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Abstract

Current trends in processor design are pointing to deeper and wider
pipelines and superscalar architectures. The efficient use of these
resources requires speculative execution, a technique whereby the
processor continues executing the predicted path of a branch before
the branch condition is resolved.

In this paper, we investigate the implications of speculative ex-
ecution on instruction cache performance. We explore policies for
managing instruction cache misses ranging from aggressive policies
(always fetch on the speculative path) to conservative ones (wait un-
til branches are resolved). We test these policies and their interaction
with next-line prefetching by simulating the effects on instruction
caches with varying architectural parameters. Our results suggest
that an aggressive policy combined with next-line prefetching is best
for small latencies while more conservative policies are preferable
for large latencies.

1 Introduction

To keep up with ever shorter clock cycles and to exploit instruction
level parallelism, next generation processors will support deeper
and wider pipelines and out of order execution engines. This will
require that processors execute more than one basic block at a time
to keep the pipeline and the execution units busy. Hence many
instructions will be issued before a conditional branch instruction
can be resolved. This is called speculative execution.

To efficiently handle speculative execution, all modern proces-
sors include some form of branch prediction ranging from simple
static schemes to very efficient dynamic branch architectures. The
path that the processor takes upon reaching a conditional statement,
as well as the time at which the processor identifies the statement
as a branch, is dependent on this underlying branch architecture.
A branch misfetch occurs when there is a delay in identifying an
instruction as a branch or when a correctly predicted branch has to
wait for its target address to be calculated. A branch mispredict
occurs when an incorrect target address is predicted for a branch.
On a branch misfetch or mispredict, the processor will start fetching

instructions along the wrong execution path. If an instruction cache
(I-cache) miss is then encountered, two detrimental effects might
arise from fetching the missing line: (i) the line on the wrong path
may displace useful instructions in the instruction cache, and (ii) the
channel (bus) between the I-cache and the next level of the mem-
ory hierarchy might be busy while an I-cache miss on the correct
path needs to be processed. On the other hand, if the instructions
fetched on the wrong path will be used sooner than the displaced
instructions, a prefetch of required instructions has been performed.

Note the distinction between wrong path and speculative path:
a path is speculative whether or not it is on the wrong path, as long
as a conditional branch upon which the execution depends has not
been resolved.

A simple method to reduce the I-cache fetch penalty is next-line
prefetching, whereby the line following the I-cache line currently
being accessed is prefetched under certain conditions. Next-line
prefetching has been shown to be quite successful for instruction
caches but no study has been made of its impact in the context of
speculative execution.

In this paper, we investigate methods for dealing with instruction
cache misses encountered during speculative execution. We propose
several alternatives upon encountering an I-cache miss while on
the speculative path. We quantify the effects of handling an I-
cache miss down a mispredicted path by classifying those I-cache
misses as useful prefetches or as fetches that pollute the I-cache.
In both cases, we consider the implications of consuming off-chip
bandwidth even after the processor knows that it has gone down
the wrong path. We also investigate the combined effects of these
methods with a next-line prefetching strategy.

The rest of this paper

In � 2, we describe related branch prediction, speculative execution,
and prefetching studies. In � 3, we describe the policies we inves-
tigated for handling I-cache misses during speculative execution.
We use trace-driven simulation to compare the performance of the
different policies. Section 4 describes the programs we traced and
the baseline architecture. In � 5, we compare the performance of the
different policies with varying architectural parameters. Finally, we
conclude in � 6.

2 Prior and Related Work

This section describes prior work in branch prediction, instruction
prefetching, and speculative execution.



2.1 Branch Prediction

Branch Target Buffers (BTB) have been used as a mechanism
for branch and instruction fetch prediction, effectively predicting
the prior behavior of a branch [Bray & Flynn 91, Lee & Smith 84,
Smith 81, McFarling & Hennessy 86, Perleberg & Smith 93,
Yeh & Patt 92b].

Traditionally, a BTB is organized as a cache with each entry
consisting of the branch instruction address, a field used for pre-
diction, and the target address of the branch. On a BTB hit and a
prediction “taken” (“not taken”), the instruction at the target (fall-
through) address is fetched. The Intel Pentium is an example of a
modern architecture using a BTB – it has a 256-entry BTB organized
as a four-way associative cache. Only branches that are “taken” are
entered into the BTB. For each BTB entry, the Pentium uses a
two-bit saturating counter to predict the direction of a conditional
branch. In this BTB architecture, the branch prediction information
is associated or coupled with the BTB entry. This implies that the
direction of a conditional branch can only be predicted dynamically
if the conditional branch address is found in the BTB. On a BTB
miss, the branch must be predicted using static prediction; in the
case of the Pentium the fall-through path is assumed.

An alternative BTB architecture is the decoupled design, where
the branch prediction information is not associated with the BTB
and is used for all conditional branches, including those not recorded
in the BTB. [Calder & Grunwald 94] found that decoupled designs
performed better than coupled designs. This allows conditional
branches that do not hit in the BTB to use dynamic prediction. The
PowerPC 604 is an example of an architecture using a decoupled
design. It has a 64-entry fully associative cache that holds the target
address of the branches most recently taken, and it uses a separate
512-entry pattern history table (PHT), indexed by the lower nine
bits of the branch address to predict the direction for conditional
branches.

