Coming up

- Quiz 2 this Thursday, in class
- User reports due April 30
- Today: quiz review and Reasoning About Programs

What'll be on quiz 2?

- Types of questions
 - Same as quiz 1
 - True False and Multiple Choice
- Topics
 - User Interfaces
 - Design Patterns
 - Testing
 - Debugging
 - Automated Program Repair and Verification
 - Ethics (video on class webpage)
 - Reasoning about Software

User Interfaces

- Which UI elements are appropriate when
- · User-centered testing
- · Paper prototypes

1

Design Paterns

- · Creational design patterns
 - Singleton
 - Interning
 - Flyweight
 - Factories

3

Testing

- Know about different kinds of tests
 - unit, integration, regression, etc.
- Know about different kinds of coverage
 - statement, path, etc.
- · Know what's hard about testing
 - GUI, usability, covering all behavior, etc.

Debugging

- Know four kinds of defense against bugs
 - make impossible
 - don't introduce
 - make errors visible
 - last resort: debugging
- Representation (rep) invariants
- Assertions

6

Automated Program Repair & Verification

- Test-driven repair
- Overfitting
- ML-driven proof synthesis

Ethics in Software Engineering

- Focus on the lecture (video on class website)
- Examples of ethics in the workplace
- · Focus on high-level ideas only

Reasoning about programs (today)

- · Ways to verify your code
 - testing, reasoning, proving
- · Forward reasoning
- · Backward reasoning
- Loop invariants
- Induction
- · Practice some examples!

Loop example

Find the weakest precondition

```
for (int x = 1; x <> y;) {
  if (y > x) {
    y = y / 2;
    x=2*x;
  }
}
// postcondition: x=8, y=8, and x and y are ints
```

you can also find the loop invariant and decrement function

10

Reasoning about programs

· Another way that can be easy - Prove that the system does what you want

- When it fails in the field, attempt to debug

- Rep invariants are preserved
- · Implementation satisfies specification
- Proof can be formal or informal (we will be informal)

Ways to verify your code

- Reason about possible behavior and desired outcomes Construct simple tests that exercise that behavior

- Complementary to testing

· The hard way:

The easier way:

- Make up some inputs - If it doesn't crash, ship it

Reasoning about code

- Determine what facts are true during execution

 - for all nodes n: n.next.previous == n
 - array a is sorted
 - -x+y==z
 - if x != null, then x.a > x.b
- · Applications:
 - Ensure code is correct (via reasoning or testing)
 - Understand why code is incorrect

Forward reasoning

- You know what is true before running the code What is true after running the code?
- Given a precondition, what is the postcondition?
- Applications:

Representation invariant holds before running code Does it still hold after running code?

Example:

// precondition: x is even

x = x + 3:

y = 2x; x = 5:

// postcondition: ??

13

14

Backward reasoning

- You know what you want to be true after running the code What must be true beforehand in order to ensure that?
- Given a postcondition, what is the corresponding precondition?
- Applications:

(Re-)establish rep invariant at method exit: what's required? Reproduce a bug: what must the input have been?

Example:

// precondition: ?? x = x + 3;

y = 2x; x = 5;

// postcondition: y > x

How did you (informally) compute this?

Forward vs. backward reasoning

- · Forward reasoning is more intuitive for most people
 - Helps understand what will happen (simulates the code)
 - Introduces facts that may be irrelevant to goal Set of current facts may get large
 - Takes longer to realize that the task is hopeless
- · Backward reasoning is usually more helpful
 - Helps you understand what should happen
 - Given a specific goal, indicates how to achieve it
 - Given an error, gives a test case that exposes it

15

16

Forward reasoning example

```
assert x \ge 0;
i = x;
    // x \ge 0 \& i = x
z = 0:
    // x \ge 0 \& i = x \& z = 0
while (i != 0) {

← What property holds here?

 z = z + 1;
 i = i - 1;

← What property holds here?

    // x \ge 0 \& i = 0 \& z = x
assert x == z;
```

Backward reasoning

Technique for backward reasoning:

- Compute the weakest precondition (wp)
- There is a wp rule for each statement in the programming language
- · Weakest precondition yields strongest specification for the computation (analogous to function specifications)

17

Assignment

```
// precondition: ??
  x = e;
  // postcondition: Q
Precondition: Q with all (free) occurrences of x
replaced by e
• Example:
  // assert: ??
  x = x + 1;
  // assert x > 0
Precondition = (x+1) > 0
```

Method calls

```
// precondition: ??
x = foo();
// postcondition: Q
```

- If the method has no side effects: just like ordinary assignment
- If it has side effects: an assignment to every variable it modifies

