
1

P561: Network Systems
Week 6: Transport #2

Tom Anderson

Ratul Mahajan

TA: Colin Dixon

Administrivia

Fishnet Assignment #3
−  Due Friday, 11/14, 5pm

Homework #3 (out soon)
−  Due week 9 (11/24), start of class

2

Avoiding Small Packets
Nagle’s algorithm (sender side):

−  Only allow one outstanding segment smaller than the MSS
−  A “self-clocking” algorithm
−  But gets in the way for SSH etc. (TCP_NODELAY)

Delayed acknowledgements (receiver side)
−  Wait to send ACK, hoping to piggyback on reverse stream
−  But send one ACK per two data packets and use timeout on the

delay
−  Cuts down on overheads and allows coalescing
−  Otherwise a nuisance, e.g, RTT estimation

Irony: how do Nagle and delayed ACKs interact?
−  Consider a Web request

Bandwidth Allocation

How fast should a host, e.g., a web server, send
packets?

Two considerations:
−  Congestion:

•  sending too fast will cause packets to be lost in the network

−  Fairness:
•  different users should get their fair share of the bandwidth

Often treated together (e.g. TCP) but needn’t be.

Buffer absorbs bursts when input rate > output
If sending rate is persistently > drain rate, queue builds
Dropped packets represent wasted work

Destination
1.5-Mbps DSL link

Router

Source
2

Source
1

1 Gbps fiber

100-Mbps Ethernet

Congestion

Packets dropped here

Power = throughput / delay

At low load, throughput goes up
and delay remains small

At moderate load, delay is
increasing (queues) but
throughput doesn’t grow much

At high load, much loss and delay
increases greatly due to
retransmissions

Even worse, can oscillate!
load

Load Optimal

Th
ro

ug
hp

ut
/d

el
ay

Evaluating Congestion Control

2

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link … depends on paths
and other traffic

Evaluating Fairness

First, need to define what is a fair allocation.
−  Consider n flows, each wants a fraction fi of the

bandwidth

Min-max fairness:
−  First satisfy all flows evenly up to the lowest fi..

Repeat with the remaining bandwidth.

Or proportional fairness
−  Depends on path length … f1

f2

f3

f4

Why is bandwidth allocation hard?

Given network and traffic, just work out fair share
and tell the sources …

But:
−  Demands come from many sources
−  Needed information isn’t in the right place
−  Demands are changing rapidly over time
−  Information is out-of-date by the time it’s conveyed
−  Network paths are changing over time

Designs affect Network services
TCP/Internet provides “best-effort” service

−  Implicit network feedback, host controls via window.
−  No strong notions of fairness

A network in which there are QOS (quality of service) guarantees
−  Rate-based reservations natural choice for some apps
−  But reservations are need a good characterization of traffic
−  Network involvement typically needed to provide a

guarantee

Former tends to be simpler to build, latter offers greater service
to applications but is more complex.

Case Study: TCP

The dominant means of bandwidth allocation today
Internet meltdowns in the late 80s (“congestion

collapse”) led to much of its mechanism
−  Jacobson’s slow-start, congestion avoidance [sic], fast

retransmit and fast recovery.

Main constraint was zero network support and de
facto backwards-compatible upgrades to the
sender
−  Infer packet loss and use it as a proxy for congestion

We will look at other models later …

TCP Before Congestion Control

Just use a fixed size sliding window!
−  Will under-utilize the network or cause unnecessary

loss

Congestion control dynamically varies the size of
the window to match sending and available
bandwidth
−  Sliding window uses minimum of cwnd, the congestion

window, and the advertised flow control window

The big question: how do we decide what size the
window should be?

3

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth
−  Robust RTT estimation
−  Additive increase/multiplicative decrease

•  oscillate around bottleneck capacity

−  Slow start
•  quickly identify bottleneck capacity

−  Fast retransmit
−  Fast recovery

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT
Multiplicative decrease

−  Timeout => dropped packet => sending too fast =>
cut window size in half

•  and therefore cut sending rate in half

Additive increase
−  Ack arrives => no drop => sending too slow =>

increase window size by one packet/window
•  and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth
−  adjusts to changes in competing traffic

Two users competing for
bandwidth:

Consider the sequence of moves
from AIMD, AIAD, MIMD,
MIAD.