There are several different PHT variations. [Pan et al. 92] and
[Yeh & Patt 92a, Yeh & Patt 93] investigated branch-correlation or
two-level branch prediction mechanisms. Although there are a num-
ber of variants, these mechanisms generally combine the history of
several recent branches to predict the outcome of a branch. The
simplest example is the degenerate method. When using a �

�
en-

try table, the processor maintains a � -bit shift register (the global
history register) that records the outcome of previous branches (a
taken branch is encoded as a 1, and a not-taken branch as a 0).
The shift register is used as an index into the PHT, much as the
program counter is used for a direct-mapped PHT. This provides
contextual information and correlation about particular patterns of
branches. Recently, [McFarling 93] showed that combining branch
history with the branch’s address was more effective. His method
used the exclusive-or of the global history register and the branch
address as the index into the PHT.

2.2 Instruction cache prefetching

The next-line prefetching policy was introduced by [Smith 82] for
unified caches. Upon referencing line � , line ����� can be prefetched.
Possible options are: prefetch line ���	� unconditionally, prefetch
only on a miss to line � ,or prefetch line �
��� only if line � is referenced
for the first time in the cache (a one-bit encoding is required). An
extension to next-line prefetching where several consecutive data
streams are prefetched in FIFO stream buffers has been proposed by
[Jouppi 90]. It was found that 85% of the misses of a 4KB I-cache

could be removed by a stream buffer with four 8-byte entries.
[Smith & W.-C.Hsu 92] studied next-line prefetching for in-

struction caches in machines with high bandwidth and large cache
lines (e.g., 16 to 128 words). They found that the fetchahead dis-
tance, that is the number of instructions remaining to be issued in
a line before the next line has to be fetched, is a critical parameter
because of the large lines. They also examined target prefetch-
ing, which uses a table of target addresses for prefetching taken
branches. Their results show that next-line prefetching performed
slightly better than target prefetching, and when these two tech-
niques were combined, the original miss rate was reduced by a
factor of 2 to 3.

[Pierce & Mudge 94] investigated a prefetching algorithm
where both paths of a conditional branch are prefetched. They
called this scheme wrong-path prefetching because no attempt
is made to prefetch from the predicted path. Their approach
combines next-line prefetching and target prefetching. The next-
line prefetching prefetches the fall-through path of the conditional
branch while target prefetching prefetches the taken path. Unlike
[Smith & W.-C.Hsu 92], the target addressof the conditional branch
is computed in the decode stage instead of using a table of target ad-
dresses. All prefetch line addressesare put into a prefetch queue and
are processed in a priority order. An I-cache miss takes precedence
over any prefetch, and target prefetches take precedence over next-
line prefetches. They found that next-line prefetching accounts for
70 to 80% of the gain in performance with this scheme, and target
prefetching accounts for the rest [Pierce 95].

Neither [Smith & W.-C.Hsu 92] nor [Pierce & Mudge 94] ex-
amined the effects of handling cache misses during speculative ex-
ecution and its interaction with prefetching.

3 Instruction Cache Policies and Speculative
Execution

In contrast with the studies mentioned above, we investigate the ef-
fect of speculative execution and instruction prefetching on a block-
ing I-cache and on a very simple non-blocking I-cache. The policies
we investigate only require minor modifications to the design of I-
caches on modern processors as opposed to a fully non-blocking
pipelined memory system that is only used to facilitate aggressive
prefetching. Even with the simple prefetching strategy we pro-
pose, the increase in memory bandwidth is significant; being more
aggressive will only add more stress to the memory system.

We first describe policies that can be implemented during ex-
ecution of a speculative path to handle I-cache misses. We then
describe the variant of next-line prefetching that we investigate in
this paper.

When an instruction cache miss occurs during speculative ex-
ecution, we have a spectrum of possibilities ranging from the most
pessimistic (stall until the branch is resolved) to the most optimistic
(fetch the missing line independently of the depth of speculation).

At first glance, it seems ideal to service the I-cache miss only if
the program is running on the correct path. This keeps executions of
incorrect paths from polluting the I-cache and reduces the amount
of memory traffic generated. We call a policy with that knowledge
Oracle since it knows whether or not it is running along the correct
path on an I-cache miss. In practice, it is impossible to implement
Oracle because of the very definition of speculative execution. We
include it as a yardstick to measure the performance of the different
policies.
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Policy Description

Oracle Only process I-cache misses on the right path.
Optimistic Process all I-cache misses.
Resume Like Optimistic, but allow execution to continue along the the correct path even if an I-cache

miss is outstanding due to instruction fetches in the wrong path.
Pessimistic On an I-cache miss, wait until all outstanding branches are resolved and until all previous

instructions are decoded, and fetch only if on the correct path.
Decode On an I-cache miss, wait until all previous instructions are decoded and fetch only if the

instruction was not misfetched.

Table 1: Summary of the instruction cache fetch policies.

A second policy, which we call Optimistic, assumes that the
branch prediction accuracy is good, and executing on the wrong
path is rare. Moreover, the instructions fetched when executing
down the wrong path may be useful later on, effectively performing
a prefetch of these instructions. � This prefetch effect is the reason
why Oracle may not be ideal.

