
Existential Types for
Imperative Languages

Dan Grossman
Cornell University

Eleventh European Symposium on Programming
April 2002

8 April 2002 Existential Types for Imperative Languages 2

Designing safe languages

To design a strong-typed language:

1. Draw on acquired knowledge of well-
behaved features

2. Model the parts you’re uncomfortable with
(in practice, a simplification)

3. Hope/argue that the model captured
everything interesting, so the language is
type-safe

8 April 2002 Existential Types for Imperative Languages 3

But…

• Sometimes you are wrong due to a new
combination of features

• You fix it

• You worry enough to model the fix

• You add to acquired knowledge

• Today’s combination: existential types,
aliasing, and mutation

8 April 2002 Existential Types for Imperative Languages 4

How the story goes…

• Existential types in a safe low-level language
– why
– features (mutation, aliasing)

• The problem

• The solutions

• Some non-problems

• Related work

8 April 2002 Existential Types for Imperative Languages 5

Existential types

• Existential types (∃ α . τ) hide types’ identities
while establishing equalities, e.g.,

∃ α. { zero: α
succ: α→ α
cmp: α→ α→ bool }

• That is, they describe abstract data types
• The standard tool for modeling data-hiding

constructs (closures, objects)

8 April 2002 Existential Types for Imperative Languages 6

Low-level languages want ∃

• Cyclone (this work’s context) is a safe language at
the C level of abstraction

• Major goal: expose data representation (no hidden
fields, tags, environments, ...)

• Don’t provide closures/objects; give programmers a
powerful type system

struct IntIntFn { ∃ α.
int (*f)(int, α);
α env;

};

C “call-backs” use void*; we use ∃

8 April 2002 Existential Types for Imperative Languages 7

Normal ∃ feature: Construction

int add (int a, int b) {return a+b; }
int addp(int a, char* b) {return a+*b;}
struct IntIntFn x1 = IntIntFn(add, 37);
struct IntIntFn x2 = IntIntFn(addp,"a");

• Compile-time: check for appropriate witness type
• Type is just struct IntIntFn
• Run-time: create / initialize (no witness type)

struct IntIntFn { ∃ α.
int (*f)(int, α);
α env;

};

8 April 2002 Existential Types for Imperative Languages 8

Normal ∃ feature: Destruction
struct IntIntFn { ∃ α.

int (*f)(int, α);
α env;

};

Destruction via pattern matching:
void apply(struct IntIntFn x) {

let IntIntFn{<β> .f=fn, .env=ev} = x;
// ev : β, fn : int(*f)(int,β)
fn(42,ev);

}

Clients use the data without knowing the type

8 April 2002 Existential Types for Imperative Languages 9

Low-level feature: Mutation

• Mutation, changing witness type

struct IntIntFn fn1 = f();
struct IntIntFn fn2 = g();
fn1 = fn2; // record-copy

• Orthogonality encourages this feature
• Useful for registering new call-backs without

allocating new memory
• Now memory is not type-invariant!

8 April 2002 Existential Types for Imperative Languages 10

Low-level feature: Address-of field

• Let client update fields of an existential package
– access only through pattern-matching
– variable pattern copies fields

• A reference pattern binds to the field’s address:

void apply2(struct IntIntFn x) {
let IntIntFn{<β> .f=fn, .env=*ev} = x;
// ev : β*, fn : int(*f)(int,β)
fn(42,*ev);

}

C uses &x.env; we use a reference pattern

8 April 2002 Existential Types for Imperative Languages 11

More on reference patterns

• Orthogonality: already allowed in Cyclone’s
other patterns (e.g., tagged-union fields)

• Can be useful for existential types:

struct Pr {∃ α. α fst; α snd; };

∀α. void swap(α* x, α* y);

void swapPr(struct Pr pr) {
let Pr{<β> .fst=*a, .env=*b} = pr;
swap(a,b);

}

8 April 2002 Existential Types for Imperative Languages 12

Summary of features

• struct definition can bind existential type
variables

• construction, destruction traditional
• mutation via struct assignment
• reference patterns for aliasing

A nice adaptation of advanced type-systems
to a “safe C” setting?

8 April 2002 Existential Types for Imperative Languages 13

Explaining the problem

• Violation of type safety

• Two solutions (restrictions)

• Some non-problems

8 April 2002 Existential Types for Imperative Languages 14

Oops!

struct T { ∃ α. void (*f)(int, α); α env;};

void ignore(int x, int y) {}
void assign(int x, int* p) { *p = x; }

void f(int* ptr) {
struct T pkg1 = T(ignore, 0xABCD);//α=int
struct T pkg2 = T(assign, ptr); //α=int*
let T{<β> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

