Instruction Cache Fetch Policies for Speculative Execution

Dennis Lee and Jean-Loup Baer

Department of Computer Science
and Engineering, Box 352350
University of Washington
Sesttle, WA 98195-2350
{dl ee, baer }@s. washi ngt on. edu

Abstract

Current trends in processor design are pointing to deeper and wider
pipelines and superscalar architectures. The efficient use of these
resources requires speculative execution, a technique whereby the
processor continues executing the predicted path of abranch before
the branch condition is resolved.

In this paper, we investigate the implications of speculative ex-
ecution on instruction cache performance. We explore policies for
managing instruction cachemissesranging from aggressivepolicies
(alwaysfetch on the speculative path) to conservative ones (wait un-
til branchesareresolved). Wetest these policiesand their interaction
with next-line prefetching by simulating the effects on instruction
caches with varying architectural parameters. Our results suggest
that an aggressive policy combined with next-line prefetchingisbest
for small latencies while more conservative policies are preferable
for large latencies.

1 Introduction

To keep up with ever shorter clock cycles and to exploit instruction
level parallelism, next generation processors will support deeper
and wider pipelines and out of order execution engines. This will
require that processors execute more than one basic block at atime
to keep the pipeline and the execution units busy. Hence many
instructions will be issued before a conditional branch instruction
can beresolved. Thisis called speculative execution.

To efficiently handle speculative execution, all modern proces-
sors include some form of branch prediction ranging from simple
static schemesto very efficient dynamic branch architectures. The
path that the processor takes upon reaching a conditional statement,
as well as the time at which the processor identifies the statement
as a branch, is dependent on this underlying branch architecture.
A branch misfetch occurs when there is a delay in identifying an
instruction as a branch or when a correctly predicted branch hasto
wait for its target address to be calculated. A branch mispredict
occurs when an incorrect target address is predicted for a branch.
On abranch misfetch or mispredict, the processor will start fetching
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instructions along the wrong execution path. If an instruction cache
(I-cache) miss is then encountered, two detrimental effects might
arise from fetching the missing line: (i) the line on the wrong path
may displaceuseful instructionsin theinstruction cache, and (ii) the
channel (bus) between the |-cache and the next level of the mem-
ory hierarchy might be busy while an I-cache miss on the correct
path needs to be processed. On the other hand, if the instructions
fetched on the wrong path will be used sooner than the displaced
instructions, a prefetch of required instructions has been performed.

Note the distinction between wrong path and speculative path:
apath is speculative whether or not it is on the wrong path, aslong
as a conditional branch upon which the execution depends has not
been resolved.

A simple method to reducethe |-cache fetch penalty isnext-line
prefetching, whereby the line following the I-cache line currently
being accessed is prefetched under certain conditions. Next-line
prefetching has been shown to be quite successful for instruction
caches but no study has been made of its impact in the context of
speculative execution.

Inthispaper, weinvestigate methodsfor dealing with instruction
cache missesencountered during specul ative execution. \We propose
several alternatives upon encountering an |-cache miss while on
the speculative path. We quantify the effects of handling an I-
cache miss down a mispredicted path by classifying those I-cache
misses as useful prefetches or as fetches that pollute the I-cache.
In both cases, we consider the implications of consuming off-chip
bandwidth even after the processor knows that it has gone down
the wrong path. We also investigate the combined effects of these
methods with a next-line prefetching strategy.

Therest of this paper

In §2, we describe related branch prediction, speculative execution,
and prefetching studies. In §3, we describe the policies we inves-
tigated for handling I-cache misses during speculative execution.
We use trace-driven simulation to compare the performance of the
different policies. Section 4 describesthe programs we traced and
the baselinearchitecture. In §5, we comparethe performance of the
different policieswith varying architectural parameters. Finally, we
concludein §6.

2 Prior and Related Work

This section describes prior work in branch prediction, instruction
prefetching, and speculative execution.



2.1 Branch Prediction

Branch Target Buffers (BTB) have been used as a mechanism
for branch and instruction fetch prediction, effectively predicting
the prior behavior of abranch [Bray & Flynn 91, Lee & Smith 84,
Smith 81, McFarling & Hennessy 86,  Perleberg & Smith 93,
Yeh & Patt 92b].

Traditionally, a BTB is organized as a cache with each entry
consisting of the branch instruction address, a field used for pre-
diction, and the target address of the branch. On a BTB hit and a
prediction “taken” (“not taken™), the instruction at the target (fall-
through) addressis fetched. The Intel Pentium is an example of a
modernarchitecture usingaBTB —it hasa256-entry BTB organized
asafour-way associative cache. Only branchesthat are “taken” are
entered into the BTB. For each BTB entry, the Pentium uses a
two-bit saturating counter to predict the direction of a conditional
branch. In this BTB architecture, the branch prediction information
is associated or coupled with the BTB entry. Thisimplies that the
direction of a conditional branch can only be predicted dynamically
if the conditional branch address is found in the BTB. On aBTB
miss, the branch must be predicted using static prediction; in the
case of the Pentium the fall-through path is assumed.

