2[x] r5[z] r4[z] w1[y] w2[x] c2 w5[z] r4[y] r3[z] w3[x] w3[y] c1 c5 c4 c3
a. Draw the serialization graph for H. (If you’re submitting in text format, just list all the edges.)

b. List all serial histories that are equivalent to H.

c. List the operation sequences in H, if any, that cause H to violate recoverability.

d. List the operation sequences in H, if any, that cause H to violate strictness.

Problem 2

RecMan is a record management system that stores fixed-length records on pages. We use page(x) to denote the page occupied by record x. RecMan implements five operations, ReadRecord, WriteRecord, Start, Commit, and Abort, as follows:

· ReadRecord(t, x, ptr) – 

· lock record x in read mode on behalf of transaction t

· lock page(x) in read mode on behalf of transaction t

· if page(x) is not in the caller’s private memory, then read it into the caller’s private memory

· return a pointer, ptr, to the first byte of x

· Unlock page(x) on behalf of transaction t

· WriteRecord(t, x, newval) – 

· lock record x in write mode on behalf of transaction t

· lock page(x) in write mode on behalf of transaction t

· read page(x) into the caller’s private memory

· replace the contents of x in page(x) in caller’s private memory by newval

· write page(x) back to the file system

· unlock page(x) on behalf of transaction t

· Start(t) – create a new transaction and return its transaction identifier in parameter t

· Commit(t) – commit all of transaction t’s writes; release all of t’s locks

· Abort(t) – undo all of transaction t’s writes; release all of t’s locks

RecMan is two-phase locked but does not always produce serializable executions.

a. Give a non-serializable history of RecMan operations. (Hint: Check your answer by adding all the lock operations to ensure none are violated.)

b. What broken assumption is causing two-phase locking to not guarantee serializability?

Problem 3

Give three good reasons why it’s a bad idea to store locks in the database itself, rather than in a lock table. For concreteness, you may assume that

· the database consists of a set of  files, each of which contains a set of records, each of which is divided up into fields;

· locks for each record are stored in the record itself; and

· the database system buffers (in main memory) those records that have been recently accessed, and uses a least-recently-used buffer replacement scheme.

Assignment 2

1

