
The Why, What, and How of
Software Transactions

for More Reliable Concurrency

Dan Grossman
University of Washington

26 May 2006

Atomic

26 May 2006 Dan Grossman 2

An easier-to-use and harder-to-implement primitive
withLk:
lock->(unit->α)->α

let xfer src dst x =
withLk src.lk (fun()->
withLk dst.lk (fun()->
src.bal <- src.bal-x;
dst.bal <- dst.bal+x
))

atomic:
(unit->α)->α

let xfer src dst x =
atomic (fun()->
src.bal <- src.bal-x;
dst.bal <- dst.bal+x

)

lock acquire/release (behave as if)
no interleaved computation

Why now?

26 May 2006 Dan Grossman 3

Multicore unleashing small-scale parallel computers on
the programming masses

Threads and shared memory remaining a key model
– Most common if not the best

Locks and condition variables not enough
– Cumbersome, error-prone, slow

Atomicity should be a hot area, and it is…

A big deal

26 May 2006 Dan Grossman 4

Software-transactions research broad…

• Programming languages
PLDI 3x, POPL, ICFP, OOPSLA, ECOOP, HASKELL

• Architecture
ISCA, HPCA, ASPLOS

• Parallel programming
PPoPP, PODC

… and coming together, e.g.,
TRANSACT & WTW at PLDI06

Viewpoints

26 May 2006 Dan Grossman 5

Software transactions good for:
• Software engineering (avoid races & deadlocks)
• Performance (optimistic “no conflict” without locks)

key semantic decisions depend on emphasis

Research should be guiding:
• New hardware with transactional support
• Language implementation for expected platforms

“is this a hw or sw question or both”

Our view

26 May 2006 Dan Grossman 6

SCAT (Scalable Concurrency Abstractions via Transactions)
project at UW is motivated by
“reliable concurrent software without new hardware”

Theses:
1. Atomicity is better than locks, much as garbage

collection is better than malloc/free [Tech Rpt Apr06]

2. “Strong” atomicity is key, with minimal language
restrictions

3. With 1 thread running at a time, strong atomicity is fast
and elegant [ICFP Sep05]

4. With multicore, strong atomicity needs heavy compiler
optimization; we’re making progress [Tech Rpt May06]

Outline

26 May 2006 Dan Grossman 7

• Motivation
– Case for strong atomicity
– The GC analogy

• Related work

• Atomicity for a functional language on a uniprocessor

• Optimizations for strong atomicity on multicore

• Conclusions

Atomic, again

26 May 2006 Dan Grossman 8

An easier-to-use and harder-to-implement primitive
withLk:
lock->(unit->α)->α

let xfer src dst x =
withLk src.lk (fun()->
withLk dst.lk (fun()->
src.bal <- src.bal-x;
dst.bal <- dst.bal+x
))

atomic:
(unit->α)->α

let xfer src dst x =
atomic (fun()->
src.bal <- src.bal-x;
dst.bal <- dst.bal+x

)

lock acquire/release (behave as if)
no interleaved computation

Strong atomicity

26 May 2006 Dan Grossman 9

(behave as if) no interleaved computation
• Before a transaction “commits”

– Other threads don’t “read its writes”
– It doesn’t “read other threads’ writes”

• This is just the semantics
– Can interleave more unobservably

Weak atomicity

26 May 2006 Dan Grossman 10

(behave as if) no interleaved transactions
• Before a transaction “commits”

– Other threads’ transactions don’t “read its writes”
– It doesn’t “read other threads’ transactions’ writes”

• This is just the semantics
– Can interleave more unobservably

Wanting strong

26 May 2006 Dan Grossman 11

Software-engineering advantages of strong atomicity
1. Sequential reasoning in transaction

• Strong: sound
• Weak: only if all (mutable) data is not

simultaneously accessed outside transaction
2. Transactional data-access a local code decision

• Strong: new transaction “just works”
• Weak: what data “is transactional” is global