An aternative BTB architectureis the decoupled design, where
the branch prediction information is not associated with the BTB
andisusedfor all conditional branches, including thosenot recorded
inthe BTB. [Calder & Grunwald 94] found that decoupled designs
performed better than coupled designs. This allows conditional
branchesthat do not hit in the BTB to use dynamic prediction. The
PowerPC 604 is an example of an architecture using a decoupled
design. It hasa64-entry fully associative cachethat holdsthe target
address of the branches most recently taken, and it uses a separate
512-entry pattern history table (PHT), indexed by the lower nine
bits of the branch address to predict the direction for conditional
branches.

There are several different PHT variations. [Pan et al. 92] and
[Yeh & Patt 923, Yeh & Patt 93] investigated branch-correlation or
two-level branch prediction mechanisms. Although thereareanum-
ber of variants, these mechanisms generally combine the history of
several recent branches to predict the outcome of a branch. The
simplest example is the degenerate method. When using a 2* en-
try table, the processor maintains a k-bit shift register (the global
history register) that records the outcome of previous branches (a
taken branch is encoded as a 1, and a not-taken branch as a 0).
The shift register is used as an index into the PHT, much as the
program counter is used for a direct-mapped PHT. This provides
contextual information and correlation about particular patterns of
branches. Recently, [McFarling 93] showed that combining branch
history with the branch’s address was more effective. His method
used the exclusive-or of the global history register and the branch
address as the index into the PHT.

2.2 Ingruction cache prefetching

The next-line prefetching policy was introduced by [Smith 82] for
unified caches. Upon referencinglines, linez+ 1 can be prefetched.
Possible options are: prefetch line ¢ + 1 unconditionally, prefetch
only onamisstolinez,or prefetchline:+1 only if lines isreferenced
for the first time in the cache (a one-bit encoding is required). An
extension to next-line prefetching where several consecutive data
streams are prefetched in FIFO streambuffer s has been proposed by
[Jouppi 90]. It was found that 85% of the misses of a 4KB I-cache

could be removed by a stream buffer with four 8-byte entries.

[Smith & W.-C.Hsu 92] studied next-line prefetching for in-
struction cachesin machines with high bandwidth and large cache
lines (e.g., 16 to 128 words). They found that the fetchahead dis-
tance, that is the number of instructions remaining to be issued in
aline before the next line has to be fetched, is a critical parameter
because of the large lines. They also examined target prefetch-
ing, which uses a table of target addresses for prefetching taken
branches. Their results show that next-line prefetching performed
slightly better than target prefetching, and when these two tech-
niques were combined, the original miss rate was reduced by a
factor of 2 to 3.

[Pierce & Mudge 94] investigated a prefetching algorithm
where both paths of a conditional branch are prefetched. They
called this scheme wrong-path prefetching because no attempt
is made to prefetch from the predicted path. Their approach
combines next-line prefetching and target prefetching. The next-
line prefetching prefetches the fall-through path of the conditional
branch while target prefetching prefetches the taken path. Unlike
[Smith & W.-C.Hsu 92], thetarget addressof the conditional branch
iscomputed in the decodestage instead of using atable of target ad-
dresses. All prefetch line addressesare put into aprefetch queueand
are processed in a priority order. An I-cache miss takes precedence
over any prefetch, and target prefetches take precedence over next-
line prefetches. They found that next-line prefetching accountsfor
70 to 80% of the gain in performance with this scheme, and target
prefetching accountsfor the rest [Pierce 95].

Neither [Smith & W.-C.Hsu 92] nor [Pierce & Mudge 94] ex-
amined the effects of handling cache misses during speculative ex-
ecution and its interaction with prefetching.

3 Instruction Cache Policies and Speculative
Execution

In contrast with the studies mentioned above, we investigate the ef-
fect of speculative execution and instruction prefetching on a block-
ing I-cacheand on avery simplenon-blocking I-cache. Thepolicies
we investigate only require minor modifications to the design of |-
caches on modern processors as opposed to a fully non-blocking
pipelined memory system that is only used to facilitate aggressive
prefetching. Even with the simple prefetching strategy we pro-
pose, the increase in memory bandwidth is significant; being more
aggressive will only add more stressto the memory system.

We first describe policies that can be implemented during ex-
ecution of a speculative path to handle I-cache misses. We then
describe the variant of next-line prefetching that we investigate in
this paper.

When an instruction cache miss occurs during speculative ex-
ecution, we have a spectrum of possibilities ranging from the most
pessimistic (stall until the branchis resolved) to the most optimistic
(fetch the missing line independently of the depth of speculation).

At first glance, it seemsideal to servicethe I-cache missonly if
the program isrunning on the correct path. Thiskeepsexecutionsof
incorrect paths from polluting the I-cache and reduces the amount
of memory traffic generated. We call a policy with that knowledge
Oracle sinceit knows whether or not it is running along the correct
path on an I-cache miss. In practice, it is impossible to implement
Oracle because of the very definition of speculative execution. We
includeit as ayardstick to measure the performance of the different
policies.



| Policy | Description |

Oracle Only process |-cache misses on the right path.

Optimistic | Processall I-cache misses.

Resume LikeOptimistic, but allow execution to continuealong the the correct path evenif an I-cache
miss is outstanding due to instruction fetchesin the wrong path.

Pessimistic | On an |-cache miss, wait until all outstanding branches are resolved and until all previous
instructions are decoded, and fetch only if on the correct path.

Decode On an |-cache miss, wait until all previous instructions are decoded and fetch only if the
instruction was not misfetched.

Table1l: Summary of the instruction cache fetch policies.