If branches are mispredicted or misfetched a lot, the Optimistic
policy will hurt performance becauseit may stall the processor wait-
ing for an instruction cache miss that is not needed. To alleviate this
problem, we introduce the Resume policy that allows the processor
to keep running even when an instruction cache miss is outstanding
from the wrong path. This is a very simple form of a non-blocking
I-cache. However, an I-cache miss in the right path still needs to
wait for a previously initiated fill from the wrong path to complete.

There is little additional hardware needed to implement the
Resume policy. It consists of a buffer that can hold the missing
cache line when it is returned from memory as well as the index
where it needs to be stored in the I-cache. Storing the line in the
cache will take place at the next I-cache miss, without interference
with the normal operation of the cache. On the subsequent miss,
the index of the missing line and the index in the resume buffer
should be checkedin case they are the same to avoid an unnecessary
memory request.

At the other end of the spectrum, the Pessimistic policy avoids
accessingmemory (and hence servicing the I-cache miss) unless it is
sure that the instruction will be used. This prevents cache pollution,
because no useful lines are displaced by erroneous fetches, and it
keeps the bus free in case it is needed right away (e.g., if there
is an immediate cache miss on the correct path). However, if the
branch prediction accuracy is high, then waiting until the branch is
resolved will likely result in unnecessary stalls. The Decode policy
attempts to alleviate these stalls by assuming that misfetches occur
more often than mispredicts. On an I-cache miss, Decode waits
until the previous instructions have been decoded and services the
cache miss only if it is not for a misfetched instruction. Hence any
pollution and bus blocking effects due to misfetches are avoided.

Table 1 summarizes the different instruction cache fetch policies
we consider.

We will also assessnext-line prefetching. The policy we assume
is “maximal fetchahead and first time referenced.” We chose this
policy because it can be easily implemented with the modifications
to the hardware already required to efficiently recover from wrong
path I-cache misses. When a cache line, say line � , is loaded in the
instruction cache for the first time, we set a bit to that effect. When

� Most machines appear to employ the optimistic policy because the fetch unit is not
aware that it is going down a speculative path.

an instruction of line � is fetched and the above mentioned bit is set,
we initiate the prefetch of line � � � (if it is not already in the cache
and if the bus is free). At the same time we reset the bit for line � .

The writing of a prefetched line into the cache is handled as in
Resume except that the prefetched line is written before the next
prefetch is issued or at the next I-cache miss, whichever comes first.
Since most modern processors have an instruction buffer, the I-cache
will not be accessed by the fetch unit every cycle and prefetching
could be done during the cycles where the I-cache is idle.

�
It is

also possible to bank the I-cache into even and odd lines. Hence
two tags may be read in at a time, and a read and write may occur
simultaneously.

Next-line prefetching is advantageousfor long sequentialblocks
and when branches are correctly predicted as not taken. However,
it can hinder speculative execution for correctly predicted taken
branches under the Optimistic and Resume policies since it might
initiate requests that have to be completed before generating requests
for the speculative path.

4 Experimental Methodology

We used trace driven simulation to evaluate the performance
of the instruction fetch policies described in the last section.
We instrumented programs from the SPEC92 benchmark suite
and object-oriented programs written in C++. Table 2 describes
the programs we simulated and the inputs used. We used
ATOM [Srivastava & Eustace 94] to instrument the programs. Due
to the structure of ATOM, we did not need to record traces and could
trace very long-running programs.

4.1 Architectures Simulated and Performance Metrics

We simulated a four-way superscalar machine. The branch archi-
tecture consists of a decoupled 64-entry 4-way associative branch
target buffer (BTB) to predict the target address for taken branches
and a 512-entry pattern history table (PHT) for predicting condi-
tional branches. The PHT uses McFarling’s technique of XORing
the global history register with the branch address to index into a ta-
ble of saturating 2-bit counters. We assume all conditional branches
take four cycles to resolve, and all branches take two cycles to de-
code. For all conditional and direct branches, it takes two cycles
to calculate the branch target address if it is not found in the BTB.
Hence for all of the architectures simulated, misfetched branches

�
The UltraSparc uses a 12 deep instruction buffer to free up its instruction cache for

prefetching.
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Programs Description Inst % Branches
doduc Monte Carlo simulation of the time evolution of a thermohydraulical modelization for a nuclear reactor’s

component. Input was ref.in.
1150 8.5

fpppp Quantum chemistry benchmark measuring performance of two electron integral derivatives in the
GaussianXX series of programs. Input was ref.in.

4330 2.8

su2cor Quantum physics benchmark where masses of elementary particles are computed in the framework of
the Quark-Gluon theory. Input was ref.in.

4780 4.4

ditroff C version of the “ditroff” text formatter. Input was the collection of manual pages given to Groff. 39 17.5
gcc GNU C Compiler, version 1.35. The measurements show only the execution of the “cc1” phase of the

compiler. Input was the 4832-line 1stmt.i.
144 16.0

li Lisp interpreter adapted from XLISP 1.6 by David Michael Betz. Input was a solution to the 8-queens
problem.

1360 17.7

tex A widely used text-formatting program, version 3.141. Input was “dvips.tex,” a forty-five page manual. 148 10.0

cfront The AT&T C++ to C conversion program, version 3.0.2. Input was groff.C, part of the GNU troff
implementation. The input was first preprocessed with cpp.

16.5 13.4

db++ A version of the “delta-blue” constraint solution system written in C++. We used the example program
that comes with the Deltablue system.

