
Software Transactions:
A Programming-Languages Perspective

Dan Grossman
University of Washington

5 December 2006

A big deal

5 December 2006 Dan Grossman, Software Transactions 2

Research on software transactions broad…

• Programming languages
PLDI, POPL, ICFP, OOPSLA, ECOOP, HASKELL, …

• Architecture
ISCA, HPCA, ASPLOS, MSPC, …

• Parallel programming
PPoPP, PODC, …

… and coming together
TRANSACT (at PLDI06 and PODC07)

Why now?

5 December 2006 Dan Grossman, Software Transactions 3

Small-scale multiprocessors unleashed on the
programming masses

Threads and shared memory remains a key model

Locks + condition-variables cumbersome & error-prone

Transactions should be a hot area
An easier to use and harder-to-implement
synchronization primitive:

atomic { s }

PL Perspective

5 December 2006 Dan Grossman, Software Transactions 4

Key complement to the focus on “transaction engines”
and low-level optimizations

Language design:
interaction with rest of the language
– Not just I/O and exceptions (not this talk)

Language implementation:
interaction with the compiler and today’s hardware
– Plus new needs for high-level optimizations

Today

5 December 2006 Dan Grossman, Software Transactions 5

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

Code evolution

5 December 2006 Dan Grossman, Software Transactions 6

Having chosen “self-locking” today, hard to add a
correct transfer method tomorrow

void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {
synchronized(this) {
//race
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}

}

Code evolution

5 December 2006 Dan Grossman, Software Transactions 7

Having chosen “self-locking” today, hard to add a
correct transfer method tomorrow

void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {
synchronized(this) {
synchronized(from) { //deadlock (still)
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}}

}

Code evolution

5 December 2006 Dan Grossman, Software Transactions 8

Having chosen “self-locking” today, hard to add a
correct transfer method tomorrow

void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

//race
if(from.balance()>=amt && amt < maxXfer) {

from.withdraw(amt);
this.deposit(amt);

}

}

Code evolution

5 December 2006 Dan Grossman, Software Transactions 9

Having chosen “self-locking” today, hard to add a
correct transfer method tomorrow

void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {
atomic {
//correct
if(from.balance()>=amt && amt < maxXfer){
from.withdraw(amt);
this.deposit(amt);

}
}

}

Lesson

5 December 2006 Dan Grossman, Software Transactions 10

Locks do not compose; transactions do

Today

5 December 2006 Dan Grossman, Software Transactions 11

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

“Weak” atomicity

5 December 2006 Dan Grossman, Software Transactions 12

Widespread misconception:
“Weak” atomicity violates the “all-at-once” property of

transactions only when the corresponding lock code
has a data race

(May still be a bad thing, but smart people disagree.)

atomic {
y = 1;
x = 3;
y = x;

}

initially y==0

x = 2;
print(y); //1? 2?

It’s worse

5 December 2006 Dan Grossman, Software Transactions 13

This lock-based code is correct in Java

(Example from [Rajwar/Larus] and [Hudson et al])

sync(lk) {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

sync(lk) {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

gf

It’s worse

5 December 2006 Dan Grossman, Software Transactions 14

But every published weak-atomicity system allows the
assertion to fail!

• Eager- or lazy-update

(Example from [Rajwar/Larus] and [Hudson et al])

atomic {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

atomic {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

gf

Lesson

5 December 2006 Dan Grossman, Software Transactions 15

“Weak” is worse than most think
and sometimes worse than locks

Today

5 December 2006 Dan Grossman, Software Transactions 16

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

Relaxed memory models

5 December 2006 Dan Grossman, Software Transactions 17

Modern languages don’t provide sequential consistency
1. Lack of hardware support
2. Prevents otherwise sensible & ubiquitous compiler

transformations (e.g., copy propagation)

One tough issue: When do transactions impose ordering
constraints?

Ordering

5 December 2006 Dan Grossman, Software Transactions 18

Can get “strange results” for bad code
– Need rules for what is “good code”

initially x==y==0

x = 1;

y = 1;

r = y;

s = x;
assert(s>=r);//invalid

Ordering

5 December 2006 Dan Grossman, Software Transactions 19

Can get “strange results” for bad code
– Need rules for what is “good code”

initially x==y==0

x = 1;
sync(lk){}
y = 1;

r = y;
sync(lk){} //same lock
s = x;
assert(s>=r);//valid

Ordering

5 December 2006 Dan Grossman, Software Transactions 20

Can get “strange results” for bad code
– Need rules for what is “good code”

initially x==y==0

x = 1;
atomic{}
y = 1;

r = y;
atomic{}
s = x;
assert(s>=r);//???

If this is good code, existing STMs are wrong

Ordering

5 December 2006 Dan Grossman, Software Transactions 21

Can get “strange results” for bad code
– Need rules for what is “good code”

initially x==y==0

x = 1;
atomic{z=1;}
y = 1;

r = y;
atomic{tmp=0*z;}
s = x;
assert(s>=r);//???