Why AIMD?

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!
−  Many TCP “accelerators”
−  Easy to improve perf at expense of network

One solution: enforce good behavior at router

4

Slow start

How do we find bottleneck bandwidth?
−  Start by sending a single packet

•  start slow to avoid overwhelming network
−  Multiplicative increase until get packet loss

•  quickly find bottleneck
−  Remember previous max window size

•  shift into linear increase/multiplicative decrease when get
close to previous max ~ bottleneck rate

•  called “congestion avoidance”

Slow Start

Quickly find the bottleneck bandwidth

TCP Mechanics Illustrated

21

Source Dest Router

100 Mbps

0.9 ms latency
10 Mbps

0 latency

Slow Start vs. Delayed Acks

Recall that acks are delayed by 200ms to wait for
application to provide data

But (!) TCP congestion control triggered by acks
−  if receive half as many acks => window grows half as

fast

Slow start with window = 1
−  ack will be delayed, even though sender is waiting for

ack to expand window

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
−  slow start/additive increase are

designed to cause packet loss

After loss, use slow start to regain
ack pacing
−  switch to linear increase at last

successful rate
−  “congestion avoidance”

1

2
3

4
5

1

1

1

1
1

2

5

Ti
m

eo
ut

5

Putting It All Together

Timeouts dominate performance!

Fast Retransmit

Can we detect packet loss without a
timeout?
−  Receiver will reply to each packet with

an ack for last byte received in order
Duplicate acks imply either

−  packet reordering (route change)
−  packet loss

TCP Tahoe
−  resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1
1

2

5

Fast Retransmit Caveats

Assumes in order packet delivery
−  Recent proposal: measure rate of out of order

delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)
−  what if window size <= 3

Doesn’t work if many packets are lost
−  example: at peak of slow start, might lose many

packets

Fast Retransmit

Regaining ack pacing limits performance

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit

Fast Recovery

Use duplicate acks to maintain ack
pacing
−  duplicate ack => packet left network
−  after loss, send packet after every

other acknowledgement

Doesn’t work if lose many packets in a
row
−  fall back on timeout and slow start to

reestablish ack pacing

1

2
3

4
5

1

1

1

1
1

2

3

Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit + Fast Recovery

6

TCP Performance (Steady State)

Bandwidth as a function of
−  RTT?
−  Loss rate?
−  Packet size?
−  Receive window?

31

TCP over 10Gbps Pipes

What’s the problem?
How might we fix it?

32

TCP over Wireless

What’s the problem?
How might we fix it?

33

What if TCP connection is short?

Slow start dominates performance
−  What if network is unloaded?
−  Burstiness causes extra drops

Packet losses unreliable indicator for short flows
−  can lose connection setup packet
−  Can get loss when connection near done
−  Packet loss signal unrelated to sending rate

In limit, have to signal congestion (with a loss)
on every connection
−  50% loss rate as increase # of connections

Example: 100KB transfer
100Mb/s Ethernet,100ms RTT, 1.5MB MSS

Ethernet ~ 100 Mb/s
64KB window, 100ms RTT ~ 6 Mb/s
slow start (delayed acks), no losses ~ 500 Kb/s
slow start, with 5% drop ~ 200 Kb/s
Steady state, 5% drop rate ~ 750 Kb/s

Improving Short Flow Performance
Start with a larger initial window

−  RFC 3390: start with 3-4 packets
Persistent connections

−  HTTP: reuse TCP connection for multiple objects on
same page

−  Share congestion state between connections on same
host or across host

Skip slow start?
Ignore congestion signals?

7

Misbehaving TCP Receivers

On server side, little incentive to cheat TCP
−  Mostly competing against other flows from same

server

On client side, high incentive to induce server to
send faster
−  How?

