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Atomic

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)
no interleaved computation;
no unfair starvation

void deposit(int x){
synchronized(this){

int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp; 

}}
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Viewpoints

Software transactions good for:
• Software engineering (avoid races & deadlocks)
• Performance (optimistic “no conflict” without locks)

Research should be guiding:
• New hardware with transactional support
• Inevitable software support

– Legacy/transition
– Semantic mismatch between a PL and an ISA
– May be fast enough

• Prediction: hardware for the common/simple case
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PL Perspective

Key complement to the focus on “transaction engines” 
and low-level optimizations

Language design: 
interaction with rest of the language
– Not just I/O and exceptions (not this talk)

Language implementation: 
interaction with the compiler and today’s hardware
– Plus new needs for high-level optimizations
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Not today

“Across the lake” my students are busy with a variety of 
ongoing projects related to PL/TM

• Formal semantics
• Parallelism within transactions
• Interaction with first-class continuations
• “Transactional events” in the presence of mutation
• …

Happy to return in a year and tell you more; today focus 
on more mature results/questions
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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Code evolution
Having chosen “self-locking” today, hard to add a 

correct transfer method tomorrow
void deposit(…)  { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…)  { synchronized(this) { … }}
void transfer(Acct from, int amt) { 

synchronized(this) {
//race
if(from.balance()>=amt && amt < maxXfer) {   
from.withdraw(amt);
this.deposit(amt);

}
}

}
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Code evolution
Having chosen “self-locking” today, hard to add a 

correct transfer method tomorrow
void deposit(…)  { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…)  { synchronized(this) { … }}
void transfer(Acct from, int amt) { 

synchronized(this) {
synchronized(from) { //deadlock (still)
if(from.balance()>=amt && amt < maxXfer) {   
from.withdraw(amt);
this.deposit(amt);

}
}}

}
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Code evolution
Having chosen “self-locking” today, hard to add a 

correct transfer method tomorrow
void deposit(…)  { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…)  { atomic { … }}
void transfer(Acct from, int amt) { 

//race
if(from.balance()>=amt && amt < maxXfer) {   

from.withdraw(amt);
this.deposit(amt);

}

}
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Code evolution
Having chosen “self-locking” today, hard to add a 

correct transfer method tomorrow
void deposit(…)  { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…)  { atomic { … }}
void transfer(Acct from, int amt) { 

atomic {
//correct
if(from.balance()>=amt && amt < maxXfer){   

from.withdraw(amt);
this.deposit(amt);

}
}

}
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Lesson

Locks do not compose; transactions do
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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“Weak” atomicity
Widespread misconception:
“Weak” atomicity violates the “all-at-once” property of 

transactions only when the corresponding lock code 
has a data race

(May still be a bad thing, but smart people disagree.)

atomic {
y = 1;
x = 3;
y = x;

}

x = 2;
print(y); //1? 2? 85?

initially y==0
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Segregation

Segregation is not necessary in lock-based code
– Even under relaxed memory models

(Example adapted from [Rajwar/Larus] and [Hudson et al])

sync(lk) {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

sync(lk) {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

f g
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It’s worse

But every published weak-atomicity system allows the 
assertion to fail!

• Eager- or lazy-update

(Example adapted from [Rajwar/Larus] and [Hudson et al])

atomic {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

atomic {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

f g
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“Weak” atomicity redux

“Weak” really means nontransactional code bypasses 
the transaction mechanism…

Weak STMs violate isolation on example:
• Eager-updates (one update visible before abort)
• Lazy-updates (one update visible after commit)

Imposes correctness burdens on programmers that 
locks do not
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More examples (see paper for more)

With eager-update, speculative dirty read:

atomic {
if(y==0)
x=1;

/* abort */
}
assert(x==1);

if(x==1)
y=1;

initially x==0 and y==0
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More examples (see paper for more)

With weak-update, can miss an initialization 
(e.g., a readonly field)

atomic {
t = new C();
t.f = 42;
x=t;