A second policy, which we call Optimistic, assumes that the
branch prediction accuracy is good, and executing on the wrong
path is rare. Moreover, the instructions fetched when executing
down the wrong path may be useful later on, effectively performing
aprefetch of these instructions. * This prefetch effect is the reason
why Oracle may not be ideal.

If branchesare mispredicted or misfetched alot, the Optimistic
policy will hurt performance becauseit may stall the processor wait-
ing for aninstruction cache missthat is not needed. To alleviatethis
problem, we introduce the Resume policy that allows the processor
to keep running even when an instruction cache missis outstanding
from the wrong path. Thisis avery simple form of a non-blocking
I-cache. However, an I-cache miss in the right path still needsto
wait for aprevioudly initiated fill from the wrong path to complete.

There is little additional hardware needed to implement the
Resume policy. It consists of a buffer that can hold the missing
cache line when it is returned from memory as well as the index
where it needs to be stored in the I-cache. Storing the line in the
cachewill take place at the next I-cache miss, without interference
with the normal operation of the cache. On the subsequent miss,
the index of the missing line and the index in the resume buffer
should be checkedin casethey are the sameto avoid an unnecessary
memory request.

At the other end of the spectrum, the Pessimistic policy avoids
accessingmemory (and henceservicingthe I-cachemiss) unlessitis
surethat the instruction will be used. This prevents cache pollution,
because no useful lines are displaced by erroneous fetches, and it
keeps the bus free in case it is needed right away (e.g., if there
is an immediate cache miss on the correct path). However, if the
branch prediction accuracy is high, then waiting until the branchis
resolved will likely result in unnecessary stalls. The Decode policy
attempts to alleviate these stalls by assuming that misfetches occur
more often than mispredicts. On an I-cache miss, Decode waits
until the previous instructions have been decoded and services the
cachemiss only if it is not for amisfetched instruction. Hence any
pollution and bus blocking effects due to misfetches are avoided.

Table 1 summarizesthe different instruction cachefetch policies
we consider.

Wewill also assessnext-line prefetching. Thepolicy weassume
is “maximal fetchahead and first time referenced” We chose this
policy becauseit can be easily implemented with the modifications
to the hardware already required to efficiently recover from wrong
path I-cache misses. When a cacheline, say line ¢, isloaded in the
instruction cachefor the first time, we set a bit to that effect. When

1 Most machi nesappear to employ the optimistic policy because the fetch unit isnot
awarethat it is going down a speculative path.

aninstruction of linez is fetched and the above mentioned bit is set,
weinitiate the prefetch of line: + 1 (if it is not already in the cache
and if the busisfree). At the sametime we reset the bit for line z.

The writing of a prefetched line into the cacheis handled asin
Resume except that the prefetched line is written before the next
prefetchisissued or at the next I-cache miss, whichever comesfirst.
Since most modern processors have aninstruction buffer, thel-cache
will not be accessed by the fetch unit every cycle and prefetching
could be done during the cycles where the I-cache isidle. % It is
also possible to bank the I-cache into even and odd lines. Hence
two tags may be read in at atime, and a read and write may occur
simultaneously.

Next-line prefetching is advantageousfor long sequential blocks
and when branches are correctly predicted as not taken. However,
it can hinder speculative execution for correctly predicted taken
branches under the Optimistic and Resume policies since it might
initiate requeststhat have to be completed before generating requests
for the speculative path.

4 Experimental Methodology

We used trace driven simulation to evaluate the performance
of the instruction fetch policies described in the last section.
We instrumented programs from the SPEC92 benchmark suite
and object-oriented programs written in C++. Table 2 describes
the programs we simulated and the inputs used. We used
ATOM [Srivastava & Eustace 94] to instrument the programs. Due
to the structure of ATOM, wedid not need to record tracesand could
trace very long-running programs.

4.1 Architectures Simulated and Performance Metrics

We simulated a four-way superscalar machine. The branch archi-
tecture consists of a decoupled 64-entry 4-way associative branch
target buffer (BTB) to predict the target address for taken branches
and a 512-entry pattern history table (PHT) for predicting condi-
tional branches. The PHT uses McFarling’s technique of XORing
theglobal history register with the branch addressto index into ata-
ble of saturating 2-bit counters. We assumeall conditional branches
take four cyclesto resolve, and all branchestake two cyclesto de-
code. For al conditional and direct branches, it takes two cycles
to calculate the branch target addressif it is not found in the BTB.
Hence for all of the architectures simulated, misfetched branches

2The UltraSparc usesa 12 deep instruction buffer to free up itsinstruction cachefor
prefetching.



Programs Description Inst | % Branches

doduc Monte Carlo simulation of thetime evolution of athermohydraulical modelizationfor anuclear reactor’s | 1150 85
component. Input was ref.in.

fpppp Quantum chemistry benchmark measuring performance of two electron integral derivatives in the | 4330 2.8
GaussianX X series of programs. Input wasref.in.

su2cor Quantum physics benchmark where masses of elementary particles are computed in the framework of | 4780 44
the Quark-Gluon theory. Input was ref.in.

ditroff C version of the “ditroff” text formatter. Input was the collection of manual pages given to Groff. 39 175

gce GNU C Compiler, version 1.35. The measurements show only the execution of the “cc1” phase of the 144 16.0
compiler. Input wasthe 4832-line 1stmt.i.

