
Cyclone: Safe Programming at the C
Level of Abstraction

Dan Grossman
Cornell University

May 2002

Joint work with: Trevor Jim (AT&T), Greg Morrisett,
Michael Hicks, James Cheney, Yanling Wang (Cornell)

7 May 2002 Cyclone, 3rd Annual PL Day 2

A disadvantage of C

• Lack of memory safety means code cannot enforce
modularity/abstractions:

void f(){ *((int*)0xBAD) = 123; }

• What might address 0xBAD hold?

• Memory safety is crucial for your favorite policy

No desire to compile programs like this

7 May 2002 Cyclone, 3rd Annual PL Day 3

Safety violations rarely local

void g(void**x,void*y);

int y = 0;
int *z = &y;
g(&z,0xBAD);
*z = 123;

• Might be safe, but not if g does *x=y

• Type of g enough for separate code generation

• Type of g not enough for separate safety checking

7 May 2002 Cyclone, 3rd Annual PL Day 4

Some other problems

• One safety violation can make your favorite
policy extremely difficult to enforce

• So prohibit:

incorrect casts, array-bounds violations,
misused unions, uninitialized pointers,
dangling pointers, null-pointer dereferences,
dangling longjmp, vararg mismatch, not
returning pointers, data races, …

7 May 2002 Cyclone, 3rd Annual PL Day 5

What to do?

• Stop using C
– YFHLL is usually a better choice

• Compile C more like Scheme
– type fields, size fields, live-pointer table, …
– fail-safe for legacy whole programs

• Static analysis
– very hard, less modular

• Restrict C
– not much left

7 May 2002 Cyclone, 3rd Annual PL Day 6

Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps

• C-level: user-controlled data representation and
resource management, easy interoperability,
“manifest cost”

• Convenient: may need more type annotations, but
work hard to avoid it

• Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”

7 May 2002 Cyclone, 3rd Annual PL Day 7

The plan from here

• Not-null pointers
• Type-variable examples

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features

7 May 2002 Cyclone, 3rd Annual PL Day 8

Not-null pointers

pointer to a t valuet@

pointer to a t value or NULLt*

• Subtyping: t@ < t* but t@@ < t*@

• Downcast via run-time check, often avoided
via flow analysis

/

7 May 2002 Cyclone, 3rd Annual PL Day 9

Example

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”, “r”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check

7 May 2002 Cyclone, 3rd Annual PL Day 10

The same old moral

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

7 May 2002 Cyclone, 3rd Annual PL Day 11

“Change void* to alpha”
struct Lst {
void* hd;
struct Lst* tl;

};

struct Lst* map(
void* f(void*),
struct Lst*);

struct Lst* append(
struct Lst*,
struct Lst*);

struct Lst<`a> {
`a hd;
struct Lst<`a>* tl;

};

struct Lst<`b>* map(
`b f(`a),
struct Lst<`a> *);

struct Lst<`a>* append(
struct Lst<`a>*,
struct Lst<`a>*);

7 May 2002 Cyclone, 3rd Annual PL Day 12

Not much new here
Closer to C than ML:

• less type inference allows first-class polymorphism
and polymorphic recursion

• data representation may restrict α to pointers, int
(why not structs? why not float? why int?)

• Not C++ templates

7 May 2002 Cyclone, 3rd Annual PL Day 13

Existential types

• Programs need a way for “call-back” types:
struct T {

void (*f)(void*, int);
void* env;

};

• We use an existential type (simplified for now):
struct T { <`a>
void (@f)(`a, int);
`a env;

};

more C-level than baked-in closures/objects

7 May 2002 Cyclone, 3rd Annual PL Day 14

The plan from here

• Not-null pointers
• Type-variable examples (α, ∀, ∃, λ)

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features

7 May 2002 Cyclone, 3rd Annual PL Day 15

Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• Allocation via a region handle

• All objects in a region are deallocated simultaneously
(no free on an object)

An old idea with recent support in languages (e.g., RC)
and implementations (e.g., ML Kit)

7 May 2002 Cyclone, 3rd Annual PL Day 16

Cyclone regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks:

{int x; int y; s}
• dynamic regions: scoped lifetime, but growable:

region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions

7 May 2002 Cyclone, 3rd Annual PL Day 17

That’s the easy part

The implementation is really simple because the type
system statically prevents dangling pointers

void f() {
int* x;
if(1) {
int y = 0;
x = &y; // x not dangling

}
*x; // x dangling

}

7 May 2002 Cyclone, 3rd Annual PL Day 18

The big restriction
• Annotate all pointer types with a region name

(a type variable of region kind)

• int@`r means “pointer into the region created
by the construct that introduces `r”

– heap introduces `H
– L:… introduces `L
– region r {s} introduces `r

r has type region_t<`r>

7 May 2002 Cyclone, 3rd Annual PL Day 19

Region polymorphism

Apply what we did for type variables to region names
(only it’s more important and could be more onerous)

void swap(int @`r1 x, int @`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int@`r sumptr(region_t<`r> r,int x,int y){
return rnew(r) (x+y);

}

7 May 2002 Cyclone, 3rd Annual PL Day 20

Type definitions

struct ILst<`r1,`r2> {
int@`r1 hd;
struct ILst<`r1,`r2> *`r2 tl;

};

10

81

11

0

7 May 2002 Cyclone, 3rd Annual PL Day 21

Region subtyping

If p points to an int in a region with name `r1,
is it ever sound to give p type int*`r2?