87 17.6

groff Groff Version 1.9 — A version of the “ditroff” text formatter. Input was a collection of manual pages. 57 17.5
idl Sample backend for the Interface Definition Language system distributed by the Object Management

Group. Input was a sample IDL specification for an early release of the Fresco graphics library.
21.1 19.6

lic Part of the Stanford University Intermediate Format (SUIF) compiler system. It is a linear inequality
calculator. Input was the largest distributed example.

6 16.5

porky Part of the Stanford University Intermediate Format (SUIF) compiler system. It performs a variety
of compiler optimizations. We used it to perform constant folding, constant propagation, reduction
detection and scalarization for a large C program.

164 19.8

Table 2: General information about the benchmarks used in this study. Instruction counts are in millions. % Branches gives the percentage
of executed instructions that were branches. The programs were compiled on a DEC 3000-400 which uses the Alpha AXP-21064 processor.
We used the DEC FORTRAN compiler, the DEC C compiler, and the DEC C++ compiler. The systems were running the standard OSF/1 V1.3
operating systems. All programs were compiled with standard optimization (O).

% Cache Miss PHT Mispredict ISPI BTB Misfetch ISPI BTB Mispredict ISPI
Program 8K 32K B1 B4 B1 B4 B1 B4

doduc 2.94 0.48 0.22 0.37 0.04 0.04 0.00 0.00
fpppp 7.27 1.08 0.08 0.12 0.01 0.01 0.00 0.00
su2cor 1.33 0.00 0.08 0.10 0.00 0.00 0.00 0.00
ditroff 3.18 0.58 0.44 0.64 0.22 0.22 0.00 0.00
gcc 4.48 1.71 0.53 0.63 0.28 0.28 0.05 0.05
li 3.33 0.06 0.35 0.54 0.24 0.24 0.04 0.04
tex 2.85 1.00 0.27 0.36 0.11 0.11 0.03 0.03
cfront 7.24 2.63 0.50 0.56 0.34 0.34 0.05 0.05
db++ 1.57 0.42 0.16 0.41 0.13 0.13 0.01 0.01
groff 5.33 1.68 0.42 0.57 0.39 0.38 0.06 0.06
idl 2.17 0.67 0.30 0.49 0.10 0.11 0.04 0.05
lic 3.93 1.68 0.45 0.56 0.27 0.27 0.00 0.00
porky 2.51 0.66 0.42 0.48 0.20 0.20 0.04 0.04

Average 3.70 0.97 0.32 0.45 0.18 0.18 0.03 0.03

Table 3: Instruction cache and branch prediction characteristics. Miss rates are given for direct mapped 8K and 32K instruction caches. The
PHT and BTB results are in terms of instruction issue slots lost per correct path instruction. The PHT and BTB are shown for one (B1) and
four (B4) unresolved branches.
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have a two cycle (eight instruction issue slots) penalty and mispre-
dicted branches have a four cycle (sixteen instruction issue slots)
penalty.

We varied the number of unresolved branches allowed at a time
between 1, 2, and 4. We simulated both 8K and 32K direct mapped
caches, and we examined the effect of a low (5 cycle) cache miss
penalty and a high (20 cycle) penalty. In this paper, we will only
report the most interesting of these data in the interest of brevity.

Our primary metric is instructions slots lost per instruction
(ISPI). This metric measures the number of lost instruction is-
sue slots due to stalls created by misfetched instructions, mispre-
dicted branches, and instruction cache misses. By assuming perfect
pipelining, no data cache misses,and no issue slots lost to misaligned
branches and targets, this metric effectively gives the maximum in-
struction issue rate possible for the configurations we considered.
With out-of-order execution engines and non-blocking data caches,
the instruction fetch architecture needs to issue as many useful in-
structions as possible to keep the execution units busy. We note that
it is possible that the increased memory bandwidth requirements of
some of the fetch policies may have a net negative impact due to
contention with the data cache miss requests. Hence we also report
the increase in memory bandwidth required by the more aggressive
policies.

Table 3 shows the miss rate for direct mapped 8K and 32K
caches for the programs we simulated. The programs we simulated
had a non-trivial miss rate for an 8K cache (on average 3.7%). The
table also shows the ISPI caused by mispredicted and misfetched
branches due to the PHT and BTB.

The BTB architecture used in each simulation updated the BTB
speculatively. After branch instructions were decoded, predicted
taken branches had their target address inserted into the BTB. The
table shows that speculatively updating the BTB, even to a depth of
four unresolved branches, has little effect on the performance of the
BTB compared to only processing one unresolved branch.

We modeled a simple PHT architecture that waits until a branch
is resolved before updating the global history register and the 2-bit
counter. This architecture tries to avoid conflicts in the PHT during
speculative execution by XORing the global history register with
the branch address. Table 3 shows that the performance of the PHT
decreases (i.e., the PHT ISPI increases) with deeper speculation.

5 Results

In this section, we present the results of our simulations. We first
present the results of the baseline architecture with the branch ar-
chitecture described in Section 4.1: four instructions issued per
cycle, a speculative depth of 4 unresolved branches, an 8K direct-
mapped I-cache (32 bytes lines), and a small I-cache miss penalty (5
cycles). Next we vary the parameters, looking at longer miss penal-
ties, deeper speculation, and larger caches. Finally, we consider the
effects of next-line prefetching.

