
2/26/24

1

Requirements Specification

• Due Feb 29, 12PM EST

• Submit 1 per team on moodle

1

Architecture

MIT Stata Center by Frank Gehry

2

Why architecture?

“Good software architecture makes
the rest of the project easy.”

Steve McConnell, Survival Guide

3

The basic problem
Requirements

Code

?????

How do you bridge the gap
between requirements
and code?

4

One answer
Requirements

Code

a miracle happens

5

A better answer
Requirements

Code

Software Architecture

Provides a high-level
framework to
build and evolve the
system

6

2/26/24

2

What does an architecture look like?

7

Box-and-arrow diagrams

Very common and hugely valuable.
But, what does a box represent?

an arrow?
a layer?
adjacent boxes?

8

An architecture:
components and connectors

• Components define the basic computations
comprising the system and their behaviors
– abstract data types, filters, etc.

• Connectors define the interconnections between
components
– procedure call, event announcement,

asynchronous message sends, etc.

• The line between them may be fuzzy at times
– Ex: A connector might (de)serialize data, but can it

perform other, richer computations?

9

10

A good architecture

• Satisfies functional and performance
requirements

• Manages complexity
• Accommodates future change
• Is concerned with

– reliability, safety, understandability, compatibility,
robustness, …

10

Divide and conquer
• Benefits of decomposition:

– Decrease size of tasks
– Support independent testing and analysis
– Separate work assignments
– Ease understanding

• Use of abstraction leads to modularity
– Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
– Strong cohesion within a component
– Loose coupling between components
– And these properties should be true at each level

11

12

Qualities of modular software
• decomposable

– can be broken down into pieces

• composable
– pieces are useful and can be combined

• understandable
– one piece can be examined in isolation

• has continuity
– change in reqs affects few modules

• protected / safe
– an error affects few other modules

12

2/26/24

3

Interface and implementation
• public interface: data and behavior of the object that

can be seen and executed externally by "client" code
• private implementation: internal data and methods in

the object, used to help implement the public
interface, but cannot be directly accessed

• client: code that uses your class/subsystem

13

Example: radio
• public interface: the speaker, volume buttons, station dial
• private implementation: the guts of the radio; the

transistors, capacitors, voltage readings, frequencies, etc.
that user should not see

13

UML diagrams

• UML = universal modeling language

• A standardized way to describe (draw)
architecture

• Widely used in industry

14

Properties of architecture

• Coupling
• Cohesion
• Style conformity
• Matching
• Errosion

15

Loose coupling
• coupling assesses the kind and quantity of

interconnections among modules

• Modules that are loosely coupled (or uncoupled)
are better than those that are tightly coupled

• The more tightly coupled two modules are, the
harder it is to work with them separately

16

Tightly or loosely coupled?
User Interface Graphics

Data Storage
Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*-End3

*

-End4*

-End5

*

-End6

*

-End7*

-End8*

-End9*

-End10

*

-End11*

-End12*

-End13

*

-End14*

-End15

*

-End16

*

-End17

*

-End18

*

-End19*

-End20*

-End21

*

-End22

*

-End23*
-End24*

-End25*
-End26*

17

Tightly or loosely coupled?
User Interface Graphics

Data Storage Application Level Classes

Business Rules Enterprise Level Tools

-End1

*

-End2

*

-End3*

-End4

*

-End5*

-End6*

-End9

*

-End10

*

-End11

*

-End12

*

-End13*

-End14*

-End15*

-End16*

-End7*

-End8 *

18

2/26/24

4

Strong cohesion
• cohesion refers to how closely the operations

in a module are related

• Tight relationships improve clarity and
understanding

• Classes with good abstraction usually have
strong cohension

• No schizophrenic classes!

19

Strong or weak cohesion?
class Employee {

public:
 …
 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;
 …
 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);
 …
 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;
 …
}

20

An architecture helps with
• System understanding: interactions between modules

• Reuse: high-level view shows opportunity for reuse

• Construction: breaks development down into work items;
provides a path from requirements to code

• Evolution: high-level view shows evolution path

• Management: helps understand work items and track progress

• Communication: provides vocabulary; pictures say 103 words

21

Architectural style

• Defines the vocabulary of components and connectors
for a family (style)

• Constraints on the elements and their combination
– Topological constraints (no cycles, register/announce

relationships, etc.)
– Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties
of that style (for any architecture in that style)
– Ex: performance, lack of deadlock, ease of making

particular classes of changes, etc.

