## Coming up

- Final projects:
- User report are graded
- All 1.0 presentations will be held on
- Thursday, December 8, in class
- 1.0 Release due data extended: Friday, December 9, 11:59PM
- Final exam:
- Wednesday, December 14, 10:30 AM, in this room

1

## What'll be on the exam? (12/14, 10:30AM, here)

- Regular questions:
- testing
- debugging
- working in groups
- reasoning about programs
- high-level questions only:
- software bias and formal verification of software
- guest lectures on safety in software design

You may bring a single sheet (double side, $8.5^{\prime \prime}$ by $11^{\prime \prime}$ paper) of notes of your choosing.

3

## Testing

- Know about different kinds of tests - unit, integration, regression, etc.
- Know about different kinds of coverage
- statement, path, etc.
- Know what's hard about testing
- GUI, usability, covering all behavior, etc.


## Exam: What kind of questions?

- True/False
- Multiple Choice
(most are "choose all that apply")
- That's it. No other types of questions.

4

## Debugging

- Know four kinds of defense against bugs
- make impossible
- don't introduce
- make errors visible
- last resort: debugging
- Representation (rep) invariants
- Assertions


## Working in groups

- What's hard?
- corner cases
- complete specification covers A LOT of behavior
- unless a spec is concise, it's hard to understand
- precision is hard: language is ambiguous
- communication is important

7

## Loop example

Find the weakest precondition

```
    for (int x = 1; x <> y;) {
        if (y > x) {
        y = y / 2;
        x=2*x;
    }
}
// postcondition: }\textrm{x}=8,\textrm{y}=8\mathrm{ , and }\textrm{x}\mathrm{ and }\textrm{y}\mathrm{ are ints
```

you can also find the loop invariant and decrement function

9

## Bias in evaluations

- Ample scientific evidence that there are biases in evaluations.
- Women and minority faculty get statistically lower scores even when the teaching style is controlled to be exactly the same.
- Being aware is one of the best ways to combat the problem.

[^0]
## Reasoning about programs

- Ways to verify your code
- testing, reasoning, proving
- Forward reasoning
- Backward reasoning
- Loop invariants
- Induction
- Practice some examples!

8

## Evaluations

- We'll take 15 minutes to do evaluations
- They are anonymous and I don't see them until (long) after the grades are posted
- I actually use them to improve my teaching
- UMass uses them to decide if I am a good teacher and whether to let me keep teaching

10

## Evaluations

http://owl.umass.edu/partners/courseEvalSurvey/uma/

- If we get $80 \%$ participation by tomorrow:
- Everyone gets 0.5 points of extra credit.


## Reasoning about programs



13

## Reasoning about code

- Determine what facts are true during execution
- x>0
- for all nodes n: n.next.previous $==\mathrm{n}$
- array a is sorted
$-x+y==z$
- if $x!=$ null, then $x . a>x . b$
- Applications:
- Ensure code is correct (via reasoning or testing)
- Understand why code is incorrect


## Backward reasoning

- You know what you want to be true after running the code What must be true beforehand in order to ensure that?
- Given a postcondition, what is the corresponding precondition?
- Applications:
(Re-)establish rep invariant at method exit: what's required?
Reproduce a bug: what must the input have been?
- Example:
// precondition: ??
$\mathrm{x}=\mathrm{x}+3$;
$y=2 x ;$
$\mathrm{x}=5$;
// postcondition: $y>x$
- How did you (informally) compute this?


## Ways to verify your code

- The hard way:
- Make up some inputs
- If it doesn't crash, ship it
- When it fails in the field, attempt to debug
- The easier way:
- Reason about possible behavior and desired outcomes
- Construct simple tests that exercise that behavior
- Another way that can be easy
- Prove that the system does what you want
- Rep invariants are preserved
- Implementation satisfies specification
- Proof can be formal or informal (we will be informal)
- Complementary to testing

14

## Forward reasoning

- You know what is true before running the code What is true after running the code?
- Given a precondition, what is the postcondition?
- Applications:

Representation invariant holds before running code Does it still hold after running code?

- Example:
// precondition: x is even
$\mathrm{x}=\mathrm{x}+3$;
$y=2 x ;$
$\mathrm{x}=5$;
// postcondition: ??

16

## Forward vs. backward reasoning

- Forward reasoning is more intuitive for most people
- Helps understand what will happen (simulates the code)
- Introduces facts that may be irrelevant to goal Set of current facts may get large
- Takes longer to realize that the task is hopeless
- Backward reasoning is usually more helpful
- Helps you understand what should happen
- Given a specific goal, indicates how to achieve it
- Given an error, gives a test case that exposes it


## Forward reasoning example

```
assert x >=0;
\(\mathrm{i}=\mathrm{x}\);
    \(/ / x \geq 0 \& i=x\)
\(\mathrm{z}=0\);
    \(/ / x \geq 0 \& i=x \& z=0\)
while (i \(!=0\) ) \(\{\quad \Leftarrow\) What property holds here?
    z = z + 1;
    \(\mathrm{i}=\mathrm{i}-1 ; \quad \Leftarrow\) What property holds here?
\}
    \(/ / x \geq 0 \& i=0 \& z=x\)
assert \(\mathrm{x}=\mathrm{z}\);
```

19

## Assignment

// precondition: ??
$\mathrm{x}=\mathrm{e}$;
// postcondition: Q
Precondition: $Q$ with all (free) occurrences of $x$ replaced by e