5.1 Baseline results

5.1.1 Miss ratios

Although miss ratios are not the primary metric when looking
at speculative execution, they show the pollution and prefetching
effects that result from the execution of the speculative path. We

Program BM SPo SPr WP TR

doduc 2.58 0.10 0.36 0.58 1.11
fpppp 7.18 0.03 0.08 0.15 1.01
su2cor 1.24 0.01 0.09 0.10 1.01
ditroff 2.27 0.38 0.92 2.01 1.46
gcc 3.09 0.48 1.40 3.25 1.52
li 2.43 0.42 0.90 2.05 1.47
tex 2.36 0.25 0.49 1.24 1.35
cfront 5.22 0.63 2.02 4.67 1.45
db++ 1.15 0.23 0.42 1.02 1.52
groff 3.72 0.70 1.61 3.95 1.57
idl 1.67 0.14 0.49 1.03 1.31
lic 2.56 0.36 1.37 2.62 1.41
porky 1.81 0.35 0.70 1.67 1.53

Average 2.87 0.32 0.83 1.87 1.36

Table 4: Categorization of miss ratios. Legend: BM - Both Miss,
SPo - Spec Pollute, SPr - Spec Prefetch, WP - Wrong Path, and TR -
Traffic Ratio. Traffic ratio is the ratio of the number of misses with
Optimistic to that of Oracle.

have recorded the miss ratios of the Oracle and Optimistic policies
�

and partitioned them as follows:

� Misses that occur in both Oracle and Optimistic policies
(Both Miss).

� Misses that occur only in Optimistic on the correct specula-
tive path (Spec Pollute). These misses are the result of the
pollution caused by instruction fetches on wrong paths.

� Misses that occur only in Oracle (Spec Prefetch). These
misses are prevented in the Optimistic case because of the
prefetching effect of wrong path execution.

� Misses that occur only in Optimistic on the wrong path
(Wrong Path). The main cost of these misses is increased
memory bandwidth.

Table 4 shows that the effect of prefetching (Spec Prefetch) is
more beneficial than the pollution effect (Spec Pollute). In the case
of the Fortran programs, both effects are minimal. For the C and
C++ programs, the number of misses due to pollution (Spec Pollute),
when using Optimistic fetching, is approximately half the number
of misses prevented by correct prefetching (Spec Prefetch) down the
incorrect path. The salient feature is that the number of misses that
occur on the wrong path in speculative execution (Wrong Path) is
quite high, yielding an overall miss ratio for Optimistic (Both Miss
+ Spec Pollute + Wrong Path) that can be up to 57% higher (e.g.,
�������	� ) than that of Oracle (Both Miss + Spec Prefetch). The last
three columns of the table show the increase in memory bandwidth
required by Optimistic and Resume over Oracle and Pessimistic.

Recall that miss ratios on the wrong path are not a serious
impediment if they do not increase the miss ratio on the right path
(i.e., if Spec Pollute is small) and if they do not stall the pipeline
much longer than it takes to resolve a branch condition. The latter
drawback will be greatly reduced when the latency to the next
level is small ( e.g., on the order of a mispredict penalty) and can
�

Pessimistic and Oracle generate the same number of I-cache misses. Optimistic
and Resume generate the same number of I-cache misses.

5



do
du

c-
O

r

do
du

c-
O

pt

do
du

c-
R

es

do
du

c-
Pe

ss

do
du

c-
D

ec

gc
c-

O
r

gc
c-

O
pt

gc
c-

R
es

gc
c-

Pe
ss

gc
c-

D
ec

li-
O

r

li-
O

pt

li-
R

es

li-
Pe

ss

li-
D

ec

gr
of

f-
O

r

gr
of

f-
O

pt

gr
of

f-
R

es

gr
of

f-
Pe

ss

gr
of

f-
D

ec

lic
-O

r

lic
-O

pt

lic
-R

es

lic
-P

es
s

lic
-D

ec

4 unresolved branch, 5 cycle I-cache miss penalty

0

1

2

3

Is
su

e 
sl

ot
s 

lo
st

 p
er

 in
st

ru
ct

io
n

branch_full

branch

force_resolve

bus

wrong_icache

rt_icache

Figure 1: Breakdown of the penalty components for the base architecture. The height of each bar shows the total ISPI penalty for each policy
and benchmark (the lower the height, the better the performance). The first two components (branch full and branch) are unaffected by the
different instruction miss policies.
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Figure 2: Effect of long miss latency. This figure shows the ISPI penalty for a machine with long I-cache miss penalty, as well as how the
increased latency affects the various ISPI components. Note the different scales between this figure and Figure 1.
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be further alleviated by the Resume policy. On the other hand,
we should expect to see Optimistic perform worse with increased
memory latency since there is a good chance that the Wrong Path
misses will delay some I-cache misses on the right path.

5.1.2 Policies

A detailed breakdown of the components contributing to the penalty
ISPI for five of the benchmarks is shown in Figure 1. These five
applications, Fortran program doduc, the C programs gcc and li,
and the C++ programs groff and lic, are representative of the results
we saw for the all the benchmarks.

We first present some general observations for the baseline
architecture:

� Optimistic is always better than Pessimistic.
The average penalty of Optimistic is about 12% lower than
that of Pessimistic with a slighter higher advantage for the
Fortran programs and a slightly smaller one for the C++
programs.

