
Software Transactions:
A Programming-Languages Perspective

Dan Grossman
University of Washington

29 March 2007

29 March 2007 Dan Grossman, Software Transactions 2

Atomic

An easier-to-use and harder-to-implement primitive

lock acquire/release (behave as if)
no interleaved computation;
no unfair starvation

void deposit(int x){
synchronized(this){

int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp;

}}

29 March 2007 Dan Grossman, Software Transactions 3

Viewpoints

Software transactions good for:
• Software engineering (avoid races & deadlocks)
• Performance (optimistic “no conflict” without locks)

Research should be guiding:
• New hardware with transactional support
• Inevitable software support

– Legacy/transition
– Semantic mismatch between a PL and an ISA
– May be fast enough

• Prediction: hardware for the common/simple case

29 March 2007 Dan Grossman, Software Transactions 4

PL Perspective

Key complement to the focus on “transaction engines”
and low-level optimizations

Language design:
interaction with rest of the language
– Not just I/O and exceptions (not this talk)

Language implementation:
interaction with the compiler and today’s hardware
– Plus new needs for high-level optimizations

29 March 2007 Dan Grossman, Software Transactions 5

Not today

“Across the lake” my students are busy with a variety of
ongoing projects related to PL/TM

• Formal semantics
• Parallelism within transactions
• Interaction with first-class continuations
• “Transactional events” in the presence of mutation
• …

Happy to return in a year and tell you more; today focus
on more mature results/questions

29 March 2007 Dan Grossman, Software Transactions 6

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 7

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {

synchronized(this) {
//race
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}

}

29 March 2007 Dan Grossman, Software Transactions 8

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { synchronized(this) { … }}
void withdraw(…) { synchronized(this) { … }}
int balance(…) { synchronized(this) { … }}
void transfer(Acct from, int amt) {

synchronized(this) {
synchronized(from) { //deadlock (still)
if(from.balance()>=amt && amt < maxXfer) {
from.withdraw(amt);
this.deposit(amt);

}
}}

}

29 March 2007 Dan Grossman, Software Transactions 9

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

//race
if(from.balance()>=amt && amt < maxXfer) {

from.withdraw(amt);
this.deposit(amt);

}

}

29 March 2007 Dan Grossman, Software Transactions 10

Code evolution
Having chosen “self-locking” today, hard to add a

correct transfer method tomorrow
void deposit(…) { atomic { … }}
void withdraw(…) { atomic { … }}
int balance(…) { atomic { … }}
void transfer(Acct from, int amt) {

atomic {
//correct
if(from.balance()>=amt && amt < maxXfer){

from.withdraw(amt);
this.deposit(amt);

}
}

}

29 March 2007 Dan Grossman, Software Transactions 11

Lesson

Locks do not compose; transactions do

29 March 2007 Dan Grossman, Software Transactions 12

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 13

“Weak” atomicity
Widespread misconception:
“Weak” atomicity violates the “all-at-once” property of

transactions only when the corresponding lock code
has a data race

(May still be a bad thing, but smart people disagree.)

atomic {
y = 1;
x = 3;
y = x;

}

x = 2;
print(y); //1? 2? 85?

initially y==0

29 March 2007 Dan Grossman, Software Transactions 14

Segregation

Segregation is not necessary in lock-based code
– Even under relaxed memory models

(Example adapted from [Rajwar/Larus] and [Hudson et al])

sync(lk) {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

sync(lk) {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

f g

29 March 2007 Dan Grossman, Software Transactions 15

It’s worse

But every published weak-atomicity system allows the
assertion to fail!