- Example:
// assert: ??
$\mathrm{x}=\mathrm{x}+1$;
// assert $\mathrm{x}>0$

Precondition $=(x+1)>0$

21

## If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q
Essentially case analysis:

$$
\begin{aligned}
& \text { wp("if (b) S1 else S2", Q) }= \\
& \quad(\quad b \Rightarrow \text { wp("S1", Q) } \\
& \wedge \neg b \Rightarrow w p(" S 2 ", Q))
\end{aligned}
$$

## Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- Weakest precondition yields strongest specification for the computation (analogous to function specifications)

20

## Method calls

// precondition: ??
$\mathrm{x}=\mathrm{foo}($ );
// postcondition: Q

- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable it modifies

Use the method specification to
determine the new value

22

## If: an example

```
    // precondition: ??
    if (x== 0) {
        x=x+1;
    } else {
        x = (x/x)
        }
            // postcondition: x \geq0
    recondition:
    wp("if (x==0) {x=x+1} else {x=x/x}", x\geq0)=
    =( x=0=>wp("x=x+1", x\geq0)
        & x\not=0=>wp("x=x/x", x\geq0)
            =(x=0=>x+1\geq0)& (x\not=0=>x/x\geq0)
            = 1 \geq0 & 1 
    = true
```


## Reasoning About Loops

- A loop represents an unknown number of paths
- Case analysis is problematic
- Recursion presents the same issue
- Cannot enumerate all paths
- That is what makes testing and reasoning hard

Loops: values and termination
/l assert $x \geq 0$ \& $y=0$
while ( $x!=y$ )
\}
// assert $\mathrm{x}=\mathrm{y}$

1) Pre-assertion guarantees that $x \geq y$
2) Every time through loop
$x \geq y$ holds and, if body is entered, $x>y$ $y$ is incremented by 1
$x$ is unchanged
Therefore, $y$ is closer to $x$ (but $x \geq y$ still holds)
3) Since there are only a finite number of integers
between $x$ and $y$, $y$ will eventually equal $x$
4) Execution exits the loop as soon as $x=y$

## Loop invariant for the example



- So, what is a suitable invariant?
- What makes the loop work?

LI $=x \geq y$

1) $x \geq 0 \& y=0 \Rightarrow L$
2) ㄴI \& $x \neq y\{y=y+1 ;\}$ LI
3) (LI \& $\neg(x \neq y)) \Rightarrow x=y$

28

## Decrementing Function

- Decrementing function $\mathrm{D}(\mathrm{X})$
- Maps state (program variables) to some well-ordered set
- This greatly simplifies reasoning about termination
- Consider: while (b) S;
- We seek $D(X)$, where $X$ is the state, such that

1. An execution of the loop reduces the function's value: LI \& b \{S $\} D\left(\mathrm{X}_{\text {post }}\right)<\mathrm{D}\left(\mathrm{X}_{\text {pre }}\right)$
2. If the function's value is minimal, the loop terminates: $(\mathrm{LI} \& D(X)=\operatorname{minVal}) \Rightarrow \neg b$

## Proving Termination

```
// assert x \geq0 & y = 0
// Loop invariant: x \geqy
// Loop decrements: (x-y)
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- Is " $x-y$ " a good decrementing function?

1. Does the loop reduce the decrementing function's value? // assert (y $x$ ); let $d_{\text {pre }}=(x-y)$ $y=y+1$;
// assert $\left(\mathrm{x}_{\text {post }}-\mathrm{y}_{\text {post }}\right)<\mathrm{d}_{\text {pre }}$
2. If the function has minimum value, does the loop exit? $(x \quad y \& x-y=0) \quad(x=y)$

32

## In practice

I don't routinely write loop invariants

I do write them when I am unsure about a loop and when I have evidence that a loop is not working

- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn't work
- Reason to ensure that no similar bugs remain

34

## Inductive Step

Assume $2^{m}=1+\sum_{k=1}^{m} 2^{k-1}$ and show that $2^{m+1}=1+\sum_{k=1}^{m+1} 2^{k-1}$
$2^{m+1}=1+\sum_{k=1}^{m+1} 2^{k-1}=1+\sum_{k=1}^{m} 2^{k-1}+2^{m}=2^{m}+2^{m}=2 \times 2^{m}=2^{m+1}$

## Choosing Loop Invariant

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
- The loop invariant
- The decrementing function
- Then, use reasoning techniques to prove the goal property
- If the proof doesn't work:
- Maybe you chose a bad invariant or decrementing function - Choose another and try again
- Maybe the loop is incorrect
- Fix the code
- Automatically choosing loop invariants is a research topic


## More on Induction

- Induction is a very powerful tool

$$
2^{n}=1+\sum_{k=1}^{n} 2^{k-1}
$$

Proof by induction: Base Case
For $\mathrm{n}=1, \quad 1+\sum_{k=1}^{1} 2^{k-1}=1+2^{0}=1+1=2=2^{1}$

35

Is Induction Too Powerful?


37


[^0]:    - MacNell et al. What's in a Name: Exposing Gender Bias in Student Ratings of Teaching. Innovative Higher

    Education, 2014, http://dx.doi.ory/10.1007/s.10755-014.0313/
    Russ et al. Coming Out in the Classroom ... An Occupational Hazard?: The Influence of Sexual Orientation or Teacher Credibility and Perceived Student Learning. Communication Education 51(3), 2002, 311-324.