37

Impact of Router Behavior on
Congestion Control

Behavior of routers can have a large impact on the
efficiency/fairness of congestion control
−  buffer size
−  queueing discipline (FIFO, round robin, priorities)
−  drop policy -- Random Early Drop (RED)
−  Early congestion notification (ECN)
−  Weighted fair queueing
−  Explicit rate control

Note that most solutions break layering
−  change router to be aware of end to end transport

TCP Synchronization
Assumption for TCP equilibrium proof is that

routers drop fairly
What if router’s buffers are always full?

−  anyone trying to send will experience drop
•  timeout and retry at reduced rate

−  when router sends a packet, triggers an ack
•  causes that host to send another packet, refill buffers, causes

other hosts to experience losses

One host can capture all of the bandwidth, even
using TCP!

Router Buffer Space
What is the effect of router queue size on network

performance?
−  What if there were infinite buffers at each router?

•  what would happen to end to end latency?

−  What if only one packet could be buffered?
•  what would happen if multiple nodes wanted to share a link?

Subtle interactions between TCP feedback loop and
router configuration
−  rule of thumb: buffer space at each router should be

equal to the end to end bandwidth delay product
(how?)

Congestion Avoidance

TCP causes congestion as it probes for the available
bandwidth and then recovers from it after the
fact
−  Leads to loss, delay and bandwidth fluctuations

(Yuck!)
−  We want congestion avoidance, not congestion

control

Congestion avoidance mechanisms
−  Aim to detect incipient congestion, before loss. So

monitor queues to see that they absorb bursts, but not
build steadily

Sustained overload causes queue to build and
overflow

Incipient Congestion at a Router

8

MaxThreshold MinThreshold

A vgLen

Random Early Detection (RED)

Have routers monitor average queue and send
“early” signal to source when it builds by
probabilistically dropping a packet

Paradox: early loss can improve performance!

Start dropping a fraction of the traffic as queue
builds
−  Expected drops proportional to bandwidth usage
−  When queue is too high, revert to drop tail

P(drop)

1.0

MaxP

MinThresh MaxThresh

Average Queue

Length

Red Drop Curve

Explicit Congestion Notification (ECN)
Why drop packets to signal congestion?

−  Drops are a robust signal, but there are other means …
−  We need to be careful though: no extra packets

ECN signals congestion with a bit in the IP header
Receiver returns indication to the sender, who slows

−  Need to signal this reliably or we risk instability
RED actually works by “marking” packets

−  Mark can be a drop or ECN signal if hosts understand
ECN

−  Supports congestion avoidance without loss

Difficulties with RED
Nice in theory, hasn’t caught on in practice.
Parameter issue:

−  What should dropping probability (and average
interval) be?

−  Consider the cases of one large flow vs N very small
flows

Incentive issue:
−  Why should ISPs bother to upgrade?

•  RED doesn’t increase utilization, the basis of charging
−  Why should end-hosts bother to upgrade?

•  The network doesn’t support RED

Fair Queuing (FQ)

FIFO is not guaranteed (or likely) to be fair
−  Flows jostle each other and hosts must play by the rules
−  Routers don’t discriminate traffic from different

sources

Fair Queuing is an alternative scheduling algorithm
−  Maintain one queue per traffic source (flow) and send

packets from each queue in turn
•  Actually, not quite, since packets are different sizes

−  Provides each flow with its “fair share” of the
bandwidth

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

Fair Queuing

9

Flow 1 Flow 2 Output

F = 8 F = 10
F = 5

Fair Queuing
Want to share bandwidth

−  At the “bit” level, but in reality must send whole packets
Approximate using finish times for each packet

−  Let A be a virtual clock that is incremented each time all waiting flows
send one bit of data

−  For a packet i in a flow: Finish(i) = max(A, F(i-1)) + length-in-bits
−  Send in order of finish times, without pre-emption

More generally, assign weights to queues (Weighted FQ, WFQ)
−  how to set them is a matter of policy

Implementing WFQ
Sending in order of F(i) requires a priority-queue

−  O(log(n)) work per packet
Tracking F(i)s requires state for each recently active flow

−  May be a large number of flows at high speeds

Q: Can we approximate with less work/state?

