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Designing safe languages

To design a strong-typed language:

1. Draw on acquired knowledge of well-
behaved features

2. Model the parts you’re uncomfortable with 
(in practice, a simplification)

3. Hope/argue that the model captured 
everything interesting, so the language is 
type-safe
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But…

• Sometimes you are wrong due to a new 
combination of features

• You fix it

• You worry enough to model the fix

• You add to acquired knowledge

• Today’s combination: existential types, 
aliasing, and mutation
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How the story goes…

• Existential types in a  safe low-level language
– why
– features (mutation, aliasing)

• The problem

• The solutions

• Some non-problems

• Related work
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Existential types

• Existential types (∃ α . τ) hide types’ identities 
while establishing equalities, e.g.,

∃ α. { zero: α
succ: α→ α
cmp: α→ α→ bool }

• That is, they describe abstract data types
• The standard tool for modeling data-hiding 

constructs (closures, objects)
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Low-level languages want ∃

• Cyclone (this work’s context) is a safe language at 
the C level of abstraction

• Major goal: expose data representation (no hidden 
fields, tags, environments, ...)

• Don’t provide closures/objects; give programmers a 
powerful type system

struct IntIntFn { ∃ α.
int (*f)(int, α);
α env;

};

C “call-backs” use void*; we use ∃
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Normal ∃ feature: Construction

int add (int a, int   b) {return a+b; }
int addp(int a, char* b) {return a+*b;}
struct IntIntFn x1 = IntIntFn(add, 37);
struct IntIntFn x2 = IntIntFn(addp,"a");

• Compile-time: check for appropriate witness type
• Type is just struct IntIntFn
• Run-time: create / initialize (no witness type)

struct IntIntFn { ∃ α.  
int (*f)(int, α);
α env;

};
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Normal ∃ feature: Destruction
struct IntIntFn { ∃ α.  

int (*f)(int, α);
α env;

};

Destruction via pattern matching:
void apply(struct IntIntFn x) {

let IntIntFn{<β> .f=fn, .env=ev} = x;
// ev : β,  fn : int(*f)(int,β)
fn(42,ev); 

}

Clients use the data without knowing the type
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Low-level feature: Mutation

• Mutation, changing witness type

struct IntIntFn fn1 = f();
struct IntIntFn fn2 = g();
fn1 = fn2; // record-copy

• Orthogonality encourages this feature
• Useful for registering new call-backs without 

allocating new memory
• Now memory is not type-invariant!
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Low-level feature: Address-of field

• Let client update fields of an existential package
– access only through pattern-matching
– variable pattern copies fields

• A reference pattern binds to the field’s address:

void apply2(struct IntIntFn x) {
let IntIntFn{<β> .f=fn, .env=*ev} = x;
// ev : β*,  fn : int(*f)(int,β)
fn(42,*ev); 

}

C uses  &x.env; we use a reference pattern
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More on reference patterns

• Orthogonality: already allowed in Cyclone’s 
other patterns (e.g., tagged-union fields)

• Can be useful for existential types:

struct Pr {∃ α. α fst; α snd; };

∀α. void swap(α* x, α* y);

void swapPr(struct Pr pr) {
let Pr{<β> .fst=*a, .env=*b} = pr;
swap(a,b);

}
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Summary of features

• struct definition can bind existential type 
variables

• construction, destruction traditional
• mutation via struct assignment
• reference patterns for aliasing

A nice adaptation of advanced type-systems 
to a “safe C” setting?
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Explaining the problem

• Violation of type safety

• Two solutions (restrictions)

• Some non-problems
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Oops!

struct T { ∃ α. void (*f)(int, α); α env;};

void ignore(int x, int y) {}
void assign(int x, int* p) { *p = x; }

void f(int* ptr) {
struct T pkg1 = T(ignore, 0xABCD);//α=int
struct T pkg2 = T(assign, ptr);   //α=int*
let T{<β> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

