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A disadvantage of C

• Lack of memory safety means code cannot enforce 
modularity/abstractions:

void f(){ *((int*)0xBAD) = 123; }

• What might address 0xBAD hold?

• Memory safety is crucial for your favorite policy

No desire to compile programs like this
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Safety violations rarely local

void g(void**x,void*y);

int  y = 0;
int *z = &y;
g(&z,0xBAD);
*z = 123;

• Might be safe, but not if g does *x=y

• Type of g enough for separate code generation

• Type of g not enough for separate safety checking
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Some other problems

• One safety violation can make your favorite 
policy extremely difficult to enforce

• So prohibit: 

incorrect casts, array-bounds violations, 
misused unions, uninitialized pointers, 
dangling pointers, null-pointer dereferences, 
dangling longjmp, vararg mismatch, not 
returning pointers, data races, …
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What to do?

• Stop using C
– YFHLL is usually a better choice

• Compile C more like Scheme
– type fields, size fields, live-pointer table, …
– fail-safe for legacy whole programs

• Static analysis
– very hard, less modular

• Restrict C
– not much left
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Cyclone in brief

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps

• C-level: user-controlled data representation and 
resource management, easy interoperability, 
“manifest cost”

• Convenient: may need more type annotations, but 
work hard to avoid it

• Modern: add features to capture common idioms

“New code for legacy or inherently low-level systems”
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The plan from here

• Not-null pointers
• Type-variable examples

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features
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Not-null pointers

pointer to a t valuet@

pointer to a t value or NULLt*

• Subtyping: t@ < t* but t@@ < t*@ 

• Downcast via run-time check, often avoided 
via flow analysis

/
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Example

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”, “r”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check
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The same old moral

FILE* fopen(const char@, const char@);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)
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“Change void* to alpha”
struct Lst {
void* hd;
struct Lst* tl;

};

struct Lst* map(
void* f(void*),
struct Lst*);

struct Lst* append(
struct Lst*,
struct Lst*);

struct Lst<`a> {
`a hd;
struct Lst<`a>* tl;

};

struct Lst<`b>* map(
`b f(`a),
struct Lst<`a> *);

struct Lst<`a>* append(
struct Lst<`a>*,
struct Lst<`a>*);
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Not much new here
Closer to C than ML:

• less type inference allows first-class polymorphism 
and polymorphic recursion

• data representation may restrict α to pointers, int
(why not structs? why not float? why int?)

• Not C++ templates
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Existential types

• Programs need a way for “call-back” types:
struct T {

void (*f)(void*, int);
void* env;

};

• We use an existential type (simplified for now): 
struct T { <`a>
void (@f)(`a, int);
`a env;

};

more C-level than baked-in closures/objects
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The plan from here

• Not-null pointers
• Type-variable examples (α, ∀, ∃, λ)

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features
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Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• Allocation via a region handle

• All objects in a region are deallocated simultaneously 
(no free on an object)

An old idea with recent support in languages (e.g., RC) 
and implementations (e.g., ML Kit)
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Cyclone regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks: 

{int x; int y; s}
• dynamic regions: scoped lifetime, but growable: 

region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– no handles for stack regions
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That’s the easy part

The implementation is really simple because the type 
system statically prevents dangling pointers

void f() {
int* x;
if(1) {
int y = 0;
x = &y; // x not dangling

}
*x; // x dangling

}
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The big restriction
• Annotate all pointer types with a region name

(a type variable of region kind)

• int@`r means “pointer into the region created 
by the construct that introduces `r”

– heap introduces `H
– L:… introduces `L
– region r {s} introduces `r

r has type region_t<`r>
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Region polymorphism

Apply what we did for type variables to region names 
(only it’s more important and could be more onerous)

void swap(int @`r1 x, int @`r2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int@`r sumptr(region_t<`r> r,int x,int y){
return rnew(r) (x+y);

}
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Type definitions

struct ILst<`r1,`r2> { 
int@`r1 hd; 
struct ILst<`r1,`r2> *`r2 tl; 

};

10

81

11

0
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Region subtyping

If p points to an int in a region with name `r1, 
is it ever sound to give p type int*`r2?