� Resume performs the best, and does as well as Oracle.
For the C and C++ programs, Resume yields a 6% improve-
ment over Optimistic. This modest improvement justifies the
small added hardware complexity of implementing Resume.

� Decode shows almost no difference in ISPI from Pessimistic.

We can understand these results better by looking at the different
components that compose the overall ISPI penalty.

� rt icache and wrong icache are the ISPI’s due to waiting for
the instruction cache to refill on the right and wrong paths
respectively. The I-cache misses on the wrong path are not
as expensive as misses along the right path because some of
the latency is hidden by the processor resolving outstanding
branches.

� bus is the penalty from waiting for the bus when a previously
outstanding cache miss has not completed yet. This happens
with Resume when a miss from the wrong path has not yet
completed and an I-cache miss is outstanding in the right
path. It is zero for the other policies because Resume is the
only policy that allows the processor to continue while an
I-cache miss is being serviced.

� force resolve is the penalty along the correct path of waiting
for a branch to resolve before fetching a line that missed
in the cache. It is zero for Optimistic and Resume because
these policies do not wait for branches to be resolved before
servicing a miss.

� branch is the cost of misfetched and mispredicted branches.

� branch full reflects the number of issue slots lost as the ma-
chine waits for a previous branch to resolve because of the
limited number of outstanding unresolved branches that can
be handled by the machine.

branch full is zero in the graphs becauseallowing four outstand-
ing branches is sufficient to hide the latency of branch resolution.
For Optimistic, wrong icache reflects the cost of servicing misses

on the wrong path. For Resume, bus reflects this cost. The dif-
ference between bus in the Resume policy and wrong icache in the
Optimistic policy reflects the improvement from resuming execu-
tion along the correct path immediately upon finding out about the
mispredict/misfetch.

doduc is typical of loop intensive programs in that the effect of
speculative execution on the instruction cache is minimal. These
programs tend to have only a few loop branches that account for
the majority of branches executed in the program. Notice the small
wrong icache component even with Optimistic. This is due to
a rather small number of branches in these programs and a high
prediction accuracy. Hence the effects of branches are limited.
In these types of programs, Pessimistic and Decode are penalized
because wrong path misses rarely happen.

Looking at the other programs, we see that Pessimistic and
Decode effectively place a tax on I-cache misses (i.e., force resolve).
They force instruction cache misses to wait either for the previous
instruction to be decoded (to guard against a misfetch) or, in the
case of Pessimistic, for all previous branches to be resolved (to
guard against a mispredict). The figure shows that the cost of the
extra I-cache misses while executing the wrong path is less than
(for Resume) or equal to (for Optimistic) that of this tax on the
I-cache miss time (for Pessimistic and Decode). Optimistic is better
than Pessimistic and Decode becauseof the prefetching effect of the
wrong path misses (i.e., the rt icache component of Optimistic is
lower). The cost of wrong path misses is small because the I-cache
penalty is small and some of the miss latency on the wrong path is
covered up by the processor resolving the branch.

The force resolve components of the Pessimistic and Decode
are almost equal. This indicates that most of the waiting time for
these policies is due to waiting for the previous branch instruc-
tion to get decoded. The occasional trip down the mispredicted
path slightly improves performance for Decode over Pessimistic in
some applications (doduc, fppp, su2cor, li, tex, and idl ) because
of the prefetch effects which decreases rt icache wait times. How-
ever, for other applications (gcc,cfront,db++,groff, lic, and porky),
wrong icache increases ISPI more than the decrease in rt icache.

Fetching instructions into the I-cache on the wrong path has
two effects: prefetch and pollution. The interaction of these effects
can be seen in the rt icache components of the different policies. If
this component becomes greater than rt icache in Oracle, then the
pollution effect dominates. If less then prefetch dominates.

Comparing the rt icache components of Oracle to Optimistic
and Resume policies shows that the prefetch effect is significant
and dominates the pollution effect as mentioned before. This is the
case for all the benchmarks (c.f., Table 4). However, the cost of the
prefetch in Optimistic (i.e., waiting for the cache miss to complete
in the wrong path, wrong icache) is more than the improvement in
instruction cache miss rate on the correct path. The penalties are
not as bad as predicted by the I-cache miss numbers. For example,
groff doesn’t have a 57% increase in the ISPI as indicated by just
looking at the instruction cache miss rate, rather some of the miss
latency is hidden. By making the wrong path misses even cheaper,
Resume brings performance closer to or better than that of Oracle.

In summary, when the cost of an instruction cache miss is
relatively small, the Resume policy should be adopted. Compared
to Pessimistic it takes advantage of branch prediction accuracy;
compared to Optimistic it reduces the cost of waiting for unneeded
cache misses in progress.