3. Fairness: Long transactions don’t starve others
• Strong: true; no other code sees effects
• Weak: maybe false for non-transactional code

Caveat

26 May 2006 Dan Grossman 12

Need not implement strong atomicity to get it

With weak atomicity, suffices to put all mutable thread-
shared data accesses in transactions

Can do so via
• “Programmer discipline”
• Monads [Harris, Peyton Jones, et al]

• Program analysis [Flanagan, Freund et al]

• “Transactions everywhere” [Leiserson et al]

• …

Outline

26 May 2006 Dan Grossman 13

• Motivation
– Case for strong atomicity
– The GC analogy

• Related work

• Atomicity for a functional language on a uniprocessor

• Optimizations for strong atomicity on multicore

• Conclusions

Why an analogy

26 May 2006 Dan Grossman 14

• Already gave some of the crisp technical reasons
why atomic is better than locks
– Locks are weaker than weak atomicity

• An analogy isn’t logically valid, but can be
– Convincing and memorable
– Research-guiding

Software transactions are to concurrency as
garbage collection is to memory management

Hard balancing acts

26 May 2006 Dan Grossman 15

concurrency

correct, fast synchronization?
• lock too little:

race
• lock too much:

sequentialize, deadlock

non-modular
• access needs

“whole-program uses
same lock”

memory management

correct, small footprint?
• free too much:

dangling ptr
• free too little:

leak, exhaust memory
non-modular
• deallocation needs

“whole-program is
done with data”

Move to the run-time

26 May 2006 Dan Grossman 16

• Correct [manual memory management / lock-based
synhronization] requires subtle whole-program
invariants

• [Garbage-collection / software-transactions] also
requires subtle whole-program invariants, but
localized in the run-time system
– With compiler and/or hardware cooperation
– Complexity doesn’t increase with size of program

Old way still there

26 May 2006 Dan Grossman 17

Despite being better, “stubborn” programmers can
nullify most of the advantages

type header = int

let t_buf : (t *(bool ref) array =
…(*big array of ts and false refs*)

let mallocT () : header * t =
let i = … (*find t_buf elt with false *)in
snd t_buf[i] := true;
(i,fst t_buf[i])

let freeT (i:header,v:t) =
snd t_buf[i] := false

Old way still there

26 May 2006 Dan Grossman 18

Despite being better, “stubborn” programmers can
nullify most of the advantages

type lk = bool ref

let new_lk = ref true

let rec acquire lk =
let done = atomic (fun () ->

if !lk
then (lk:=false;true)
else false) in

if done then () else acquire lk

let release lk = lk:=true

Much more

26 May 2006 Dan Grossman 19

More similarities:

• Basic trade-offs
– Mark-sweep vs. copy
– Rollback vs. private-memory

• I/O (writing pointers / mid-transaction data)

• …

I now think “analogically” about each new idea!

Outline

26 May 2006 Dan Grossman 20

• Motivation
– Case for strong atomicity
– The GC analogy

• Related work

• Atomicity for a functional language on a uniprocessor

• Optimizations for strong atomicity on multicore

• Conclusions

Related work, part 1

26 May 2006 Dan Grossman 21

• Transactions a classic CS concept
• Software-transactional memory (STM) as a library

– Even weaker atomicity & less convenient
• Weak vs. Strong: [Blundell et al.]
• Efficient software implementations of weak atomicity

– MSR and Intel (latter can do strong now)
• Hardware and hybrid implementations

– Key advantage: Use cache for private versions
– Atomos (Stanford) has strong atomicity

• Strong atomicity as a type annotation
– Static checker for lock code

Closer related work

26 May 2006 Dan Grossman 22

• Haskell GHC
– Strong atomicity via STM Monad
– So can’t “slap atomic around existing code”

• By design (true with all monads)

• Transactions for Real-Time Java (Purdue)
– Similar implementation to AtomCaml

• Orthogonal language-design issues
– Nested transactions
– Interaction with exceptions and I/O
– Compositional operators
– …