}

8 April 2002 Existential Types for Imperative Languages 15

With pictures…

assignpkg1 pkg2ignore 0xABCD

let T{<β> .f=fn, .env=*ev} = pkg2; //alias

assignpkg1 pkg2ignore 0xABCD

assignfn ev

8 April 2002 Existential Types for Imperative Languages 16

With pictures…

assignpkg1 pkg2ignore 0xABCD

assignfn ev

pkg2 = pkg1; //mutation

pkg2 ignore 0xABCD

assign

pkg1 ignore 0xABCD

fn ev

8 April 2002 Existential Types for Imperative Languages 17

With pictures…

pkg1 pkg2ignore 0xABCD ignore 0xABCD

assignfn ev

fn(37, *ev); //write 37 to 0xABCD

call assign with 0xABCD for p, the pointer:

void assign(int x, int* p) {*p = x;}

8 April 2002 Existential Types for Imperative Languages 18

What happened?

let T{<β> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

1. β establishes a compile-time equality relating types
of fn (void(*f)(int,β)) and ev (β*)

2. mutation makes this equality false
3. safety of call needs the equality

we must rule out this program…

8 April 2002 Existential Types for Imperative Languages 19

Two solutions

• Solution #1:
Reference patterns do not match against fields of
existential packages
Note: Other reference patterns still allowed
⇒ cannot create the type equality

• Solution #2:
Type of assignment cannot be an existential type (or
have a field of existential type)

Note: pointers to existentials are no problem
⇒ restores memory type-invariance

8 April 2002 Existential Types for Imperative Languages 20

Independent and easy

• Either solution is easy to implement

• They are independent: A language can have
two styles of existential types, one for each
restriction

• Cyclone takes solution #1 (no reference
patterns for existential fields), making it a safe
language without type-invariance of memory!

8 April 2002 Existential Types for Imperative Languages 21

Are the solutions sufficient (correct)?

• The paper develops a small formal language
and proves type safety

• Highlights:
– Both solutions
– C-style memory (flattened record values)
– C-style lvalue/rvalue distinction
– Memory invariant includes novel “if a

reference pattern is for a field, then that
field never changes type”

8 April 2002 Existential Types for Imperative Languages 22

Non-problem: Pointers to witnesses

struct T2 { ∃ α.
void (*f)(int, α);
α* env;

};
…
let T2{<β> .f=fn, .env=ev} = pkg2;
pkg2 = pkg1;
…

pkg2 assign

assignfn ev

8 April 2002 Existential Types for Imperative Languages 23

Non-problem: Pointers to packages

struct T * p = &pkg1;
p = &pkg2;

assignpkg1 pkg2ignore 0xABCD

p

Aliases are fine.
Aliases at the “unpacked type” are not.

8 April 2002 Existential Types for Imperative Languages 24

Related work

• Existential types:
– seminal use [Mitchell/Plotkin 1988]
– closure/object encodings [Bruce et al, Minimade et al, …]
– first-class types in Haskell [Läufer]
None incorporate mutation

• Safe low-level languages with ∃
– Typed Assembly Language [Morrisett et al]
– Xanadu [Xi], uses ∃ over ints (so does Cyclone)
None have reference patterns or similar

• Linear types, e.g. Vault [DeLine, Fähndrich]
No aliases, destruction destroys the package

8 April 2002 Existential Types for Imperative Languages 25

Polymorphic references — related?

• Well-known in ML that you must not give
ref [] the type ∀α. α list ref

• Unsoundness involves mutation and aliasing

• Suggests the problem is dual, and there are
similarities, but it’s unclear

• ML has memory type-invariance,
unlike Cyclone

8 April 2002 Existential Types for Imperative Languages 26

Summary

• Existential types are the way to have data-
hiding in a safe low-level language

• But type variables, mutation, and aliasing
signal danger

• Developed two independent, simple
restrictions that suffice for type safety

• Rigorous proof to help us think we’ve really
fixed the problem

New acquired knowledge to avoid future mistakes

8 April 2002 Existential Types for Imperative Languages 27

[End of Presentation --

Some “backup slides” follow]

8 April 2002 Existential Types for Imperative Languages 28

Future work — Threads

• For very similar reasons, threads require:
– atomic assignment (witness-change) of

existential packages
– atomic pattern-matching (destruction) of

existential packages
• Else pattern-match could get fields with

different witness types, violating type equality
• Future: Type system will enforce a

programmer-controlled locking system

8 April 2002 Existential Types for Imperative Languages 29

What is a good witness?
Without (hidden) run-time types,
we must know the size of (values of) abstract types

struct IntIntFn { ∃ α.
int (*f)(int, α);
α env;

};

α must be int or pointer

struct IntIntFn { ∃ α.
int (*f)(int, α*);
α* env;

};

α can be any type

Interesting & orthogonal issue — come back tomorrow

	Existential Types for Imperative Languages
	Designing safe languages
	But…
	How the story goes…
	Existential types
	Low-level languages want ?
	Normal ? feature: Construction
	Normal ? feature: Destruction
	Low-level feature: Mutation
	Low-level feature: Address-of field
	More on reference patterns
	Summary of features
	Explaining the problem
	Oops!
	With pictures…
	With pictures…
	With pictures…
	What happened?
	Two solutions
	Independent and easy
	Are the solutions sufficient (correct)?
	Non-problem: Pointers to witnesses
	Non-problem: Pointers to packages
	Related work
	Polymorphic references — related?
	Summary
	Future work — Threads
	What is a good witness?