Deficit Round Robin
−  For each round, give each flow a quantum of credit (e.g., 500 bits), send

packets while credit permits, and remember leftover for next round
−  Very close to WFQ

Stochastic Fair Queuing
−  Hash flows into a fixed number of bins
−  Fair except due to collisions

WFQ implication

What should the endpoint do, if it knows router is
using WFQ?

51

Traffic shaping

At enterprise edge, shape traffic:
−  Avoid packet loss
−  Maximize bandwidth utilization
−  Prioritize traffic
−  No changes to endpoints (as with NATs)

Mechanism?

52

TCP Known to be Suboptimal

Small to moderate sized connections
Paths with low to moderate utilization
Wireless transmission loss
High bandwidth; high delay
Interactive applications
Sharing with apps needing predictability

Channel

Capacity

Time

loss

W
in

do
w

Wasted capacity

loss
loss

loss

Observation

Trivial to be optimal with help from the network;
e.g., ATM rate control
−  Hosts send bandwidth request into network
−  Network replies with safe rate (min across links in

path)

Non-trivial to change the network

10

Question

Can endpoint congestion control be near optimal
with no change to the network?

Assume: cooperating endpoints
−  For isolation, implement fair queueing
−  PCP does well both with and without fair queueing

PCP approach: directly emulate optimal router
behavior!

Congestion Control Approaches

Endpoint Router Support

Try target rate for
full RTT; if too

fast, backoff

TCP, Vegas,
RAP, FastTCP,
Scalable TCP,

HighSpeed TCP

DecBit, ECN,
RED, AQM

Request rate from
network; send at

that rate
PCP ATM, XCP,

WFQ, RCP

PCP Goals

1.  Minimize transfer time
2.  Negligible packet loss, low queueing
3.  Work conserving
4.  Stability under extreme load
5.  Eventual fairness

TCP achieves only the last three (with FIFO
queues)

PCP achieves all five (in the common case)

Probe Control Protocol (PCP)

Probe for bandwidth using short burst of packets
−  If bw available, send at the desired uniform rate

(paced)
−  If not, try again at a slower rate

Probe is a request
Successful probe sets the sending rate

−  Sending at this rate signals others not to send

Time

R
at

e

Probe

Probe

Channel

Capacity

PCP Mechanisms

Mechanism Description Goal

Probe followed by
direct jump

Send short bursts to check for available
bandwidth; if successful, send at that rate

low loss,
min response time

probabilistic accept Accept probes taking into account noise. min response time,
fairness

rate compensation Drain queues, detect cross traffic, correct
errors.

low loss,
low queues

periodic probes Issue probes periodically to check for
available bandwidth.

work conserving

binary search Use binary search to allocate the available
bandwidth.

min response time,
work conserving

exponential backoff Adjust probe frequency to avoid collision. Stability

history Use heuristics to choose initial probe rate. min response time

tit-for-tat Reduce speed of rate compensation. TCP compatibility

Probes

Send packet train spaced to mimic desired rate
Check packet dispersion at receiver

Bottleneck Link
Sender Receiver

Successful probe:

Dispersion

} }

Cross traffic

Sender Receiver

Failed probe:

11

Probabilistic Accept

Randomly generate a slope consistent with the
observed data
−  same mean, variance as least squares fit

Accept if slope is not positive
Robust to small variations in packet scheduling

time

delay

Rate Compensation

Queues can still increase:
−  Failed probes, even if short, can result in additional

queueing
−  Simultaneous probes could allocate the same bandwidth
−  Probabilistic accept may decide probe was successful,

without sufficient underlying available bandwidth

PCP solution
−  Detect increasing queues by measuring packet latency

and inter-packet delay
−  Each sender decreases their rate proportionately, to

eliminate queues within a single round trip
−  Emulates AIMD, and thus provides eventual fairness

Binary Search

Base protocol: binary search for channel capacity
−  Start with a baseline rate: One MSS packet per round-

trip
−  If probe succeeds, double the requested bandwidth
−  If probe fails, halve the requested bandwidth

•  Below baseline rate, issue probes less frequently, up to a limit

R
at

e

Probe

Probe

Channel

Capacity

History

Haven’t we just reinvented TCP slow start?
−  Still uses O(log n) steps to determine the bandwidth
−  Does prevent losses, keeps queues small

Host keeps track of previous rate for each path
−  Because probes are short, ok to probe using this

history
−  Currently: first try 1/3rd of previous rate

•  If prediction is inaccurate/accurate, we halve/double the
initial probe rate

TCP Compatibility

TCP increases its rate regardless of queue size
−  Should PCP keep reducing its rate to compensate?