Outline

26 May 2006 Dan Grossman 23

• Motivation

• Related work

• Atomicity for a functional language on a uniprocessor
– Language design
– Implementation
– Evaluation

• Optimizations for strong atomicity on multicore

• Conclusions

Basic design

26 May 2006 Dan Grossman 24

no change to parser and type-checker
– atomic a first-class function
– Argument evaluated without interleaving

external atomic : (unit->α)->α = “atomic”

In atomic (dynamically):
• yield : unit->unit aborts the transaction
• yield_r : α ref->unit yield & rescheduling hint

– Often as good as a guarded critical region
– Better: split “ref registration” & yield
– Alternate: implicit read sets

Exceptions

26 May 2006 Dan Grossman 25

If code in atomic raises exception caught outside
atomic, does the transaction abort?

We say no!
• atomic = “no interleaving until control leaves”
• Else atomic changes sequential semantics:

let x = ref 0 in
atomic (fun () -> x := 1; f())
assert((!x)=1) (*holds in our semantics*)

A variant of exception-handling that reverts state might
be useful and share implementation
– But not about concurrency

Handling I/O

26 May 2006 Dan Grossman 26

let f () =
write_file_foo();
…
read_file_foo()

let g () =
atomic f; (* read won’t see write *)
f() (* read may see write *)

• Buffering sends (output) easy and necessary
• Logging receives (input) easy and necessary

• But input-after-output does not work

• I/O one instance of native code …

Native mechanism

26 May 2006 Dan Grossman 27

• Previous approaches: no native calls in atomic
– raise an exception
– atomic no longer preserves meaning

• We let the C code decide:
– Provide 2 functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise exception,

or do something else
– in-atomic can register commit- & abort- actions

(sufficient for buffering)
– a pragmatic, imperfect solution (necessarily)

Outline

26 May 2006 Dan Grossman 28

• Motivation

• Related work

• Atomicity for a functional language on a uniprocessor
– Language design
– Implementation
– Evaluation

• Optimizations for strong atomicity on multicore

• Conclusions

Interleaved execution

26 May 2006 Dan Grossman 29

The “uniprocessor” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Actually more general:
threads on different processors can pass messages

Important special case:
• Many language implementations assume it

(e.g., OCaml)
• Many concurrent apps don’t need a multiprocessor

(e.g., a document editor)
• Uniprocessors are dead? Where’s the funeral?

Implementing atomic

26 May 2006 Dan Grossman 30

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread

• Duplicate code so non-atomic code is not slowed by
logging

• Smooth interaction with GC

Logging example

26 May 2006 Dan Grossman 31

• Executing atomic block
in h builds a LIFO log of
old values:

let x = ref 0
let y = ref 0
let f() =
let z =
ref((!y)+1)

in
x := !z

let g() =
y := (!x)+1

let h() =
atomic(fun()->
y := 2;
f();
g())

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic: drop log

Logging efficiency

26 May 2006 Dan Grossman 32

y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Need not log memory allocated after atomic entered

– Particularly initialization writes
• Need not log an address more than once

– To keep logging fast, switch from array to
hashtable after “many” (50) log entries

Duplicating code

26 May 2006 Dan Grossman 33

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers compile to
pair of code pointers

let x = ref 0
let y = ref 0
let f() =
let z =
ref((!y)+1)

in
x := !z;

let g() =
y := (!x)+1

let h() =
atomic(fun()->
y := 2;
f();
g())

Representing closures/objects

26 May 2006 Dan Grossman 34

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

Representing closures/objects

26 May 2006 Dan Grossman 35

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml: bigger closures

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Note: atomic is first-class, so it is one of these too!

Representing closures/objects

26 May 2006 Dan Grossman 36

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative: slower calls in atomic

header code ptr1 free variables…

add 3, push, …code ptr2

add 3, push, …

Note: Same overhead as OO dynamic dispatch

Interaction with GC

26 May 2006 Dan Grossman 37

What if GC occurs mid-transaction?
• Pointers in log are roots (in case of rollback)
• Moving objects is fine

– Rollback produces equivalent state
– Naïve hardware solutions may log/rollback GC!