“Conflicting memory” a slippery ill-defined slope

Lesson

5 December 2006 Dan Grossman, Software Transactions 22

It is unclear when transactions should be ordered, but
languages need memory models

Corollary: Could/should delay adoption of transactions in
real languages

Today

5 December 2006 Dan Grossman, Software Transactions 23

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

Interleaved execution

5 December 2006 Dan Grossman, Software Transactions 24

The “uniprocessor (and then some)” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Important special case:
• Uniprocessors still exist
• Many language implementations assume it

(e.g., OCaml, DrScheme)
• Multicore may assign one core to an application

Uniprocessor implementation

5 December 2006 Dan Grossman, Software Transactions 25

• Execution of an atomic block logs updates
– No overhead outside transaction nor for reads nor

for initialization writes
• If scheduler preempts midtransaction, rollback

– Else commit is trivial
• Duplicate code to avoid logging overhead outside

transactions
– Closures/objects need double code pointers

• Smooth interaction with GC
– The log is a root
– No need to log/rollback the GC (unlike hardware)

Evaluation

5 December 2006 Dan Grossman, Software Transactions 26

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Rare rollback

not in atomic in atomic
read none none
write none log (2 more writes)

Lesson

5 December 2006 Dan Grossman, Software Transactions 27

Implementing (strong) atomicity in software for a
uniprocessor is so efficient it deserves special-casing

Note: The O/S and GC special-case uniprocessors too

Today

5 December 2006 Dan Grossman, Software Transactions 28

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

System Architecture

5 December 2006 Dan Grossman, Software Transactions 29

Our “run-time”

……

javac

AThread.
java
AThread.
javaOur compiler

Polyglot
extensible
compiler

foo.ajavafoo.ajava

Note: Preserves separate
compilation class files

Key pieces

5 December 2006 Dan Grossman, Software Transactions 30

• A field read/write first acquires ownership of object

• Polling for releasing ownership

– Transactions rollback before releasing

• In transaction, a write also logs the old value

• Read/write barriers via method calls

(JIT can inline them later)

• Some Java cleverness for efficient logging

• Lots of details for other Java features

Acquiring ownership

5 December 2006 Dan Grossman, Software Transactions 31

All objects have an owner field
class AObject extends Object {
Thread owner; //who owns the object
void acq(){ //owner=caller (blocking)
if(owner==currentThread())

return;
… // complicated slow-path
}

}

• Synchronization only when contention
• With “owner=currentThread()” in constructor, thread-

local objects never incur synchronization

Lesson

5 December 2006 Dan Grossman, Software Transactions 32

Transactions for high-level programming languages do
not need low-level implementations

But good performance often needs parallel readers,
which is future work.

Today

5 December 2006 Dan Grossman, Software Transactions 33

Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [Nov06]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [Nov06]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

Strong performance problem

5 December 2006 Dan Grossman, Software Transactions 34

Recall uniprocessor overhead:
not in atomic in atomic

read none none
write none some

With parallelism:

not in atomic in atomic
read none iff weak some
write none iff weak some

5 December 2006 Dan Grossman, Software Transactions 35

Optimizing away barriers

Not accessed
in transaction

Thread local

Immutable

New: static analysis for not-accessed-in-transaction …

Experimental Setup

5 December 2006 Dan Grossman, Software Transactions 36

UW: static analysis using whole-program pointer analysis
• Scalable (context- and flow-insensitive) using Paddle/Soot

Intel PSL: high-performance strong STM via compler and run-time
• StarJIT

– IR and optimizations for transactions and isolation barriers
– Inlined isolation barriers

• ORP
– Transactional method cloning
– Run-time optimizations for strong isolation

• McRT
– Run-time for weak and strong STM

Benchmarks

5 December 2006 Dan Grossman, Software Transactions 37

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16

Threads

Ti
m

e
(s

)

Synch W eak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

Tsp

Benchmarks

5 December 2006 Dan Grossman, Software Transactions 38

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Threads

A
ve

ra
ge

 ti
m

e
pe

r 1
0,

00
0

op
s

(s
)

Synch Weak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

JBB

Lesson

5 December 2006 Dan Grossman, Software Transactions 39

The cost of strong isolation is in nontransactional barriers
and compiler optimizations help a lot

Note: The first high-performance strong software
transaction implementation for a multiprocessor

Credit

5 December 2006 Dan Grossman, Software Transactions 40

Uniprocessor: Michael Ringenburg
Source-to-source: Benjamin Hindman (undergrad)
Barrier-removal: Steve Balensiefer, Kate Moore

Memory-model issues: Jeremy Manson, Bill Pugh
High-performance strong STM: Tatiana Shpeisman,

Vijay Menon, Ali-Reza Adl-Tabatabai, Richard
Hudson, Bratin Saha

wasp.cs.washington.edu

Lessons

5 December 2006 Dan Grossman, Software Transactions 41

1. Locks do not compose; transactions do
2. “Weak” is worse than most think and sometimes

worse than locks
3. It is unclear when transactions should be ordered,

but languages need memory models

4. Implementing atomicity in software for a uniprocessor
is so efficient it deserves special-casing

5. Transactions for high-level programming languages
do not need low-level implementations

6. The cost of strong isolation is in nontransactional
barriers and compiler optimizations help a lot

	Software Transactions: A Programming-Languages Perspective
	A big deal
	Why now?
	PL Perspective
	Today
	Code evolution
	Code evolution
	Code evolution
	Code evolution
	Lesson
	Today
	“Weak” atomicity
	It’s worse
	It’s worse
	Lesson
	Today
	Relaxed memory models
	Ordering
	Ordering
	Ordering
	Ordering
	Lesson
	Today
	Interleaved execution
	Uniprocessor implementation
	Evaluation
	Lesson
	Today
	System Architecture
	Key pieces
	Acquiring ownership
	Lesson
	Today
	Strong performance problem
	Optimizing away barriers
	Experimental Setup
	Benchmarks
	Benchmarks
	Lesson
	Credit
	Lessons