Solution: PCP becomes more aggressive in
presence of non-responsive flows
−  If rate compensation is ineffective, reduce speed of

rate compensation: “tit for tat”
−  When queues drain, revert to normal rate

compensation

Otherwise compatible at protocol level
−  PCP sender (receiver) induces TCP receiver (sender)

to use PCP

Performance
User-level implementation

−  250KB transfers between every pair of US RON nodes
−  PCP vs. TCP vs. four concurrent PCP transmissions

12

Is PCP Cheating? Related Work

Short circuit TCP’s slow-start: TCP Swift Start, Fast Start

Rate pacing: TCP Vegas, FastTCP, RAP

History: TCP Fast Start, MIT Congestion Manager

Delay-based congestion control: TCP Vegas, FastTCP

Available bandwidth: Pathload, Pathneck, IGI, Spruce

Separate efficiency & fairness: XCP

Roadmap – Various Mechanisms

Classic Best Effort
 FIFO with Drop
Tail

Congestion
Avoidance

FIFO with RED

Per Flow Fairness
 Weighted Fair
Queuing

Aggregate
Guarantees

Differentiated
Services

Per Flow
Guarantees

Integrated Services

Simple to build,

Weak assurances

Complex to build,

Strong assurances

Lead-in to Quality of Service
Our network model so far is “Best Effort” service

−  IP at routers: a shared, first come first serve (drop tail) queue
−  TCP at hosts: probes for available bandwidth, causing loss

The mechanisms at routers and hosts determine the kind of service
applications will receive from the network
−  TCP causes loss and variable delay, and Internet bandwidth varies!

Q: What kinds of service do different applications need?
−  The Web is built on top of just the “best-effort” service
−  Want better mechanisms to support demanding applications
−  Once we know their needs we’ll revisit network design …

VoIP is a real-time service in the sense that the
audio must be received by a deadline to be
useful

Real-time apps need assurances from the network
Q: What assurances does VoIP require?

Microphone

Speaker

Sampler ,
A D

converter
Buffer ,
D A

VoIP: A real-time audio example

Variable bandwidth and delay (jitter)

Internet

Network Support for VoIP

Bandwidth
−  There must be enough on average
−  But we can tolerate to short term fluctuations

Delay
−  Ideally it would be fixed
−  But we can tolerate some variation (jitter)

Loss
−  Ideally there would be none
−  But we can tolerate some losses. (How?)

13

1

2

3

Pa
ck

et
s

(%
)

90% 97% 98% 99%

150 200 100 50
Delay (milliseconds)

Example: Delay and Jitter

Buffer before playout so that most late samples will have arrived

Se
qu

en
ce

 n
um

be
r

Packet
generation

Network
delay

Buffer
Playback

Time

Packet
arrival

Tolerating Jitter with Buffering

Taxonomy of Applications

Applications

Real time

T olerant

Adaptive Nonadaptive

Delay -
adaptive

Rate -
adaptive

Intolerant

Rate - adaptive Nonadaptive

Interactive Interactive
bulk

Asynchronous

Elastic

Specifying Application Needs
First: many applications are elastic, and many real-time applications

are tolerant of some loss/delay and can adapt to what the network
can offer

Second: we need to a compact descriptor for the network
−  Analogous to SLA

Delay: can give a bound for some percentile
Loss: can give a bound over some period
What about bandwidth? Many applications are bursty …

1 2 3 4

1

2
Flow B

Flow A

Time (seconds)

B
an

dw
id

th
 (M

B
ps

)

Specifying Bandwidth Needs

Problem: Many applications have variable bandwidth demands

Same average, but very different needs over time. One number. So how
do we describe bandwidth to the network?