}

if(x!=null)
assert(x.f==42);

initially x==null
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Lesson

“Weak” is worse than most think; it can require 
segregation where locks do not

Corollary: “Strong” has easier semantics
– especially for a safe language
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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Relaxed memory models

Modern languages don’t provide sequential consistency
1. Lack of hardware support
2. Prevents otherwise sensible & ubiquitous compiler 

transformations (e.g., copy propagation)

So safe languages need two complicated definitions
1. What is “properly synchronized”?
2. What can compiler and hardware do with “bad code”?
(Unsafe languages need (1))

A flavor of simplistic ideas and the consequences…
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Simplistic ideas

“Properly synchronized” All thread-shared mutable 
memory accessed in transactions

Consequence: Data-handoff code deemed “bad”

//Producer
tmp1=new C();
tmp1.x=42;
atomic {
q.put(tmp1);

}

//Consumer
atomic {
tmp2=q.get();
}
tmp2.x++;
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Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;

y = 1;

r = y;

s = x;
assert(s>=r);//invalid

initially x==0 and y==0 
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Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
sync(lk){}
y = 1;

r = y;
sync(lk){} //same lock
s = x;
assert(s>=r);//valid

initially x==y==0 initially x==0 and y==0 
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Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
atomic{}
y = 1;

r = y;
atomic{} 
s = x;
assert(s>=r);//???

If this is good code, existing STMs are wrong

initially x==0 and y==0 
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Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
atomic{z=1;}
y = 1;

r = y;
atomic{tmp=0*z;} 
s = x;
assert(s>=r);//???

“Conflicting memory” a slippery ill-defined slope

initially x==0 and y==0 
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Lesson

It is not clear when transactions are ordered, but 
languages need memory models

Corollary: This could/should delay adoption of 
transactions in well-specified languages

Shameless provocation: 
What is the C# memory model?
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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Interleaved execution

The “uniprocessor (and then some)” assumption:
Threads communicating via shared memory don't 

execute in “true parallel”

Important special case:
• Uniprocessors still exist
• Many language implementations assume it          

(e.g., OCaml, DrScheme)
• Multicore may assign one core to an application
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Implementing atomic

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread 

• Duplicate code so non-atomic code is not slowed by 
logging

• Smooth interaction with GC
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Logging example

Executing atomic block:
• build LIFO log of old values:

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and 

stack to beginning of atomic
On exit from atomic: 
• drop log

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}
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Logging efficiency

Keep the log small:
• Don’t log reads (key uniprocessor advantage)
• Need not log memory allocated after atomic entered 

– Particularly initialization writes
• Need not log an address more than once

– To keep logging fast, switch from array to 
hashtable after “many” (50) log entries

y:0 z:? x:0 y:2
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Duplicating code

Duplicate code so callees know
to log or not: 
• For each function f, compile 
f_atomic and f_normal

• Atomic blocks and atomic 
functions call atomic functions

• Function pointers compile to 
pair of code pointers

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

One approach: bigger closures

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Note: atomic is first-class, so it is just one of these too!
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

Alternate approach: slower calls in atomic

header code ptr1 free variables…

add 3, push, …code ptr2

add 3, push, …

Note: Same overhead as OO dynamic dispatch
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Interaction with GC

What if GC occurs mid-transaction?
• The log is a root (in case of rollback)
• Moving objects is fine

– Rollback produces equivalent state
– Naïve hardware solutions may log/rollback GC!

What about rolling back the allocator?
• Don’t bother: after rollback, objects allocated in 

transaction are unreachable
– Naïve hardware solutions may log/rollback 

initialization writes!
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Evaluation

Strong atomicity for Caml at little cost 
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Rare rollback

log (2 more writes)nonewrite
nonenoneread

in atomicnot in atomic
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Lesson

Implementing (strong) atomicity in software for a 
uniprocessor is so efficient it deserves special-casing

Note: Don’t run other multicore services on a uni either
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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……

System Architecture

foo.ajavafoo.ajava
Polyglot

Our 
compiler

javac

class files

AThread.
java
AThread.
java

Our    
“run-time”

Note: Preserves separate 
compilation
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Key pieces