22

Styles are not just boxes and arrows

• Consider pipes & filters, for example (Garlan and Shaw)
– Pipes must compute local transformations
– Filters must not share state with other filters
– There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
– One can’t tell this from a picture
– One can formalize these constraints

scan parse optimize generate

23

The design and the reality

• The code is often less clean than the design

• The design is still useful
– communication among team members
– selected deviations can be explained more concisely and

with clearer reasoning

24

2/26/24

5

Architectural mismatch

• Mars orbiter loss
NASA lost a 125 million Mars orbiter because one
engineering team used metric units while another
used English units for a key spacecraft operation

25

Views

A view illuminates a set of top-level design decisions
• how the system is composed of interacting parts
• where are the main pathways of interaction
• key properties of the parts
• information to allow high-level analysis and

appraisal

27

Importance of views
Multiple views are needed to understand the

different dimensions of systems

Functional
Requirements

Performance
(execution)
Requirements

Packaging
Requirements

Installation
Requirements

Booch

28

Web application (client-server)

Booch

29

manipulates

Model-View-Controller

Separates the application
object (model) from the
way it is represented to
the user (view) from the
way in which the user
controls it (controller).

User

Model

ControllerView

Application

sees uses

updates

30

Pipe and filter

Filter - computes on the data

Pipe – passes the data

,,,

Each stage of the pipeline acts independently of
the others.
Can you think of a system based on this
architecture?

top | grep $USER | grep acrobat

31

2/26/24

6

Blackboard architectures
• The knowledge sources: separate,

independent units of application
dependent knowledge. No direct
interaction among knowledge sources

• The blackboard data structure: problem-
solving state data. Knowledge sources
make changes to the blackboard that lead
incrementally to a solution to the
problem.

• Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the
blackboard.

32

Blackboard systems have traditionally been used for applications requiring
complex interpretations of signal processing, such as speech and pattern
recognition.

32

Hearsay-II: blackboard

33

33

UML

Design and UML Diagrams

34

How do people
draw / write down

software architecture?

35

Example architectures

person

UMass student

CS 320
 student

VerizonWireless

GPS satellite

Cell phone

sea agent

lake agent

amphibious
agent

36

Big questions

• What is UML?
– Why should I bother? Do people really use UML?

• What is a UML class diagram?
– What kind of information goes into it?
– How do I create it?
– When should I create it?

37

2/26/24

7

Design phase

• design: specifying the structure of how a software
system will be written and function, without actually
writing the complete implementation

• a transition from "what" the system must do, to
"how" the system will do it
– What classes will we need to implement a system that

meets our requirements?
– What fields and methods will each class have?
– How will the classes interact with each other?

38

How do we design classes?
• class identification from project spec / requirements

– nouns are potential classes, objects, fields
– verbs are potential methods or responsibilities of a class

• CRC card exercises
– write down classes' names on index cards
– next to each class, list the following:

• responsibilities: problems to be solved; short verb phrases
• collaborators: other classes that are sent messages by this class

(asymmetric)

• UML diagrams
– class diagrams
– sequence diagrams
– ...

39

UML
In an effort to promote Object Oriented designs,

three leading object oriented programming
researchers joined ranks to combine their
languages:

– Grady Booch (BOOCH)
– Jim Rumbaugh (OML: object modeling technique)
– Ivar Jacobsen (OOSE: object oriented software eng)

and come up with an industry standard [mid 1990’s].

40

UML – Unified Modeling Language
• The result is large (as one might expect)

– Union of all Modeling Languages
• Use case diagrams
• Class diagrams
• Object diagrams
• Sequence diagrams
• Collaboration diagrams
• Statechart diagrams
• Activity diagrams
• Component diagrams
• Deployment diagrams
• ….

– But it’s a nice standard that has been embraced by
the industry.

41

Introduction to UML

• UML: pictures of an OO system
– programming languages are not abstract enough for OO

design
– UML is an open standard; lots of companies use it

• What is legal UML?
– a descriptive language: rigid formal syntax (like

programming)
– a prescriptive language: shaped by usage and convention
– it's okay to omit things from UML diagrams if they aren't

needed by team/supervisor/instructor

42

Uses for UML
• as a sketch: to communicate aspects of system

– forward design: doing UML before coding
– backward design: doing UML after coding as documentation
– often done on whiteboard or paper
– used to get rough selective ideas

• as a blueprint: a complete design to be implemented
– sometimes done with CASE (Computer-Aided Software

Engineering) tools

• as a programming language: with the right tools, code can
be auto-generated and executed from UML
– only good if this is faster than coding in a "real" language

43

2/26/24

8

UML class diagrams

• What is a UML class diagram?