Token Buckets

Common, simple descriptor

Use tokens to send bits
Average bandwidth is R bps
Maximum burst is B bits

Fill rate R

tokens/sec

Bucket size

B tokens

Sending

drains

tokens

14

Supporting QOS Guarantees
1.  Flowspecs. Formulate application needs

−  Need descriptor, e.g. token bucket, to ask for guarantee
2.  Admission Control. Decide whether to support a new

guarantee
−  Network must be able to control load to provide

guarantees
3.  Signaling. Reserve network resources at routers

−  Analogous to connection setup/teardown, but at routers
4.  Packet Scheduling. Use different scheduling and drop

mechanisms to implement the guarantees
−  e.g., set up a new queue and weight with WFQ at routers

The need for admission control
Suppose we have an <r,b> token bucket flow and

we are interested in how much bandwidth the
flow receives from the network.

Consider a network with FIFO nodes. What rate
does the flow get?

Now consider a network with (W)FQ nodes. What
rate does the flow get?

Now consider a network with (W)FQ nodes where
w(i) = r(i) and ∑w(i) =W < capacity at each node.
What rate does the flow get?

Bounding Bandwidth and Delay
WFQ with admission control can bound bandwidth

and delay. Wow! (Parekh and Gallagher GPS
result)

For a single node:
−  Bandwidth determined by weights: g(i) = C * w(i)/W
−  E2E delay <= propagation + burst/g(i) + packet/g(i)

+ packet/C
For multiple nodes:

−  Bandwidth is determined by the minimum g(i) along
the path

−  E2E delay pays for burst smoothing only once, plus
further transmission and pre-emption delays

GPS Example
Assume connection has leaky bucket parameters (16KB, 150Kbps), and

crosses 10 hops, all link bandwidths are 45Mb/s, and the largest
packet size is 8KB.

What g will guarantee an end-to-end delay of 100ms, assuming total
propagation delay of 30ms?

From before:
−  E2E delay <= prop + burst/g(i) + N* packet/g(i) + N*packet/C
−  0.1 <= 0.03 + (16K*8)/g+10*8K*8/g+10*8K*8/45*10^6
−  Solving, we have a g of roughly 13 Mbps

Moral: may need to assign high rates to guarantee that worst case burst
will have acceptable E2E delay

IETF Integrated Services

Fine-grained (per flow) guarantees
−  Guaranteed service (bandwidth and bounded delay)
−  Controlled load (bandwidth but variable delay)

RSVP used to reserve resources at routers
−  Receiver-based signaling that handles failures

WFQ used to implement guarantees
−  Router classifies packets into a flow as they arrive
−  Packets are scheduled using the flow’s resources

Resource Reservation Protocol (RSVP)

15

RSVP Issues

RSVP is receiver-based to support multicast apps

Only want to reserve resources at a router if they
are sufficient along the entire path

What if there are link failures and the route
changes?

What if there are sender/receiver failures?

IETF Differentiated Services

A more coarse-grained approach to QOS
−  Packets are marked as belonging to a small set of

services, e.g, premium or best-effort, using the TOS bits
in the IP header

This marking is policed at administrative boundaries
−  Your ISP marks 10Mbps (say) of your traffic as premium

depending on your service level agreement (SLAs)
−  SLAs change infrequently; much less dynamic than

Intserv

Routers understand only the different service classes
−  Might separate classes with WFQ, but not separate flows

Two-Tiered Architecture

Mark at Edge routers

(per flow state,

complex)

Core routers

stay simple

(no per-flow state,

few classes)

DiffServ Issues

How do ISPs provision?
−  Traffic on your access link may follow different paths

inside ISP network. Can we provide an access link
guarantee efficiently?

What’s the policy?
−  Which traffic is gold, which silver, etc.?

Overprovisioning, other issues

An alternative:
−  Provide more capacity than load; it’s all a cost tradeoff
−  Bandwidth to user limited mainly by their access capacity
−  Delay through network limited mainly by propagation

delay

Deploying QOS:
−  What good is it if only one ISP deploys?
−  Incentives for single ISP for distributed company using

VoIP
−  And incentive for inter-provider agreements
−  Network QOS as an extension of single box packet

shapers