• If so, let  int*`r1 < int*`r2

• Region subtyping is the outlives relationship

region r1 {… region r2 {…}…}

• LIFO makes subtyping common
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Soundness

• Ignoring ∃, scoping prevents dangling pointers

int*`L f() { L: int x; return &x; }

• End of story if you don’t use ∃

• For ∃, we leak a region bound:

struct T<`r> { <`a> :regions(`a) > `r
void (@f)(`a, int);
`a env;

};

• A powerful effect system is there in case you want it
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Regions summary

• Annotating pointers with region names (type variables) 
makes a sound, simple, static system

• Polymorphism, type constructors, and subtyping recover 
much expressiveness

• Inference and defaults reduce burden

• Other chapters  future features:
– array bounds:  void f(tag_t<`i>,int*`i);

default 1
– mutual exclusion: void f(lock_t<`L>,int*`L);

default thread-local
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The plan from here

• Not-null pointers
• Type-variable examples

– parametric polymorphism
– region-based memory management

• Dataflow analysis
• Status
• Related work

I will skip many very important features
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Example

int*`r* f(int*`r q) { 

int **p = malloc(sizeof(int*));
// p not NULL, points to malloc site
*p = q; 
// malloc site now initialized
return p;

}

• Harder than in Java because of pointers

• Analysis includes must-points-to information

• Interprocedural annotation: “initializes” a parameter
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Flow-analysis strategy

• Current uses: definite-assignment, null-
checks, array-bounds checks, must return

• When invariants are too strong, program-
point information is more useful

• Sound with respect to aliases (programmers 
can make copies)

• Checked interprocedural annotations keep 
analysis local
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Status

• Cyclone really exists
– 110KLOC, including bootstrapped compiler, web 

server, multimedia overlay network, …
– gcc back-end (Linux, Cygwin, OSX, …)
– user’s manual, mailing lists, …
– still a research vehicle
– more features: exceptions, tagged unions, varargs, 

…
• Publications

– overview: USENIX 2002
– regions: PLDI 2002
– existentials: ESOP 2002
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Related work: higher and lower

• Adapted/extended ideas:
– polymorphism [ML, Haskell, …]
– regions [Tofte/Talpin, Walker et al., …]
– safety via dataflow [Java, …]
– existential types [Mitchell/Plotkin, …]
– controlling data representation [Ada, Modula-3, …]

• Safe lower-level languages [TAL, PCC, …]
– engineered for machine-generated code

• Vault: stronger properties via restricted aliasing
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Related work: making C safer

• Compile to make dynamic checks possible
– Safe-C [Austin et al., …]
– Purify, Stackguard, Electric Fence, …
– CCured [Necula et al.]

• performance via whole-program analysis
• more on array-bounds, less on memory 

management and polymorphism
• RC [Gay/Aiken]: reference-counted regions separate 

from stack and heap
• LCLint [Evans]: unsound-by-design, but very useful
• SLAM: checks user-defined property w/o annotations; 

assumes no bounds errors
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Plenty left to do

• Beyond LIFO memory management

• Resource exhaustion (e.g., stack overflow)

• More annotations for aliasing properties

• More “compile-time arithmetic” (e.g., array 
initialization)

• Better error messages (not a beginner’s language)
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Summary

• Memory safety is essential for your favorite policy

• C isn’t safe, but the world’s software-systems 
infrastructure relies on it

• Cyclone combines advanced types, flow analysis, 
and run-time checks, to create a safe, usable 
language with C-like data, resource management, 
and control

http://www.research.att.com/projects/cyclone
http://www.cs.cornell.edu/projects/cyclone

best to write some code
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