CSE593 Transaction Processing

1/12/99

Microsoft Transaction Server Project

The purpose of this project is to gain an understanding of how to build a TP application using a commercial TP monitor, Microsoft Transaction Server (MTS). Your goal is to use MTS to construct a distributed application that implements a travel reservation system.
MTS is a rich product with a wide variety of features, including integration with many related products, such as Microsoft Message Queue, IIS, and SQL Server. The main grading metric is the number and complexity of transaction-related features of MTS and related products that you exercise and get working.
Background material:

· Documentation for MTS can be found in MSDN under
Platform SDK / COM and ActiveX Object Services / Microsoft Transaction Server 2.0 Service Pack 1
especially the Microsoft Transaction Server Programmer’s Guide.
· Example code can be found in Program Files/MTS/Samples.
· You will need to know a modest amount of SQL for this project, e.g., to create simple databases, to read and write those databases in SQL, and to issue those SQL calls from an application (probably via ADO (Active Data Objects)).
Complexity of the application itself is not a goal. To start, the reservation system’s functions should be as similar as possible to those of the Java project. You should add application functionality only insofar as it helps you demonstrate some technical capability of the system.
A sample banking application that illustrates many of the product's basic features is described in the Programmer’s Guide, in Developing Applications for MTS / Creating a Simple ActiveX Component. You should build your travel reservation system to illustrate these basic features before embarking on other ones. These features include:

· ODBC resource dispenser

· Shared property (resource) manager. For example, you could maintain the total amount of money that all customers have spent during today’s sessions.
· Context object related to a Transaction Server object
· Transaction attributes (requires a transaction, requires a new transaction, supports transactions)
· Transactional RPC, which allows a component running a transaction to call another component to do further work on behalf of the same transaction.
· Stateful vs. stateless objects
Here are some other features to consider:

· Run components in separate servers, possibly on separate machines, against a single database

· Run components in separate servers with different databases. For example, customer data (which includes a list of the customer’s reservations) could be maintained in a separate database than flight, auto, and hotel data.
· Put the administrative functions into a separate component, so that you can protect them using a separate security role. Possibly add programmatic security.
· Force a transaction manager failure during the uncertainty period. Show how the MTS Explorer displays the transaction state, and show the state being resolved when the failure is repaired.
· Use Microsoft Message Queue for a queued transaction type, such as processing a request to join the airline’s Airport Lounge Club.
· Run one or more components in IIS and access them from a web browser.
· Configure an NT cluster, replicate one of the application servers, and show how it continues to run after a node fails.
· Write scripts that automate installation, so you application can be installed to run on another machine with minimal operator involvement.
· Demonstrate the use of DisableCommit.
· Do a little performance measurement.
Feel free to suggest features other than those in the above list.

The Course Information handout (Jan. 5) suggested developing a resource dispenser and/or integrate a simple resource manager with the Distributed Transaction Coordinator (2-phase commit). On further investigation, these appear to be particularly challenging features (probably more than is doable in the available time. So if you’re interested in this challenge, read the MTS SDK documentation carefully before deciding to dive in.
It’s important to proceed incrementally. Make sure you have a solid working solution of your base features before immersing yourself in the challenging feature. Keep it simple enough to get an end-to-end system working well enough to run a demo. In particular, keep the user interface very simple.
Deliverables - A write-up is required to summarize what you have done. Especially, explain what product features you have exercised and where they appear in your code. The write-up can be short, as long as the code is readable and well commented. A final demonstration is required.

MTS Project

2