7



1 Unresolved Branch 2 Unresolved Branches 4 Unresolved Branches
Program Oracle Opt Res Pess Dec Oracle Opt Res Pess Dec Oracle Opt Res Pess Dec

doduc 1.19 1.20 1.17 1.46 1.43 1.10 1.12 1.08 1.37 1.35 1.00 1.02 0.97 1.27 1.25
fpppp 1.64 1.64 1.64 2.24 2.22 1.59 1.60 1.59 2.19 2.18 1.58 1.59 1.58 2.18 2.17
su2cor 0.46 0.45 0.45 0.58 0.56 0.40 0.39 0.38 0.52 0.49 0.37 0.36 0.36 0.50 0.47
ditroff 2.02 2.09 2.01 2.35 2.29 1.68 1.80 1.67 2.01 1.96 1.52 1.68 1.52 1.84 1.84
gcc 2.33 2.46 2.34 2.73 2.71 1.99 2.19 2.01 2.40 2.39 1.87 2.11 1.88 2.28 2.30
li 2.04 2.10 2.01 2.35 2.31 1.65 1.72 1.62 1.98 1.91 1.54 1.73 1.54 1.88 1.86
tex 1.28 1.34 1.28 1.55 1.52 1.11 1.19 1.12 1.38 1.36 1.07 1.18 1.07 1.34 1.33
cfront 2.68 2.88 2.69 3.32 3.30 2.45 2.73 2.46 3.09 3.10 2.40 2.73 2.41 3.06 3.09
db++ 1.43 1.50 1.46 1.58 1.56 1.00 1.09 1.03 1.15 1.15 0.87 0.98 0.90 1.02 1.09
groff 2.53 2.75 2.59 3.02 2.99 2.18 2.47 2.24 2.67 2.66 2.09 2.43 2.15 2.58 2.60
idl 1.74 1.79 1.74 1.94 1.93 1.30 1.35 1.29 1.51 1.49 1.09 1.15 1.07 1.30 1.28
lic 2.13 2.22 2.10 2.48 2.46 1.77 1.89 1.72 2.13 2.11 1.63 1.78 1.57 2.00 2.01
porky 2.00 2.11 2.02 2.24 2.23 1.49 1.61 1.50 1.74 1.72 1.25 1.40 1.26 1.50 1.51

Average 1.80 1.89 1.81 2.14 2.12 1.52 1.63 1.52 1.86 1.84 1.41 1.55 1.41 1.75 1.75

Table 5: Effect of speculation depth. This table shows the ISPI penalty for a direct mapped 8K cache with a miss penalty of 5 cycles, when up
to one, two, and four unresolved branches are allowed.

5.2 Variations on the base architecture

5.2.1 Influence of the miss penalty

Figure 2 gives the breakdown of the components that contribute
to the ISPI like Figure 1 but for a machine that has a 20 cycle I-
cache miss penalty. When the miss penalty is large compared to
the mispredict and misfetch penalties, predicting on the wrong path
plays a significant effect. When predictions are very accurate, as in
the Fortran programs, Optimistic is still better than Pessimistic. For
the other benchmarks, Pessimistic becomes better than Optimistic
by an average of 12% for the C and 16% for the C++ programs
for deep speculation and less when only one branch can be left
unresolved. Tying up the interface to the next level of the hierarchy
becomes increasingly important when the Optimistic and Resume
policies are implemented (c.f., wrong icache and bus in Figure 2 ).

As mentioned earlier, the goal of Resume is to cut down on
the penalty when an I-cache miss is encountered on the wrong
path and thus it performs significantly better than Optimistic for
large cache penalties. On average, Pessimistic and Resume have
approximately the same performance. However, as noted in the
previous subsection, Resume increases memory traffic that may tie
up bus bandwidth while Pessimistic does not.

5.2.2 Influence of the depth of speculation

Increasing the depth of speculation yields an average improvement
(decrease in ISPI) in the Oracle policy of over 16% when moving
from 1 to 2 unresolved branchesand another 7% improvement when
moving from 2 to 4 unresolved branches (Table 5). If the Fortran
programs are discarded (improvements there are only 6% when
passing from depth 1 to depth 2 and 5% from 2 to 4) then the
improvements are more important: 24% and 8% respectively. The
other policies follow the same pattern. Although not shown, the
same trend holds true for large miss penalties.

The main reason for the difference is that there is a trade-off
between the amount of time due to increased mispredict/misfetch
penalties on a deep speculative path and the larger stall time waiting
until branches are resolved in a shallow speculative path. In Figure 1,

there is no slow down due to reaching the limit of speculation depth
(branch full is small or non-existent) when up to 4 branches can
be outstanding. However, this slow down dominates other effects
when only one branch can be left unresolved and accounts for the
superiority of the deep speculation for all policies. A minor counter-
effect is the increase in waits due to cache misses on the wrong path
(wrong icache) in the deep speculative case which slightly reduces
the advantage of the Optimistic policy.

5.2.3 Influence of cache size

Program Oracle Opt Res Pess Dec

doduc 0.52 0.53 0.51 0.56 0.57
fpppp 0.35 0.35 0.35 0.44 0.44
su2cor 0.12 0.12 0.12 0.12 0.12
ditroff 1.03 1.08 1.01 1.10 1.10
gcc 1.33 1.43 1.32 1.49 1.51
li 0.89 1.04 0.92 0.90 0.96
tex 0.70 0.74 0.69 0.80 0.80
cfront 1.50 1.70 1.50 1.74 1.79
db++ 0.65 0.69 0.65 0.69 0.69
groff 1.39 1.56 1.43 1.55 1.58
idl 0.79 0.82 0.77 0.85 0.85
lic 1.19 1.29 1.17 1.36 1.37
porky 0.89 0.93 0.88 0.95 0.97
Average 0.87 0.94 0.87 0.97 0.98

Table 6: Effect of Cache Size. This table shows the ISPI penalty for
direct mapped 32K caches with a miss penalty of 5 cycles.