li Lisp interpreter adapted from XLISP 1.6 by David Michael Betz. Input wasa solution to the 8-queens | 1360 17.7
problem.

tex A widely used text-formatting program, version 3.141. Inputwas“dvips.tex,” aforty-five pagemanual. 148 10.0

cfront The AT& T C++to C conversionprogram, version 3.0.2. Inputwasgr of f . C, part of theGNU t r of f 16.5 134
implementation. Theinput was first preprocessed with cpp.

db++ A version of the “ delta-blue” constraint solution system written in C++. We used the example program 87 17.6
that comeswith the Deltablue system.

groff Groff Version 1.9 — A version of the “ ditroff” text formatter. Input was a collection of manual pages. 57 175

idl Sample backend for the Interface Definition Language system distributed by the Object Management | 21.1 19.6
Group. Input was asample DL specification for an early release of the Fresco graphicslibrary.

lic Part of the Stanford University Intermediate Format (SUIF) compiler system. It isalinear inequality 6 16.5
calculator. Input was the largest distributed example.

porky Part of the Stanford University Intermediate Format (SUIF) compiler system. It performs a variety 164 19.8
of compiler optimizations. We used it to perform constant folding, constant propagation, reduction
detection and scalarization for alarge C program.

Table 2: General information about the benchmarksused in this study. Instruction counts are in millions. % Branches gives the percentage
of executed instructions that were branches. The programswere compiled on a DEC 3000-400 which uses the Alpha AXP-21064 processor.
We used the DEC FORTRAN compiler, the DEC C compiler, and the DEC C++ compiler. The systemswererunning the standard OSF/1V1.3
operating systems. All programswere compiled with standard optimization (O).

% CacheMiss || PHT Mispredict ISPl || BTB Misfetch ISPI || BTB Mispredict ISPl
Program || 8K | 32K || BL | B4 Bl | B4 BL | B4
doduc || 294 | 048 [ 0.22 0.37 | 0.04 0.04 || 0.00 0.00
fpppp 727 | 108 | 008 0.12 || 0.01 001 || 0.00 0.00
su2cor || 1.33 | 000 || 0.08 0.10 || 0.00 0.00 || 0.00 0.00
ditroff || 3.18 | 058 || 044 064 || 0.22 0.22 || 0.00 0.00
gee 448 | 171 || 053 063 || 0.28 028 || 0.05 0.05
l 333 | 006 | 035 054 || 0.24 024 || 0.04 0.04
tex 285 | 100 | 027 036 || 0.11 011 || 0.03 0.03
cfront 724 | 263 || 050 056 || 0.34 0.34 || 0.05 0.05
db++ 157 | 042 | 016 041 || 013 0.13 || 0.01 0.01
groff 533 | 168 | 042 057 || 0.39 0.38 || 0.06 0.06
idl 217 | 067 | 030 049 || 0.10 011 || 0.04 0.05
lic 393 | 168 | 045 056 || 0.27 0.27 || 0.00 0.00
porky 251 | 066 | 042 048 || 0.20 0.20 || 0.04 0.04

Average [ 370 | 097 [ 0.32

0.45 ][ 0.18 | 018 ] 0.03

0.03 |

Table 3: Instruction cache and branch prediction characteristics. Miss ratesare given for direct mapped 8K and 32K instruction caches. The
PHT and BTB resultsarein terms of instruction issue slotslost per correct path instruction. The PHT and BTB are shown for one (B1) and
four (B4) unresolved branches.



have a two cycle (eight instruction issue slots) penalty and mispre-
dicted branches have a four cycle (sixteen instruction issue slots)
penalty.

We varied the number of unresolved branchesallowed at atime
between 1, 2, and 4. We simulated both 8K and 32K direct mapped
caches, and we examined the effect of alow (5 cycle) cache miss
penalty and a high (20 cycle) penalty. In this paper, we will only
report the most interesting of these data in the interest of brevity.

Our primary metric is instructions slots lost per instruction
(ISPI). This metric measures the number of lost instruction is-
sue slots due to stalls created by misfetched instructions, mispre-
dicted branches, and instruction cache misses. By assuming perfect
pipelining, no datacachemisses,and noissue dotslost to misaligned
branches and targets, this metric effectively givesthe maximum in-
struction issue rate possible for the configurations we considered.
With out-of-order execution engines and non-blocking data caches,
the instruction fetch architecture needs to issue as many useful in-
structions as possibleto keep the execution units busy. We note that
it is possible that the increased memory bandwidth requirements of
some of the fetch policies may have a net negative impact due to
contention with the data cache miss requests. Hence we also report
the increase in memory bandwidth required by the more aggressive
policies.

Table 3 shows the miss rate for direct mapped 8K and 32K
cachesfor the programs we simulated. The programswe simulated
had a non-trivial missrate for an 8K cache (on average 3.7%). The
table also shows the ISPI caused by mispredicted and misfetched
branchesdueto the PHT and BTB.

The BTB architecture used in each simulation updated the BTB
speculatively. After branch instructions were decoded, predicted
taken branches had their target address inserted into the BTB. The
table shows that speculatively updating the BTB, even to adepth of
four unresolved branches, haslittle effect on the performance of the
BTB compared to only processing one unresolved branch.

We modeled asimple PHT architecture that waits until a branch
is resolved before updating the global history register and the 2-bit
counter. Thisarchitecture tries to avoid conflictsin the PHT during
speculative execution by XORing the global history register with
the branch address. Table 3 showsthat the performance of the PHT
decreases(i.e., the PHT ISPI increases) with deeper speculation.