What about rolling back the allocator?
• Don’t bother: after rollback, objects allocated in

transaction are unreachable!
• Naïve hardware solutions may log/rollback

initialization writes

Outline

26 May 2006 Dan Grossman 38

• Motivation

• Related work

• Atomicity for a functional language on a uniprocessor
– Language design
– Implementation
– Evaluation

• Optimizations for strong atomicity on multicore

• Conclusions

Qualitative evaluation

26 May 2006 Dan Grossman 39

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor

• Mutable data overhead

• Choice: larger closures or slower calls in transactions
• Code bloat (worst-case 2x, easy to do better)
• Rare rollback

not in atomic in atomic
read none none
write none log (2 more writes)

PLANet program

26 May 2006 Dan Grossman 40

Removed all locks from PLANet active-network simulator
• No large-scale structural changes

– Condition-variable idioms via a 20-line library
• Found 3 concurrency bugs

– 2 races in reader/writer locks library
– 1 library-reentrancy deadlock (never triggered)
– Turns out all implicitly avoided by atomic

• Dealt with 6 native calls in critical sections
– 3: moved without changing application behavior
– 3: used native mechanism to buffer output

Performance

26 May 2006 Dan Grossman 41

Cost of synchronization is all in the noise

• Microbenchmark: short atomic block 2x slower than
same block with lock-acquire/release
– Longer atomic blocks = less slowdown
– Programs don’t spend all time in critical sections

• PLANet: 10% faster to 7% slower (noisy)
– Closure representation mattered for only 1 test

• Sequential code (e.g., compiler)
– 2% slower when using bigger closures

See paper for (boring) tables

Outline

26 May 2006 Dan Grossman 42

• Motivation
– Case for strong atomicity
– The GC analogy

• Related work

• Atomicity for a functional language on a uniprocessor

• Optimizations for strong atomicity on multicore

• Conclusions

Strong performance problem

26 May 2006 Dan Grossman 43

Recall AtomCaml overhead:
not in atomic in atomic

read none none
write none some

In general, with parallelism:
not in atomic in atomic

read none iff weak some
write none iff weak some

Start way behind in performance, especially in
imperative languages (cf. concurrent GC)

AtomJava

26 May 2006 Dan Grossman 44

Novel prototype recently completed

• Source-to-source translation for Java
– Run on any JVM (so parallel)
– At VM’s mercy for low-level optimizations

• Atomicity via locking (object ownership)
– Poll for contention and rollback
– No support for parallel readers yet

• Hope whole-program optimization can get
“strong for near the price of weak”

Optimizing away barriers

26 May 2006 Dan Grossman 45

Thread local

Immutable

Not used in atomic

Want static (no overhead) and dynamic (less overhead)
Contributions:
• Dynamic thread-local: never release ownership until

another thread asks for it (avoid synchronization)
• Static not-used-in-atomic…

Not-used-in-atomic

26 May 2006 Dan Grossman 46

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic

in atomic
no atomic

access
none
none

no atomic
write
none
some

atomic
write

read some some
write some some

not in atomic

“Type-based” alias analysis easily avoids many barriers:
– If field f never used in a transaction, then no

access to field f requires barriers

Performance not there yet

26 May 2006 Dan Grossman 47

• Some metrics give false impression
– Removes barriers at most static sites
– Removal speeds up programs almost 2x

