CSE593 Transaction Processing, Winter '99

1/26/99

Assignment 3

· Due: February 2, 1999. Email your solution to nspring@cs.washington.edu and philbe@microsoft.com.

· Read Sections 6.3-6.5 Chapter 6 of the textbook.

· Background (i.e. non-required) reading on multi-granularity locking in Chapter 3 of Concurrency Control and Recovery in Database Systems, by P. A. Bernstein, V. Hadzilacos, and N. Goodman. You can get this from the web at http://research.microsoft.com/pubs/ccontrol.

Problem 1

Suppose that if a lock request for data item x cannot be granted immediately, then edges are added to the waits-for graph from the blocked transaction to every transaction that owns a conflicting lock on x. Deadlock (i.e., cycle) detection is then performed. If no deadlock is detected, then the request is added to the end of x’s wait list (in the lock manager). The wait list is serviced first-come-first-served.

i. Show that this method does not detect all deadlocks.
ii. Propose an efficient modification to the method that does detect all deadlocks.
Problem 2

The multi-granularity locking protocol requires that if a transaction has a w or iw lock on a data item x, then it must have an iw lock on x’s parent.

i. Is it correct for it to hold an r lock on x’s parent instead? Either explain why it’s correct or give an example where it fails.

ii. Redo question (i), replacing “r lock” by “w lock”.

iii. Assuming the lock graph is a tree, suggest a case where it would be useful to set such a w lock as in (ii) (whether or not it’s correct).

Problem 3

This problem explores a variation of the Optimistic Method in Section 6.5 of the textbook.
· A transaction can consist of ReadOpt, Increment and Decrement operations.
· ReadOpt(x) has the same effect as an ordinary Read(x), that is, it returns the value of x. Thus, in the example on the bottom of page 212, we would replace step 1

i. 1. EnoughAvailable = Verify(Quantity(i) (n)

by the following:

1a. q = Read(Quantity(i)) /* q is a local variable. */

1b. EnoughAvailable = (q (n)

· The concurrency control behavior of ReadOpt is similar to that of Verify. When ReadOpt(x) executes, it reads the latest committed value of x from the database, and logs that value, but does not lock x. When the transaction that issued ReadOpt(x) commits, the operation is replayed by setting a read lock on x and checking that the latest committed value of x from the database equals the logged value of x. If they’re equal, the commit activity continues. If not, the transaction aborts.

· Increment and Decrement behave as described in Section 6.5. That is, the data manager defers each such operation to commit time and sets a write lock before executing the operation

ii. If the replay test is dropped from the design (and no other changes are made), the system is not serializable. Give an example that demonstrates this.

iii. Explain why this approach will not perform as well as the Verify technique described in Section 6.5 of the textbook.

iv. Suppose a transaction can execute ReadOpt(x) many times. Is it enough for each transaction to log only the value read by its first execution of ReadOpt(x)? Why?
Assignment 3

1