5 Reaults

In this section, we present the results of our simulations. We first
present the results of the baseline architecture with the branch ar-
chitecture described in Section 4.1: four instructions issued per
cycle, a speculative depth of 4 unresolved branches, an 8K direct-
mapped |-cache (32 byteslines), and asmall I-cache miss penalty (5
cycles). Next we vary the parameters, looking at longer miss penal-
ties, deeper speculation, and larger caches. Finally, we consider the
effects of next-line prefetching.

5.1 Basdineresults
5.1.1 Missratios

Although miss ratios are not the primary metric when looking
at speculative execution, they show the pollution and prefetching
effects that result from the execution of the speculative path. We

Program | BM | SPo | SPr | WP | TR
doduc | 258 | 0.10 | 0.36 | 058 | 1.11
fpppp | 7.18 | 0,03 | 0.08 | 0.15 | 1.01
su2cor | 1.24 | 001 | 0.09 | 0.10 | 1.01
ditroff | 2.27 | 0.38 | 0.92 | 201 | 1.46

gcc 309 | 048 | 140 | 325 | 152
li 243 |1 042 | 090 | 2.05 | 147
tex 236 | 025 | 049 | 1.24 | 1.35

cfront 522 | 063 | 202 | 467 | 145
db++ 115 | 023 | 042 | 1.02 | 1.52

groff 372|070 | 161 | 395 | 157
idl 167 | 014 | 049 | 1.03 | 1.31
lic 256 | 036 | 1.37 | 262 | 141

porky | 181 | 035|070 | 167 | 153
Average | 2.87 | 0.32 | 0.83 | 1.87 | 1.36

Table 4: Categorization of miss ratios. Legend: BM - Both Miss,
SPo - Spec Pollute, SPr - Spec Prefetch, WP - Wrong Path, and TR -
Traffic Ratio. Traffic ratio is the ratio of the number of misses with
Optimistic to that of Oracle.

have recorded the miss ratios of the Oracle and Optimistic policies®
and partitioned them as follows:

e Misses that occur in both Oracle and Optimistic policies
(Both Miss).

e Missesthat occur only in Optimistic on the correct specula-
tive path (Spec Pollute). These misses are the result of the
pollution caused by instruction fetches on wrong paths.

e Misses that occur only in Oracle (Spec Prefetch). These
misses are prevented in the Optimistic case because of the
prefetching effect of wrong path execution.

e Misses that occur only in Optimistic on the wrong path
(Wrong Path). The main cost of these misses is increased
memory bandwidth.

Table 4 shows that the effect of prefetching (Spec Prefetch) is
more beneficial than the pollution effect (Spec Pollute). In the case
of the Fortran programs, both effects are minimal. For the C and
C++ programs, the number of misses dueto pollution (Spec Pollute),
when using Optimistic fetching, is approximately half the number
of misses prevented by correct prefetching (Spec Prefetch) down the
incorrectpath. Thesalient featureisthat the number of missesthat
occur on the wrong path in speculative execution (Wrong Path) is
quite high, yielding an overall miss ratio for Optimistic (Both Miss
+ Spec Pollute + Wrong Path) that can be up to 57% higher (e.g.,
grof f) than that of Oracle (Both Miss + Spec Prefetch). The last
three columns of the table show the increasein memory bandwidth
required by Optimistic and Resume over Oracle and Pessimistic.

Recall that miss ratios on the wrong path are not a serious
impediment if they do not increase the miss ratio on the right path
(i.e., if Spec Pollute is small) and if they do not stall the pipeline
much longer than it takes to resolve a branch condition. The latter
drawback will be greatly reduced when the latency to the next
level is small ( e.g., on the order of a mispredict penalty) and can

3 Pessimistic and Oracle generate the same number of |-cache misses. Optimistic
and Resume generate the same number of |-cache misses.
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be further aleviated by the Resume policy. On the other hand,
we should expect to see Optimistic perform worse with increased
memory latency since there is a good chance that the Wrong Path
misses will delay some I-cache misses on the right path.

5.1.2 Policies

A detailed breakdown of the componentscontributing to the penalty
ISPI for five of the benchmarks is shown in Figure 1. These five
applications, Fortran program doduc, the C programs gcc and i,
and the C++ programs groff and lic, are representative of the results
we saw for the all the benchmarks.

We first present some general observations for the baseline
architecture:

e Optimistic is always better than Pessimistic.
The average penalty of Optimistic is about 12% lower than
that of Pessimistic with a slighter higher advantage for the
Fortran programs and a slightly smaller one for the C++
programs.

e Resume performs the best, and does as well as Oracle.
For the C and C++ programs, Resumeyields a 6% improve-
ment over Optimistic. Thismodestimprovement justifiesthe
small added hardware complexity of implementing Resume.

o Decodeshowsamost no differencein ISPl from Pessimistic.

