
Atomicity via
Source-to-Source Translation

Benjamin Hindman Dan Grossman
University of Washington

22 October 2006

Atomic

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 2

An easier-to-use and harder-to-implement primitive

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}

lock acquire/release (behave as if)
no interleaved computation

Why the excitement?

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 3

• Software engineering
– No brittle object-to-lock mapping
– Composability without deadlock
– Simply easier to use

• Performance
– Parallelism unless there are dynamic memory

conflicts

But how to implement it efficiently…

This Work

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 4

Unique approach to “Java + atomic”

1. Source-to-source compiler (then use any JVM)

2. Ownership-based (no STM/HTM)
– Update-in-place, rollback-on-abort
– Threads retain ownership until contention

3. Support “strong” atomicity
– Detect conflicts with non-transactional code
– Static optimization helps reduce cost

Outline

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 5

• Basic approach

• Strong vs. weak atomicity

• Benchmark evaluation

• Lessons learned

• Conclusion

System Architecture

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 6

Our
“run-time”

……

javac

AThread.
java
AThread.
java

Our
compiler

Polyglot
foo.ajavafoo.ajava

Note: Separate compilation or
optimization class files

Key pieces

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 7

• A field read/write first acquires ownership of object

– In transaction, a write also logs the old value

– No synchronization if already own object

• Some Java cleverness for efficient logging

• Polling for releasing ownership

– Transactions rollback before releasing

• Lots of omitted details for other Java features

Acquiring ownership

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 8

All objects have an owner field

class AObject extends Object {
Thread owner; //who owns the object
void acq(){…} //owner=caller (blocking)

}

Field accesses become method calls
• Read/write barriers that acquire ownership
• Calls simplify/centralize code (JIT will inline)

Field accessors

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 9

D x; // field in class C
static D get_x(C o){
o.acq(); return o.x;

}
static D set_nonatomic_x(C o, D v) {

o.acq(); return o.x = v;
}
static D set_atomic_x(C o, D v) {

o.acq();
((AThread)currentThread()).log(…);
return o.x = v;

}

Note: Two versions of each application method,
so know which version of setter to call

Important fast-path

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 10

If thread already owns an object, no synchronization

• Does not require sequential consistency
• With “owner=currentThread()” in constructor, thread-

local objects never incur synchronization

Else add object to owner’s “to release” set and wait
– Synchronization on owner field and “to release” set
– Also fanciness if owner is dead or blocked

void acq(){
if(owner==currentThread()) return;
…

}

Logging

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 11

• Conceptually, the log is a stack of triples
– Object, “field”, previous value
– On rollback, do assignments in LIFO order

• Actually use 3 coordinated arrays
• For “field” we use singleton-object Java trickery:

D x; // field in class C
static Undoer undo_x = new Undoer() {

void undo(Object o, Object v) {
((C)o).x = (D)v;

}
}
…currentThread().log(o, undo_x, o.x);…

Releasing ownership

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 12

• Must “periodically” check “to release” set
– If in transaction, first rollback

• Retry later (after backoff to avoid livelock)
– Set owners to null

• Source-level “periodically”
– Insert call to check() on loops and non-leaf calls
– Trade-off synchronization and responsiveness:

int count = 1000; //thread-local
void check(){
if(--count >= 0) return;
count=1000; really_check();

}

But what about…?

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 13

Modern, safe languages are big

See paper & tech. report for:
constructors, primitive types, static fields,
class initializers, arrays, native calls,
exceptions, condition variables, library classes,
…

Outline

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 14

• Basic approach

• Strong vs. weak atomicity

• Benchmark evaluation

• Lessons learned

• Conclusion

Strong vs. weak

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 15

• Strong: atomic not interleaved with any other code
• Weak: semantics less clear

– “If atomic races with non-atomic code, undefined”
• Okay for C++, non-starter for safe languages

– Atomic and non-atomic code can be interleaved
• For us, remove read/write barriers outside

transactions

• One common view: strong what you want, but too
expensive in software
– Present work offers (only) a glimmer of hope

Examples

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 16

atomic { x=null;
if(x!=null)
x.f=42;

}

atomic { print(x);
x=secret_password;
//compute with x
x=null;

}

Optimization

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 17

Static analysis can remove barriers outside transactions
• In the limit, “strong for the price of weak”

Thread local

Immutable

Not used in atomic

• This work: Type-based alias information
• Ongoing work: Using real points-to information

Outline

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 18

• Basic approach

• Strong vs. weak atomicity

• Benchmark evaluation

• Lessons learned

• Conclusion

Methodology

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 19

• Changed small programs to use atomic
(manually checking it made sense)
– 3 modes: “weak”, “strong-opt”, “strong-noopt”
– And original code compiled by javac: “lock”

• All programs take variable number of threads
– Today: 8 threads on an 8-way Xeon with the