}
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With pictures…

assignpkg1 pkg2ignore 0xABCD

let T{<β> .f=fn, .env=*ev} = pkg2; //alias

assignpkg1 pkg2ignore 0xABCD

assignfn ev
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With pictures…

assignpkg1 pkg2ignore 0xABCD

assignfn ev

pkg2 = pkg1; //mutation

pkg2 ignore 0xABCD

assign

pkg1 ignore 0xABCD

fn ev
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With pictures…

pkg1 pkg2ignore 0xABCD ignore 0xABCD

assignfn ev

fn(37, *ev); //write 37 to 0xABCD

call assign with  0xABCD for  p, the pointer:

void assign(int x, int* p) {*p = x;}
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What happened?

let T{<β> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

1. β establishes a compile-time equality relating types 
of fn (void(*f)(int,β)) and ev (β*)

2. mutation makes this equality false
3. safety of call needs the equality

we must rule out this program…



8 April 2002 Existential Types for Imperative Languages 19

Two solutions

• Solution #1:
Reference patterns do not match against fields of 
existential packages
Note: Other reference patterns still allowed
⇒ cannot create the type equality

• Solution #2:
Type of assignment cannot be an existential type (or 
have a field of existential type)

Note: pointers to existentials are no problem
⇒ restores memory type-invariance
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Independent and easy

• Either solution is easy to implement

• They are independent: A language can have 
two styles of existential types, one for each 
restriction

• Cyclone takes solution #1 (no reference 
patterns for existential fields), making it a safe 
language without type-invariance of memory!
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Are the solutions sufficient (correct)? 

• The paper develops a small formal language 
and proves type safety

• Highlights:
– Both solutions
– C-style memory (flattened record values)
– C-style lvalue/rvalue distinction
– Memory invariant includes novel “if a 

reference pattern is for a field, then that 
field never changes type”
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Non-problem: Pointers to witnesses

struct T2 { ∃ α. 
void (*f)(int, α); 
α* env;

};
…
let T2{<β> .f=fn, .env=ev} = pkg2;
pkg2 = pkg1; 
…

pkg2 assign

assignfn ev
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Non-problem: Pointers to packages

struct T * p = &pkg1;
p = &pkg2;

assignpkg1 pkg2ignore 0xABCD

p

Aliases are fine.  
Aliases at the “unpacked type” are not.
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Related work

• Existential types:
– seminal use [Mitchell/Plotkin 1988]
– closure/object encodings [Bruce et al, Minimade et al, …]
– first-class types in Haskell [Läufer]
None incorporate mutation

• Safe low-level languages with ∃
– Typed Assembly Language [Morrisett et al]
– Xanadu [Xi], uses ∃ over ints (so does Cyclone)
None have reference patterns or similar

• Linear types, e.g. Vault [DeLine, Fähndrich]
No aliases, destruction destroys the package
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Polymorphic references — related?

• Well-known in ML that you must not give 
ref [] the type  ∀α. α list ref

• Unsoundness involves mutation and aliasing

• Suggests the problem is dual, and there are 
similarities, but it’s unclear

• ML has memory type-invariance, 
unlike Cyclone
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Summary

• Existential types are the way to have data-
hiding in a safe low-level language

• But type variables, mutation, and aliasing 
signal danger

• Developed two independent, simple 
restrictions that suffice for type safety

• Rigorous proof to help us think we’ve really 
fixed the problem

New acquired knowledge to avoid future mistakes
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[End of Presentation --

Some “backup slides” follow]
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Future work — Threads

• For very similar reasons, threads require:
– atomic assignment (witness-change) of 

existential packages
– atomic pattern-matching (destruction) of 

existential packages
• Else pattern-match could get fields with 

different witness types, violating type equality
• Future: Type system will enforce a 

programmer-controlled locking system
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What is a good witness?
Without (hidden) run-time types, 
we must know the size of (values of) abstract types

struct IntIntFn { ∃ α.  
int (*f)(int, α);
α env;

};

α must be int or pointer

struct IntIntFn { ∃ α.  
int (*f)(int, α*);
α* env;

};

α can be any type

Interesting & orthogonal issue — come back tomorrow
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