We can understand theseresults better by looking at the different
componentsthat composethe overall ISPl penalty.

e rt_icache and wrong_icache are the ISPI’s due to waiting for
the instruction cache to refill on the right and wrong paths
respectively. The I-cache misses on the wrong path are not
as expensive as misses along the right path because some of
the latency is hidden by the processor resolving outstanding
branches.

e busisthe penalty from waiting for the buswhen apreviously
outstanding cache miss has not completed yet. This happens
with Resume when a miss from the wrong path has not yet
completed and an I-cache miss is outstanding in the right
path. It is zero for the other policies because Resumeis the
only policy that allows the processor to continue while an
I-cache missis being serviced.

o force_resolveisthe penalty along the correct path of waiting
for a branch to resolve before fetching a line that missed
in the cache. It is zero for Optimistic and Resume because
these policies do not wait for branchesto be resolved before
servicing amiss.

e branchisthe cost of misfetched and mispredicted branches.

o branch_full reflectsthe number of issue slots lost as the ma-
chine waits for a previous branch to resolve because of the
limited number of outstanding unresolved branches that can
be handled by the machine.

branch_full iszeroin the graphsbecauseallowing four outstand-
ing branchesis sufficient to hide the latency of branch resolution.
For Optimistic, wrong.icache reflects the cost of servicing misses

on the wrong path. For Resume, bus reflects this cost. The dif-
ference between bus in the Resume policy and wrong_icachein the
Optimistic policy reflects the improvement from resuming execu-
tion along the correct path immediately upon finding out about the
mispredict/misfetch.

doduc istypical of loop intensive programsin that the effect of
speculative execution on the instruction cache is minimal. These
programs tend to have only a few loop branches that account for
the majority of branchesexecuted in the program. Notice the small
wrong-icache component even with Optimistic. This is due to
a rather small number of branches in these programs and a high
prediction accuracy. Hence the effects of branches are limited.
In these types of programs, Pessimistic and Decode are penalized
becausewrong path misses rarely happen.

Looking at the other programs, we see that Pessimistic and
Decodeeffectively placeatax on I-cachemisses(i.e., force_resolve).
They force instruction cache misses to wait either for the previous
instruction to be decoded (to guard against a misfetch) or, in the
case of Pessimistic, for all previous branches to be resolved (to
guard against a mispredict). The figure shows that the cost of the
extra I-cache misses while executing the wrong path is less than
(for Resume) or equal to (for Optimistic) that of this tax on the
I-cachemisstime (for Pessimistic and Decode). Optimistic is better
than Pessimistic and Decode becauseof the prefetching effect of the
wrong path misses (i.e., the rt_icache component of Optimistic is
lower). The cost of wrong path missesis small becausethe I-cache
penalty is small and some of the miss latency on the wrong path is
covered up by the processor resolving the branch.

The force_resolve components of the Pessimistic and Decode
are almost equal. This indicates that most of the waiting time for
these policies is due to waiting for the previous branch instruc-
tion to get decoded. The occasional trip down the mispredicted
path slightly improves performance for Decode over Pessimistic in
some applications (doduc, fppp, su2cor, li, tex, and idl ) because
of the prefetch effects which decreasesrt_icache wait times. How-
ever, for other applications (gcc,cfront,db++ ,groff, lic, and porky),
wrong-icache increases ISPl more than the decreasein rt_icache.

Fetching instructions into the I-cache on the wrong path has
two effects: prefetch and pollution. Theinteraction of these effects
can be seenin the rt_icache componentsof the different policies. If
this component becomes greater than rt_icache in Oracle, then the
pollution effect dominates. If less then prefetch dominates.

Comparing the rt_icache components of Oracle to Optimistic
and Resume policies shows that the prefetch effect is significant
and dominates the pollution effect as mentioned before. Thisisthe
casefor all the benchmarks (c.f., Table 4). However, the cost of the
prefetch in Optimistic (i.e., waiting for the cache miss to complete
in the wrong path, wrong_icache) is more than the improvement in
instruction cache miss rate on the correct path. The penalties are
not as bad as predicted by the |-cache miss numbers. For example,
groff doesn’t have a 57% increase in the ISPl as indicated by just
looking at the instruction cache miss rate, rather some of the miss
latency is hidden. By making the wrong path misses even cheaper,
Resume brings performance closer to or better than that of Oracle.

In summary, when the cost of an instruction cache miss is
relatively small, the Resume policy should be adopted. Compared
to Pessimistic it takes advantage of branch prediction accuracy;
compared to Optimistic it reduces the cost of waiting for unneeded
cachemissesin progress.