Use the method specification to determine the new value

19

20

If statements

```
// precondition: ??

if (b) S1 else S2

// postcondition: Q

Essentially case analysis:

wp("if (b) S1 else S2", Q) =

( b \Rightarrow wp("S1", Q)

\land \neg b \Rightarrow wp("S2", Q) )
```

If: an example

```
// precondition: ??

if (x = 0) {

x = x + 1;

} else {

x = (x/x);

}

// postcondition: x \ge 0

Precondition:

wp("if (x = 0) {x = x + 1} else {x = x/x}", x \ge 0) =

= (x = 0 \Rightarrow wp("x = x + 1", x \ge 0)

& x \ne 0 \Rightarrow wp("x = x/x", x \ge 0) )

= (x = 0 \Rightarrow x + 1 \ge 0) & (x \ne 0 \Rightarrow x/x \ge 0)

= 1 \ge 0 & 1 \ge 0

= true
```

21

22

Reasoning About Loops

- A loop represents an unknown number of paths
 - Case analysis is problematic
 - Recursion presents the same issue
- Cannot enumerate all paths
 - That is what makes testing and reasoning hard

Loops: values and termination

```
// assert x ≥ 0 & y = 0
while (x != y) {
    y = y + 1;
}
// assert x = y
```

- 1) Pre-assertion guarantees that $x \ge y$
- Every time through loop x≥y holds and, if body is entered, x>y y is incremented by 1

x is unchanged

Therefore, y is closer to x (but $x \ge y$ still holds)

- 3) Since there are only a finite number of integers between ${\bf x}$ and ${\bf y}$, ${\bf y}$ will eventually equal ${\bf x}$
- 4) Execution exits the loop as soon as x = y

23

Understanding loops by induction

- We just made an inductive argument Inducting over the number of iterations
- · Computation induction

Show that conjecture holds if zero iterations

Assume it holds after n iterations and show it holds after n+1

• There are two things to prove:

Some property is preserved (known as "partial correctness") loop invariant is preserved by each iteration

The loop completes (known as "termination")

The "decrementing function" is reduced by each iteration

25

Loop invariant for the example

- So, what is a suitable invariant?
- · What makes the loop work?

$$LI = x \ge y$$

```
1) x \ge 0 & y = 0 \Rightarrow LI
```

2) LI &
$$x \neq y \{y = y+1;\}$$
 LI

3) (LI &
$$\neg(x \neq y)$$
) $\Rightarrow x = y$

Is anything missing?

// assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
// assert x = y

Does the loop terminate?

Decrementing Function

- Decrementing function D(X)
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination
- Consider: while (b) S;
- We seek D(X), where X is the state, such that
 - 1. An execution of the loop reduces the function's value: LI & b $\{s\}$ $D(X_{post}) < D(X_{pre})$
 - 2. If the function's value is minimal, the loop terminates: (LI & D(X) = minVal) $\Rightarrow \neg b$

27

29

26

Proving Termination

// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
 y = y + 1;
}
// assert x = y

- Is "x-y" a good decrementing function?
- Does the loop reduce the decrementing function's value?
 // assert (y x); let d_{pre} = (x y)
 y = y + 1;
 // assert (x_{post} y_{post}) < d_{pre}
- 2. If the function has minimum value, does the loop exit? (x y & x - y = 0) (x = y)

Choosing Loop Invariant

- For straight-line code, the wp (weakest precondition) function gives us the appropriate property
- For loops, you have to guess:
 - The loop invariant
 - The decrementing function
- · Then, use reasoning techniques to prove the goal property
- If the proof doesn't work:
 - Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
 - Maybe the loop is incorrect
 Fix the code
- · Automatically choosing loop invariants is a research topic

30

In practice

I don't routinely write loop invariants

I do write them when I am unsure about a loop and when I have evidence that a loop is not working

- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn't work
- Reason to ensure that no similar bugs remain

More on Induction

• Induction is a very powerful tool

$$2^n = 1 + \sum_{k=1}^n 2^{k-1}$$

Proof by induction: Base Case

For n=1,
$$1 + \sum_{k=1}^{1} 2^{k-1} = 1 + 2^0 = 1 + 1 = 2 = 2^1$$

32

33

Inductive Step

Assume $2^m = 1 + \sum_{k=1}^m 2^{k-1}$ and show that $2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1}$

$$2^{m+1} = 1 + \sum_{k=1}^{m+1} 2^{k-1} = 1 + \sum_{k=1}^{m} 2^{k-1} + 2^m = 2^m + 2^m = 2 \times 2^m = 2^{m+1}$$

Is Induction Too Powerful?

34