• What are some things that are not
represented in a UML class diagram?

n details of how the classes interact with each other
n algorithmic details
n how a particular behavior is implemented

n UML class diagram: a picture of
n the classes in an OO system
n their fields and methods
n connections between the classes

n that interact or inherit from each other

44

Diagram of one class
• class name in top of box

– write <<interface>> on top of interfaces' names
– use italics for an abstract class name

• attributes (optional)
– should include all fields of the object

• operations / methods (optional)
– may omit trivial (get/set) methods

• but don't omit any methods from an interface!

– should not include inherited methods

45

Class attributes
• attributes (fields, instance variables)

– visibility name : type [count] = default_value

– visibility: + public
 # protected
 - private
 ~ package (default)
 / derived

– underline static attributes

– derived attribute: not stored, but can
be computed from other attribute values

– attribute example:
- balance : double = 0.00

46

Comments

• represented as a folded note, attached to the
appropriate class/method/etc by a dashed line

47

Relationships between classes

• generalization: an inheritance relationship
– inheritance between classes
– interface implementation

• association: a usage relationship
– dependency
– aggregation
– composition

48

Generalization relationships
• generalization (inheritance) relationships

– hierarchies drawn top-down with arrows pointing
upward to parent

– line/arrow styles differ, based on whether parent is
a(n):

• class:
solid line, black arrow

• abstract class:
solid line, white arrow

• interface:
dashed line, white arrow

– we often don't draw trivial / obvious generalization
relationships, such as drawing the Object class as a
parent

49

2/26/24

9

Associational relationships
• associational (usage) relationships

1. multiplicity (how many are used)
• * Þ 0, 1, or more

• 1 Þ 1 exactly
• 2..4 Þ between 2 and 4, inclusive
• 3..* Þ 3 or more

2. name (what relationship the objects have)

3. navigability (direction)

50

n one-to-one
n each student must carry exactly one ID card

n one-to-many
n one rectangle list can contain many rectangles

Multiplicity of associations

51

Association types
• aggregation: "is part of"

– symbolized by a clear white diamond

• composition: "is entirely made of"
– stronger version of aggregation
– the parts live and die with the whole
– symbolized by a black diamond

• dependency: "uses temporarily"
– symbolized by dotted line
– often is an implementation

detail, not an intrinsic part of
that object's state

1
1

Car

aggregation

Engine

Lottery
Ticket

Random

dependency

Page

Book

composition

*
1

52

Class diagram example
Aggregation –
Order class
contains
OrderDetail
classes. Could
be composition?

No arrows; info can
flow in both directions

53

UML example: people

Let’s add the visibility attributes

54

55

Class diagram: voters

55

2/26/24

10

Class diagram example: video store

DVD Movie VHS Movie Video Game

Rental Item

Rental Invoice

1..*
1

Customer

Checkout Screen

0..1

1

Simple
 Association

Class

Abstract
Class

Simple
Aggregation

Generalization
Composition

Multiplicity

56

Class diagram example: student

StudentBody

+ main (args : String[])

+ toString() : String

1 100
Student

- firstName : String
- lastName : String
- homeAddress : Address
- schoolAddress : Address

+ toString() : String

- streetAddress : String
- city : String
- state : String
- zipCode : long

Address

57

Tools for creating UML diagrams

• Violet (free)
– http://horstmann.com/violet/

• Rational Rose (trial)
– https://www.ibm.com/support/pages/node/306477?mhsrc=ibmsearch_a&mhq=rational%20rose

• Visual Paradigm UML Suite (trial)
– http://www.visual-paradigm.com/
– direct download link:

https://www.visual-paradigm.com/download/

(there are many others, but many are commercial)

58

Class design exercise
• Consider this Texas Hold 'em poker game system:

– 2 to 8 human or computer players
– Each player has a name and stack of chips
– Computer players have a difficulty setting: easy, medium, hard
– Summary of each round:

• Dealer collects ante from appropriate players, shuffles the deck, and deals
each player a hand of 2 cards from the deck.

• A betting round occurs, followed by dealing 3 shared cards from the deck.
• As shared cards are dealt, more betting rounds occur, where each player

can fold, check, or raise.
• At the end of a round, if more than one player is remaining, players' hands

are compared, and the best hand wins the pot of all chips bet so far.