Table 6 shows the ISPI penalty for an architecture with a 32K I-
cache. When the cache size is large (32K), the miss ratios are small,
often less than 1%. Therefore the impact of the various policies
will be reduced. The average ISPI difference between Resume
and Pessimistic is only 10%, as opposed to 19% for the 8K cache.
However, for applications that have a high miss rate (i.e., gcc, tex,
cfront, groff, and lic), Resume still offers a modest improvement
(8-12%) in instruction issue rates over Optimistic.
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5.3 Next-line prefetching

Next-line prefetching has been shown to significantly improve the
performance of the I-cache [Smith & W.-C.Hsu 92]. In this section,
we look into the interaction between prefetching and speculative
execution.

Figure 3 shows the ISPI breakdown for the base configuration
with and without next-line prefetching. The bars labelled with
“Pref” reflects the performance of the I-cache fetch policy that
includes next-line prefetching.

In general, next-line prefetching improves the performance of
all the policies. It also decreases the relative difference between
the different policies. For example, without next-line prefetching
the difference between Resume and Pessimistic for gcc is 0.36
ISPI. With next-line , this difference decreases to 0.15 ISPI, but
Resume still performs better than Pessimistic. This shows that
processing speculative I-cache misses in the Resume policy without
next-line prefetching gives approximately the same performance as
the Pessimistic policy with next-line prefetching.

Unlike the case where prefetching is not used, the rt icache
components for both Resume and Pessimistic are effectively equal,
which implies that the wrong path prefetching effect from Resume
is small. The decreased bus component for Pessimistic reflects
the overlap between prefetching and waiting for branches to be
resolved on an I-cache miss. However, not all of the stall time can
be overlapped, and Pessimistic still performs worse than Resume
when the miss latency is small.

For the case with a large I-cache miss penalty, Figure 4 shows
that next-line prefetching may be detrimental to performance. Even
Oracle shows a decrease in performance because required I-cache
misses have to wait for the bus when a prefetch is in progress. With
long I-cache miss latencies, as shown before, aggressive instruction
fetch activity may actually hurt performance, and one needs to be
more cautious.

Program Oracle Resume Pessimistic

doduc 1.22 1.28 1.23
fpppp 1.02 1.03 1.03
su2cor 1.26 1.27 1.26
ditroff 1.41 1.68 1.47
gcc 1.39 1.62 1.45
li 1.29 1.62 1.29
tex 1.34 1.54 1.38
cfront 1.35 1.56 1.39
db++ 1.43 1.74 1.47
groff 1.46 1.71 1.49
idl 1.64 1.81 1.67
lic 1.28 1.52 1.32
porky 1.51 1.83 1.54

Average 1.35 1.56 1.38

Table 7: Effect of prefetching on memory traffic for the baseline
architecture. The numbers indicate the ratio between the number
of memory accesses by the policy with next-line prefetching and the
number of memory accesses by Oracle without next-line prefetch.

Table 7 shows the net increase in memory traffic of the different
policies with next-line prefetching. The high numbers indicate
that extra memory traffic is generated by prefetching even for the
Pessimistic policy. Memory traffic increases as much as 67% for

idl. As mentioned previously, this increased memory traffic may
lead to degraded performance when the processor contends with the
prefetch for the limited bandwidth available to memory.

Summary

Our results show that the policy of choice depends on the latency
between the first level I-cache and the next level in the memory
hierarchy. When the latency is small (comparable to the mispredict
penalty) then Resume is best. It combines the benefits of not stalling
when on the correct speculative path and of prefetching instructions
when on the incorrect one. It reduces the stalling penalty when
an I-cache miss is in progress by allowing resumption of execu-
tion as soon as a mispredict/misprefetch has been detected. The
combination of Resume and next-line prefetching further decreases
ISPI.

The memory traffic generated by the aggressive policies be-
comes increasingly important with higher latencies. Our results
show that when the miss penalty is high, Pessimistic performs as
well as Resume on average with less memory traffic. Next-line
prefetching, which generates significant extra memory traffic, does
not significantly decrease ISPI and therefore is not recommended in
this case.

For all policies, deeper speculation reduces ISPI. The decrease
in stalling time waiting for branches to be resolved dominates the
increase in mispredict/misfetch penalties and the increased I-cache
misses on the incorrect path.

6 Conclusion

In this paper, we assessed the impact of I-cache miss policies in
the context of a superscalar architecture with speculative execution.
In addition to the unrealizable Oracle policy which always knows
the correct execution path, we examined aggressive fetch policies
(Optimistic and Resume) and conservative ones (Pessimistic and
Decode). We also investigated the effect of combining next-line
prefetching with these policies. We considered a blocking I-cache,
with the possibility of having a single outstanding miss request in
the Resume and next-line prefetching cases.

We advocate the Resume policy with next-line prefetching if
the latency is small (e.g., for an on-chip hierarchy of caches). The
extra hardware complexity required by this policy is small, and our
results show that it offers a modest gain in instruction issue band-
width over the other policies. If the latency is large, both Resume
and Pessimistic without next-line prefetching do well. However,
Pessimistic is preferable because it requires less memory band-
width and is easier to design. Further study should indicate whether
more complex I-cache structures and memory interfaces, such as
non-blocking I-caches and pipelining miss requests, and software
techniques, like profile driven basic-block reordering, will signif-
icantly improve the I-cache performance at a reasonable cost and
complexity.
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