• If so, let int*`r1 < int*`r2

• Region subtyping is the outlives relationship

region r1 {… region r2 {…}…}

• LIFO makes subtyping common

7 May 2002 Cyclone, 3rd Annual PL Day 22

Soundness

• Ignoring ∃, scoping prevents dangling pointers

int*`L f() { L: int x; return &x; }

• End of story if you don’t use ∃

• For ∃, we leak a region bound:

struct T<`r> { <`a> :regions(`a) > `r
void (@f)(`a, int);
`a env;

};

• A powerful effect system is there in case you want it

7 May 2002 Cyclone, 3rd Annual PL Day 23

Regions summary

• Annotating pointers with region names (type variables)
makes a sound, simple, static system

• Polymorphism, type constructors, and subtyping recover
much expressiveness

• Inference and defaults reduce burden

• Other chapters future features:
– array bounds: void f(tag_t<`i>,int*`i);

default 1
– mutual exclusion: void f(lock_t<`L>,int*`L);

default thread-local

7 May 2002 Cyclone, 3rd Annual PL Day 24

The plan from here

• Not-null pointers
• Type-variable examples

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features

7 May 2002 Cyclone, 3rd Annual PL Day 25

Example

int*`r* f(int*`r q) {

int **p = malloc(sizeof(int*));
// p not NULL, points to malloc site
*p = q;
// malloc site now initialized
return p;

}

• Harder than in Java because of pointers

• Analysis includes must-points-to information

• Interprocedural annotation: “initializes” a parameter

7 May 2002 Cyclone, 3rd Annual PL Day 26

Flow-analysis strategy

• Current uses: definite-assignment, null-
checks, array-bounds checks, must return

• When invariants are too strong, program-
point information is more useful

• Sound with respect to aliases (programmers
can make copies)

• Checked interprocedural annotations keep
analysis local

7 May 2002 Cyclone, 3rd Annual PL Day 27

Status

• Cyclone really exists
– 110KLOC, including bootstrapped compiler, web

server, multimedia overlay network, …
– gcc back-end (Linux, Cygwin, OSX, …)
– user’s manual, mailing lists, …
– still a research vehicle
– more features: exceptions, tagged unions, varargs,

…
• Publications

– overview: USENIX 2002
– regions: PLDI 2002
– existentials: ESOP 2002

7 May 2002 Cyclone, 3rd Annual PL Day 28

Related work: higher and lower

• Adapted/extended ideas:
– polymorphism [ML, Haskell, …]
– regions [Tofte/Talpin, Walker et al., …]
– safety via dataflow [Java, …]
– existential types [Mitchell/Plotkin, …]
– controlling data representation [Ada, Modula-3, …]

• Safe lower-level languages [TAL, PCC, …]
– engineered for machine-generated code

• Vault: stronger properties via restricted aliasing

7 May 2002 Cyclone, 3rd Annual PL Day 29

Related work: making C safer

• Compile to make dynamic checks possible
– Safe-C [Austin et al., …]
– Purify, Stackguard, Electric Fence, …
– CCured [Necula et al.]

• performance via whole-program analysis
• more on array-bounds, less on memory

management and polymorphism
• RC [Gay/Aiken]: reference-counted regions separate

from stack and heap
• LCLint [Evans]: unsound-by-design, but very useful
• SLAM: checks user-defined property w/o annotations;

assumes no bounds errors

7 May 2002 Cyclone, 3rd Annual PL Day 30

Plenty left to do

• Beyond LIFO memory management

• Resource exhaustion (e.g., stack overflow)

• More annotations for aliasing properties

• More “compile-time arithmetic” (e.g., array
initialization)

• Better error messages (not a beginner’s language)

7 May 2002 Cyclone, 3rd Annual PL Day 31

Summary

• Memory safety is essential for your favorite policy

• C isn’t safe, but the world’s software-systems
infrastructure relies on it

• Cyclone combines advanced types, flow analysis,
and run-time checks, to create a safe, usable
language with C-like data, resource management,
and control

http://www.research.att.com/projects/cyclone
http://www.cs.cornell.edu/projects/cyclone

best to write some code

	Cyclone: Safe Programming at the C Level of Abstraction
	A disadvantage of C
	Safety violations rarely local
	Some other problems
	What to do?
	Cyclone in brief
	The plan from here
	Not-null pointers
	Example
	The same old moral
	“Change void* to alpha”
	Not much new here
	Existential types
	The plan from here
	Regions
	Cyclone regions
	That’s the easy part
	The big restriction
	Region polymorphism
	Type definitions
	Region subtyping
	Soundness
	Regions summary
	The plan from here
	Example
	Flow-analysis strategy
	Status
	Related work: higher and lower
	Related work: making C safer
	Plenty left to do
	Summary