Hotswap JVM, lots of memory, etc.
– More results and microbenchmarks in the paper

• Report slowdown relative to lock-version and
speedup relative to 1 thread for same-mode

A microbenchmark

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 20

crypt:
– Embarrassingly parallel array processing
– No synchronization (just a main Thread.join)

lock weak strong-opt strong-noopt

slowdown vs. lock -- 1.1x 1.1x 15.0x

speedup vs. 1 thread 5x 5x 5x 0.7x

• Overhead 10% without read/write barriers
– No synchronization (just a main Thread.join)

• Strong-noopt a false-sharing problem on the array
– Word-based ownership often important

TSP

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 21

A small clever search procedure with irregular contention
and benign purposeful data races
– Optimizing strong cannot get to weak

lock weak strong-opt strong-noopt

slowdown vs. lock -- 2x 11x 21x

speedup vs. 1 thread 4.5x 2.8x 1.4x 1.4x

Plusses:
• Simple optimization gives 2x straight-line improvement
• Weak “not bad” considering source-to-source

Outline

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 22

• Basic approach

• Strong vs. weak atomicity

• Benchmark evaluation

• Lessons learned

• Conclusion

Some lessons

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 23

1. Need multiple-readers (cf. reader-writer locks) and
flexible ownership granularity (e.g., array words)

2. High-level approach great for prototyping, debugging
– But some pain appeasing Java’s type-system

3. Focus on synchronization/contention (see (2))
– Straight-line performance often good enough

4. Strong-atomicity optimizations doable but need more
5. Modern language features a fact of life

Related work

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 24

Prior software implementations one of:
• Optimistic reads and writes + weak-atomicity
• Optimistic reads, own for writes + weak-atomicity
• For uniprocessors (no barriers)
All use low-level libraries and/or code-generators

Hardware:
• Strong atomicity via cache-coherence technology
• We need a software and language-design story too

Conclusion

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 25

Atomicity for Java via source-to-source translation and
object-ownership
– Synchronization only when there’s contention

Techniques that apply to other approaches, e.g.:
• Retain ownership until contention
• Optimize strong-atomicity barriers

The design space is large and worth exploring
– Source-to-source not a bad way to explore

To learn more

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 26

• Washington Advanced Systems for Programming
wasp.cs.washington.edu

• First-author: Benjamin Hindman
– B.S. in December 2006
– Graduate-school bound
– This is just 1 of his research projects

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 27

[Presentation ends here]

Not-used-in-atomic

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 28

This work: Type-based analysis for not-used-in-atomic
• If field f never accessed in atomic, remove all

barriers on f outside atomic
• (Also remove write-barriers if only read-in-atomic)
• Whole-program, linear-time

Ongoing work:
• Use real points-to information

– Present work undersells the optimization’s worth
• Compare value to thread-local

Strong atomicity

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 29

(behave as if) no interleaved computation
• Before a transaction “commits”

– Other threads don’t “read its writes”
– It doesn’t “read other threads’ writes”

• This is just the semantics
– Can interleave more unobservably

Weak atomicity

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 30

(behave as if) no interleaved transactions
• Before a transaction “commits”

– Other threads’ transactions don’t “read its writes”
– It doesn’t “read other threads’ transactions’ writes”

• This is just the semantics
– Can interleave more unobservably

Evaluation

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 31

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Choice: larger closures or slower calls in transactions
• Code bloat (worst-case 2x, easy to do better)
• Rare rollback

not in atomic in atomic
read none none
write none log (2 more writes)

Strong performance problem

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 32

Recall uniprocessor overhead:
not in atomic in atomic

read none none
write none some

With parallelism:
not in atomic in atomic

read none iff weak some
write none iff weak some

Start way behind in performance, especially in
imperative languages (cf. concurrent GC)

Not-used-in-atomic

22 October 2006 Atomicity via Source-Source Translation, MSPC2006 33

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic

in atomic
no atomic

access
none
none

no atomic
write
none
some

atomic
write

read some some
write some some

not in atomic

• Yet another client of pointer-analysis
• Preliminary numbers very encouraging (with Intel)

– Simple whole-program pointer-analysis suffices

	Atomicity via Source-to-Source Translation
	Atomic
	Why the excitement?
	This Work
	Outline
	System Architecture
	Key pieces
	Acquiring ownership
	Field accessors
	Important fast-path
	Logging
	Releasing ownership
	But what about…?
	Outline
	Strong vs. weak
	Examples
	Optimization
	Outline
	Methodology
	A microbenchmark
	TSP
	Outline
	Some lessons
	Related work
	Conclusion
	To learn more
	
	Not-used-in-atomic
	Strong atomicity
	Weak atomicity
	Evaluation
	Strong performance problem
	Not-used-in-atomic