1 Unresolved Branch 2 Unresolved Branches 4 Unresolved Branches
Program || Oracle | Opt | Res | Pess | Dec || Oracle | Opt | Res | Pess | Dec || Oracle | Opt | Res | Pess | Dec
doduc 119 | 120 | 1.17 | 146 | 143 110 | 112 | 108 | 1.37 | 1.35 1.00 | 1.02 | 097 | 1.27 | 1.25
fpppp 164 | 164 | 164 | 224 | 2.22 159 | 160 | 159 | 219 | 2.18 158 | 159 | 158 | 2.18 | 2.17
su2cor 0.46 | 045 | 045 | 058 | 0.56 0.40 | 0.39 | 0.38 | 0.52 | 0.49 037 | 0.36 | 0.36 | 0.50 | 0.47
ditroff 202 | 209 | 201 | 235 | 2.29 168 | 1.80 | 1.67 | 201 | 1.96 152 | 168 | 152 | 1.84 | 1.84
gcc 233 | 246 | 234 | 273 | 271 199 | 219 | 2.01 | 240 | 2.39 187 | 211 | 1.88 | 2.28 | 2.30
li 204 | 210 | 201 | 235 | 231 165|172 | 162 | 198 | 1.91 154 | 1.73 | 154 | 1.88 | 1.86
tex 128 | 1.34 | 1.28 | 155 | 1.52 111 (119 | 112 | 1.38 | 1.36 107 | 118 | 1.07 | 1.34 | 1.33
cfront 268 | 288 | 269 | 3.32 | 3.30 245 | 273 | 246 | 3.09 | 3.10 240 | 273 | 241 | 3.06 | 3.09
db++ 143 | 150 | 146 | 1.58 | 1.56 100 | 1.09 | 1.03 | 1.15 | 1.15 0.87 | 0.98 | 0.90 | 1.02 | 1.09
groff 253 | 275 | 259 | 3.02 | 299 218 | 247 | 224 | 2.67 | 2.66 209 | 243 | 215 | 258 | 2.60
idl 174 | 1.79 | 1.74 | 194 | 1.93 130 | 135 | 1.29 | 151 | 149 109 | 1.15 | 107 | 1.30 | 1.28
lic 213 | 222 | 210 | 248 | 246 177 | 189 | 1.72 | 213 | 211 163 | 1.78 | 1.57 | 200 | 2.01
porky 200 | 211 | 202 | 224 | 2.23 149 | 161 | 150 | 1.74 | 1.72 125|140 | 1.26 | 1.50 | 1.51
| Average || 1.80 | 1.89 | 181 | 2.14 | 2.12 || 1.52 | 1.63 | 1.52 | 1.86 | 1.84 || 141 | 1.55 | 141 | 1.75 | 1.75 |

Table 5: Effect of speculation depth. Thistable showsthe ISPI penalty for a direct mapped 8K cachewith a miss penalty of 5 cycles, when up

to one, two, and four unresolved branches are allowed.

5.2 Variationson the base architecture

5.2.1 Influenceof the miss penalty

Figure 2 gives the breakdown of the components that contribute
to the ISPI like Figure 1 but for a machine that has a 20 cycle I-
cache miss penalty. When the miss penalty is large compared to
the mispredict and misfetch penalties, predicting on the wrong path
plays a significant effect. When predictions are very accurate, asin
the Fortran programs, Optimistic is still better than Pessimistic. For
the other benchmarks, Pessimistic becomes better than Optimistic
by an average of 12% for the C and 16% for the C++ programs
for deep speculation and less when only one branch can be left
unresolved. Tying up the interface to the next level of the hierarchy
becomes increasingly important when the Optimistic and Resume
policies areimplemented (c.f., wrong_icache and busin Figure 2).

As mentioned earlier, the goal of Resume is to cut down on
the penalty when an I-cache miss is encountered on the wrong
path and thus it performs significantly better than Optimistic for
large cache penalties. On average, Pessimistic and Resume have
approximately the same performance. However, as noted in the
previous subsection, Resume increases memory traffic that may tie
up bus bandwidth while Pessimistic does not.

5.2.2 Influenceof the depth of speculation

Increasing the depth of speculation yields an average improvement
(decreasein ISPI) in the Oracle policy of over 16% when moving
from 1to 2 unresolved branchesand another 7% improvement when
moving from 2 to 4 unresolved branches (Table 5). If the Fortran
programs are discarded (improvements there are only 6% when
passing from depth 1 to depth 2 and 5% from 2 to 4) then the
improvements are more important: 24% and 8% respectively. The
other policies follow the same pattern. Although not shown, the
sametrend holds true for large miss penalties.

The main reason for the difference is that there is a trade-off
between the amount of time due to increased mispredict/misfetch
penalties on adeep speculative path and the larger stall time waiting
until branches areresolvedin ashallow speculative path. In Figure 1,

thereis no slow down dueto reaching the limit of speculation depth
(branchfull is small or non-existent) when up to 4 branches can
be outstanding. However, this slow down dominates other effects
when only one branch can be left unresolved and accounts for the
superiority of the deep speculationfor all policies. A minor counter-
effect isthe increasein waits due to cache misses on the wrong path
(wrong_icache) in the deep speculative case which slightly reduces
the advantage of the Optimistic policy.

5.2.3 Influenceof cachesize
| Program [[ Oracle [ Opt | Res | Pess [ Dec |
doduc 052 | 053 | 051 | 056 | 0.57
fpppp 035 | 035 | 035 | 044 | 0.44
su2cor 012 | 012 | 0.12 | 012 | 0.12
ditroff 103 | 1.08 | 1.01 | 1.10 | 1.10
gce 133 | 143 | 1.32 | 149 | 151
li 089 | 1.04 | 092 | 0.90 | 0.96
tex 070 | 0.74 | 0.69 | 0.80 | 0.80
cfront 150 | 1.70 | 150 | 1.74 | 1.79
db++ 065 | 069 | 0.65 | 0.69 | 0.69
groff 139 | 156 | 143 | 155 | 1.58
idl 079 | 082 | 0.77 | 0.85 | 0.85
lic 119 | 129 | 117 | 1.36 | 1.37
porky 089 | 093 | 0.88 | 095 | 0.97
Average 087 | 094 | 0.87 | 097 | 0.98

Table 6: Effect of Cache Sze. Thistable showsthe ISPl penalty for
direct mapped 32K caches with a miss penalty of 5 cycles.