• Must remove enough barriers to avoid
sequentialization

Current results for TSP & no real alias analysis:
speedup over 1 processor

To do: Benchmarks, VM support, more optimizations

lock code weak strong no-opt strong opt

2 processors 1.7x 1.7x 1.7x 1.7x

8 processors 4.5x 2.7x 1.4x 1.5x

Outline

26 May 2006 Dan Grossman 48

• Motivation
– Case for strong atomicity
– The GC analogy

• Related work

• Atomicity for a functional language on a uniprocessor

• Optimizations for strong atomicity on multicore

• Conclusions

Theses

26 May 2006 Dan Grossman 49

1. Atomicity is better than locks, much as garbage
collection is better than malloc/free [Tech Rpt Apr06]

2. “Strong” atomicity is key, preferably w/o language
restrictions

3. With 1 thread running at a time, strong atomicity is fast
and elegant [ICFP Sep05]

4. With multicore, strong atomicity needs heavy compiler
optimization; we’re making progress [Tech Rpt May06]

Credit and other

26 May 2006 Dan Grossman 50

AtomCaml: Michael Ringenburg
AtomJava: Benjamin Hindman (B.S., Dec06)

Transactions are 1/4 of my current research
– Better type-error messages for ML: Benjamin Lerner
– Semi-portable low-level code: Marius Nita
– Cyclone (safe C-level programming)

More in the WASP group: wasp.cs.washington.edu

26 May 2006 Dan Grossman 51

[Presentation ends here; additional slides follow]

Granularity

26 May 2006 Dan Grossman 52

Previous discussion assumed “object-based” ownership
• Granularity may be too coarse (especially arrays)

– False sharing
• Granularity may be too fine (object affinity)

– Too much time acquiring/releasing ownership

Conjecture: Profile-guided optimization can help

Note: Issue applies to weak atomicity too

Representing closures/objects

26 May 2006 Dan Grossman 53

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OO already pays the overhead atomic needs
(interfaces, multiple inheritance, … no problem)

header class ptr fields…

… code ptrs…

Digression

26 May 2006 Dan Grossman 54

Recall atomic a first-class function
– Probably not useful
– Very elegant

A Caml closure implemented in C
• Code ptr1: calls into run-time, then call thunk, then

more calls into run-time
• Code ptr2: just calls thunk

Atomic

26 May 2006 Dan Grossman 55

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

Common bugs

26 May 2006 Dan Grossman 56

• Races
– Unsynchronized access to shared data
– Higher-level races: multiple objects inconsistent

• Deadlocks (cycle of threads waiting on locks)
Example [JDK1.4, version 1.70, Flanagan/Qadeer PLDI2003]

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
…

}
// length and getChars are synchronized

Logging example

26 May 2006 Dan Grossman 57

• Executing atomic block
in h builds a LIFO log of
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic: drop log

Why better

26 May 2006 Dan Grossman 58

1. No whole-program locking protocols
– As code evolves, use atomic with “any data”
– Instead of “what locks to get” (races) and

“in what order” (deadlock)
2. Bad code doesn’t break good atomic blocks:

With atomic, “the protocol” is now the runtime’s problem
(c.f. garbage collection for memory management)

let bad1() =
acct.bal <- 123

let bad2() =
atomic
(fun()->«diverge»)

let good() =
atomic
(fun()->
let tmp=acct.bal in
acct.bal <- tmp+amt)

	The Why, What, and How of Software Transactions for More Reliable Concurrency
	Atomic
	Why now?
	A big deal
	Viewpoints
	Our view
	Outline
	Atomic, again
	Strong atomicity
	Weak atomicity
	Wanting strong
	Caveat
	Outline
	Why an analogy
	Hard balancing acts
	Move to the run-time
	Old way still there
	Old way still there
	Much more
	Outline
	Related work, part 1
	Closer related work
	Outline
	Basic design
	Exceptions
	Handling I/O
	Native mechanism
	Outline
	Interleaved execution
	Implementing atomic
	Logging example
	Logging efficiency
	Duplicating code
	Representing closures/objects
	Representing closures/objects
	Representing closures/objects
	Interaction with GC
	Outline
	Qualitative evaluation
	PLANet program
	Performance
	Outline
	Strong performance problem
	AtomJava
	Optimizing away barriers
	Not-used-in-atomic
	Performance not there yet
	Outline
	Theses
	Credit and other
	
	Granularity
	Representing closures/objects
	Digression
	Atomic
	Common bugs
	Logging example
	Why better