• A field read/write first acquires ownership of object

– In transaction, a write also logs the old value

– No synchronization if already own object

• Polling for releasing ownership

– Transactions rollback before releasing

• Read/write barriers via method calls

(JIT can inline them later)

• Some Java cleverness for efficient logging

• Lots of details for other Java features
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Acquiring ownership

All objects have an owner field
class AObject extends Object {
Thread owner; //who owns the object
void acq(){   //owner=caller (blocking)
if(owner==currentThread()) 

return;
… // complicated slow-path
}

}

• Synchronization only when contention
• With “owner=currentThread()” in constructor, thread-

local objects never incur synchronization
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Releasing ownership
• Must “periodically” check “to release” set

– If in transaction, first rollback
• Retry later (backoff to avoid livelock)

– Set owners to null
• Source-level “periodically”

– Insert call to check() on loops and non-leaf calls
– Trade-off synchronization and responsiveness:

int count = 1000; //thread-local
void check(){
if(--count >= 0) return;
count=1000; really_check();
}
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But what about…?

Modern, safe languages are big…

See paper & tech. report for:
constructors, primitive types, static fields, 
class initializers, arrays, native calls, 
exceptions, condition variables, library classes, 
…
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Lesson

Transactions for high-level programming languages do 
not need low-level implementations

But good performance does tend to need parallel 
readers, which is future work for this system. 
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Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh
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Strong performance problem
Recall uniprocessor overhead:

somenonewrite
nonenoneread

in atomicnot in atomic

With parallelism:

somenone iff weakwrite
somenone iff weakread

in atomicnot in atomic
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Optimizing away barriers

Thread local

Immutable

Not accessed 
in transaction

New: static analysis for not-accessed-in-transaction …
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Not-accessed-in-transaction

Revisit overhead of not-in-atomic for strong atomicity, 
given information about how data is used in atomic

Yet another client of pointer-analysis

none
none

no atomic 
access

some
none

no atomic 
write

in atomic

somesomewrite
somesomeread

atomic 
write

not in atomic
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Analysis details

• Whole-program, context-insensitive, flow-insensitive
– Scalable, but needs whole program

• Can be done before method duplication
– Keep lazy code generation without losing precision

• Given pointer information, just two more passes
1. How is an “abstract object” accessed 

transactionally?
2. What “abstract objects” might a non-transactional 

access use?
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Static counts
Not the point, but good evidence
• Usually better than thread-local analysis 

344131575621Write
24364798804ReadJBB
0 161736Write
08993106ReadTsp
0796198859885Write
0 87961267112671ReadSpecJVM98

TL onlyNAIT onlyNAIT or TLTotalAccessApp
Barrier removed by
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Experimental Setup

UW: static analysis using whole-program pointer analysis
• Scalable (context- and flow-insensitive) using Paddle/Soot

Intel PSL: high-performance strong STM via compiler and run-time
• StarJIT

– IR and optimizations for transactions and isolation barriers
– Inlined isolation barriers

• ORP
– Transactional method cloning
– Run-time optimizations for strong isolation

• McRT
– Run-time for weak and strong STM 
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Benchmarks
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Benchmarks
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Lesson

The cost of strong isolation is in nontransactional barriers 
and compiler optimizations help a lot
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Credit

Uniprocessor: Michael Ringenburg
Source-to-source: Benjamin Hindman
Barrier-removal: Steven Balensiefer, Kate Moore

Memory-model issues: Jeremy Manson, Bill Pugh
High-performance strong STM: Tatiana Shpeisman, 

Vijay Menon, Ali-Reza Adl-Tabatabai, Richard 
Hudson, Bratin Saha

wasp.cs.washington.edu
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Lessons

1. Locks do not compose; transactions do
2. “Weak” is worse than most think and sometimes  

worse than locks
3. It is unclear when transactions should be ordered,    

but languages need memory models

4. Implementing atomicity in software for a uniprocessor
is so efficient it deserves special-casing

5. Transactions for high-level programming languages  
do not need low-level implementations

6. The cost of strong isolation is in nontransactional
barriers and compiler optimizations help a lot