Table 6 showsthe ISPl penalty for an architecturewith a32K |-
cache. When the cachesizeislarge (32K), the missratiosare small,
often less than 1%. Therefore the impact of the various policies
will be reduced. The average ISPI difference between Resume
and Pessimistic is only 10%, as opposed to 19% for the 8K cache.
However, for applications that have a high miss rate (i.e., gcc, tex,
cfront, groff, and lic), Resume still offers a modest improvement
(8-12%) in instruction issue rates over Optimistic.



5.3 Next-lineprefetching

Next-line prefetching has been shown to significantly improve the
performanceof the I-cache[Smith & W.-C.Hsu 92]. Inthis section,
we look into the interaction between prefetching and speculative
execution.

Figure 3 shows the ISPI breakdown for the base configuration
with and without next-line prefetching. The bars labelled with
“Pref” reflects the performance of the I-cache fetch policy that
includes next-line prefetching.

In general, next-line prefetching improves the performance of
all the policies. It also decreases the relative difference between
the different policies. For example, without next-line prefetching
the difference between Resume and Pessimistic for gcc is 0.36
ISPI. With next-line , this difference decreases to 0.15 ISPI, but
Resume still performs better than Pessimistic. This shows that
processing speculative |-cache missesin the Resumepolicy without
next-line prefetching gives approximately the same performance as
the Pessimistic policy with next-line prefetching.

Unlike the case where prefetching is not used, the rt_icache
componentsfor both Resume and Pessimistic are effectively equal,
which implies that the wrong path prefetching effect from Resume
is small. The decreased bus component for Pessimistic reflects
the overlap between prefetching and waiting for branches to be
resolved on an I-cache miss. However, not all of the stall time can
be overlapped, and Pessimistic still performs worse than Resume
when the miss latency is small.

For the case with a large I-cache miss penalty, Figure 4 shows
that next-line prefetching may be detrimental to performance. Even
Oracle shows a decrease in performance because required |-cache
misses have to wait for the bus when a prefetch isin progress. With
long I-cache misslatencies, as shown before, aggressiveinstruction
fetch activity may actually hurt performance, and one needsto be
more cautious.

Program | Oracle | Resume | Pessimistic

doduc 122 1.28 1.23
fpppp 1.02 1.03 1.03
su2cor 1.26 127 1.26
ditroff 141 1.68 147
gcc 1.39 1.62 1.45
li 1.29 1.62 1.29
tex 134 154 1.38
cfront 1.35 1.56 1.39
db++ 143 174 147
groff 1.46 171 1.49
idl 164 181 1.67
lic 1.28 152 132
porky 151 1.83 154
| Average | 135 | 156 | 1.38 |

Table 7: Effect of prefetching on memory traffic for the baseline
architecture. The numbers indicate the ratio between the number
of memory accessesby the policy with next-line prefetching and the
number of memory accesses by Oracle without next-line prefetch.

Table 7 showsthe net increasein memory traffic of the different
policies with next-line prefetching. The high numbers indicate
that extra memory traffic is generated by prefetching even for the
Pessimistic policy. Memory traffic increases as much as 67% for

idl. As mentioned previously, this increased memory traffic may
lead to degraded performancewhen the processor contendswith the
prefetch for the limited bandwidth available to memory.

Summary

Our results show that the policy of choice depends on the latency
between the first level I-cache and the next level in the memory
hierarchy. When the latency is small (comparable to the mispredict
penalty) then Resumeisbest. It combinesthe benefitsof not stalling
when on the correct speculative path and of prefetching instructions
when on the incorrect one. It reduces the stalling penalty when
an |-cache miss is in progress by allowing resumption of execu-
tion as soon as a mispredict/misprefetch has been detected. The
combination of Resume and next-line prefetching further decreases
ISPI.

The memory traffic generated by the aggressive policies be-
comes increasingly important with higher latencies. Our results
show that when the miss penalty is high, Pessimistic performs as
well as Resume on average with less memory traffic. Next-line
prefetching, which generates significant extra memory traffic, does
not significantly decreasel SPI and therefore is not recommendedin
this case.

For all policies, deeper speculation reduces |SPI. The decrease
in stalling time waiting for branches to be resolved dominates the
increase in mispredict/misfetch penalties and the increased |-cache
misses on the incorrect path.

6 Conclusion

In this paper, we assessed the impact of 1-cache miss policies in
the context of a superscalar architecture with speculative execution.
In addition to the unrealizable Oracle policy which aways knows
the correct execution path, we examined aggressive fetch policies
(Optimistic and Resume) and conservative ones (Pessimistic and
Decode). We also investigated the effect of combining next-line
prefetching with these policies. We considered a blocking I-cache,
with the possibility of having a single outstanding miss request in
the Resume and next-line prefetching cases.

We advocate the Resume policy with next-line prefetching if
the latency is small (e.g., for an on-chip hierarchy of caches). The
extra hardware complexity required by this policy is small, and our
results show that it offers a modest gain in instruction issue band-
width over the other policies. If the latency is large, both Resume
and Pessimistic without next-line prefetching do well. However,
Pessimistic is preferable because it requires less memory band-
width and iseasier to design. Further study should indicate whether
more complex |-cache structures and memory interfaces, such as
non-blocking I-caches and pipelining miss requests, and software
techniques, like profile driven basic-block reordering, will signif-
icantly improve the I-cache performance at a reasonable cost and
complexity.
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