– What classes are in this system?
What are their responsibilities?
Which classes collaborate?

– Draw a class diagram for this system. Include relationships
between classes (generalization and associational).

59

UML

UML Sequence Diagrams

60

UML sequence diagrams

• sequence diagram: an "interaction diagram"
that models a single scenario executing in the
system
– perhaps 2nd most used UML diagram

(behind class diagram)

• relation of UML diagrams to other exercises:
– CRC cards -> class diagram
– use cases -> sequence diagrams

61

http://horstmann.com/violet/
https://www.ibm.com/support/pages/node/306477?mhsrc=ibmsearch_a&mhq=rational%20rose
http://www.visual-paradigm.com/
https://www.visual-paradigm.com/download/

2/26/24

11

Key parts of a sequence diagram

• participant: an object or an entity;
 the sequence diagram actor
– sequence diagram starts with an unattached

"found message" arrow

• message: communication between objects

• the axes in a sequence diagram:
– horizontal: which object/participant is acting
– vertical: time (forward in time)

62

63

Sequence diagram from use case

63

Representing objects
• An object: a square with object type,

optionally preceded by object name and colon
– write object's name if it clarifies the diagram
– object's "life line" represented by dashed vert. line

64

• message (method call): horizontal arrow to other object
– write message name and arguments above arrow

Messages between objects

65

Different types of messages

• Type of arrow indicates types of messages
– dashed arrow back indicates return
– different arrowheads for normal / concurrent

(asynchronous) methods

66

Lifetime of objects
• creation: arrow with 'new'

written above it
– an object created after the

start of the scenario appears
lower than the others

• deletion: an X at bottom of
object's lifeline
– Java doesn't explicitly delete

objects; they fall out of scope
and are garbage collected

67

2/26/24

12

Indicating method calls

• activation: thick box over object's life line
– Either: that object is running its code or it is on

the stack waiting for another object's method
– nest to indicate recursion

Activation

Nesting

68

Selection and loops
• frame: box around part of a sequence diagram to indicate selection or loop

– if -> (opt) [condition]
– if/else -> (alt) [condition], separated by horizontal dashed line
– loop -> (loop) [condition or items to loop over]

69

Linking sequence diagrams
If one sequence diagram is too large or refers to another
diagram:

– an unfinished arrow and comment
– a "ref" frame that names the other diagram

Verify customer credit

refCustomer Info

Approved?

70

sd Example

loop

StoreFront Cart Inventory

AddItem
ReserveItem

PlaceItemInOrder

Checkout

ProcessOrder
ConfirmOrder

Example sequence diagram

71

72

Forms of system control
• What can you say about the control flow of

each of the following systems?
– Is it centralized?
– Is it distributed?

72

Why not just code it?
• Sequence diagrams can be somewhat close to

the code level. So why not just code up that
algorithm rather than drawing it as a
sequence diagram?

n a good sequence diagram is still a bit above the level
of the real code (not all code is drawn on diagram)

n sequence diagrams are language-agnostic (can be
implemented in many different languages

n non-coders can do sequence diagrams
n easier to do sequence diagrams as a team
n can see many objects/classes at a time on same

page (visual bandwidth)

73

2/26/24

13

Poker sequence diagram exercise
The scenario begins when the player chooses to start a new

round in the UI. The UI asks whether any new players want to join
the round; if so, the new players are added using the UI.

 All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies a blind bet of the
proper amount. Next, each player is dealt a hand of two cards
from the deck in a round-robin fashion; one card to each player.
Then the second card.

 If the player left of the dealer doesn't have enough money for
his/her blind, he/she is removed from the game and the next
player supplies the blind. If that player also cannot afford the
blind, this cycle continues until a rich-enough player is found or all
players are removed.

74

Calendar sequence diagram exercise
The user chooses to add a new appointment in the UI. The UI notices which part

of the calendar is active and pops up an Add Appointment window for that date
and time.
 The user enters the necessary information about the appointment's name,
location, start and end times. The UI will prevent the user from entering an
appointment that has invalid information, such as an empty name or negative
duration. The calendar records the new appointment in the user's list of
appointments. Any reminder selected by the user is added to the list of reminders.
 If the user already has an appointment at that time, the user is shown a warning
message and asked to choose an available time or replace the previous
appointment. If the user enters an appointment with the same name and duration
as an existing group meeting, the calendar asks the user whether he/she intended
to join that group meeting instead. If so, the user is added to that group meeting's
list of participants.

75