• Eager- or lazy-update

(Example adapted from [Rajwar/Larus] and [Hudson et al])

atomic {
r = ptr;
ptr = new C();

}
assert(r.f==r.g);

atomic {
++ptr.f;
++ptr.g;

}

initially ptr.f == ptr.g ptr

f g

29 March 2007 Dan Grossman, Software Transactions 16

“Weak” atomicity redux

“Weak” really means nontransactional code bypasses
the transaction mechanism…

Weak STMs violate isolation on example:
• Eager-updates (one update visible before abort)
• Lazy-updates (one update visible after commit)

Imposes correctness burdens on programmers that
locks do not

29 March 2007 Dan Grossman, Software Transactions 17

More examples (see paper for more)

With eager-update, speculative dirty read:

atomic {
if(y==0)
x=1;

/* abort */
}
assert(x==1);

if(x==1)
y=1;

initially x==0 and y==0

29 March 2007 Dan Grossman, Software Transactions 18

More examples (see paper for more)

With weak-update, can miss an initialization
(e.g., a readonly field)

atomic {
t = new C();
t.f = 42;
x=t;

}

if(x!=null)
assert(x.f==42);

initially x==null

29 March 2007 Dan Grossman, Software Transactions 19

Lesson

“Weak” is worse than most think; it can require
segregation where locks do not

Corollary: “Strong” has easier semantics
– especially for a safe language

29 March 2007 Dan Grossman, Software Transactions 20

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 21

Relaxed memory models

Modern languages don’t provide sequential consistency
1. Lack of hardware support
2. Prevents otherwise sensible & ubiquitous compiler

transformations (e.g., copy propagation)

So safe languages need two complicated definitions
1. What is “properly synchronized”?
2. What can compiler and hardware do with “bad code”?
(Unsafe languages need (1))

A flavor of simplistic ideas and the consequences…

29 March 2007 Dan Grossman, Software Transactions 22

Simplistic ideas

“Properly synchronized” All thread-shared mutable
memory accessed in transactions

Consequence: Data-handoff code deemed “bad”

//Producer
tmp1=new C();
tmp1.x=42;
atomic {
q.put(tmp1);

}

//Consumer
atomic {
tmp2=q.get();
}
tmp2.x++;

29 March 2007 Dan Grossman, Software Transactions 23

Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;

y = 1;

r = y;

s = x;
assert(s>=r);//invalid

initially x==0 and y==0

29 March 2007 Dan Grossman, Software Transactions 24

Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
sync(lk){}
y = 1;

r = y;
sync(lk){} //same lock
s = x;
assert(s>=r);//valid

initially x==y==0 initially x==0 and y==0

29 March 2007 Dan Grossman, Software Transactions 25

Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
atomic{}
y = 1;

r = y;
atomic{}
s = x;
assert(s>=r);//???

If this is good code, existing STMs are wrong

initially x==0 and y==0

29 March 2007 Dan Grossman, Software Transactions 26

Ordering

Can get “strange results” for bad code
– Need rules for what is “good code”

x = 1;
atomic{z=1;}
y = 1;

r = y;
atomic{tmp=0*z;}
s = x;
assert(s>=r);//???

“Conflicting memory” a slippery ill-defined slope

initially x==0 and y==0

29 March 2007 Dan Grossman, Software Transactions 27

Lesson

It is not clear when transactions are ordered, but
languages need memory models

Corollary: This could/should delay adoption of
transactions in well-specified languages

Shameless provocation:
What is the C# memory model?

29 March 2007 Dan Grossman, Software Transactions 28

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 29

Interleaved execution

The “uniprocessor (and then some)” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Important special case:
• Uniprocessors still exist
• Many language implementations assume it

(e.g., OCaml, DrScheme)
• Multicore may assign one core to an application

29 March 2007 Dan Grossman, Software Transactions 30

Implementing atomic

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in atomic, rollback
the thread

• Duplicate code so non-atomic code is not slowed by
logging

• Smooth interaction with GC

29 March 2007 Dan Grossman, Software Transactions 31

Logging example

Executing atomic block:
• build LIFO log of old values:

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic:
• drop log

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}

29 March 2007 Dan Grossman, Software Transactions 32

Logging efficiency

Keep the log small:
• Don’t log reads (key uniprocessor advantage)
• Need not log memory allocated after atomic entered

– Particularly initialization writes
• Need not log an address more than once

– To keep logging fast, switch from array to
hashtable after “many” (50) log entries

y:0 z:? x:0 y:2

29 March 2007 Dan Grossman, Software Transactions 33

Duplicating code

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers compile to
pair of code pointers

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {

atomic {
y = 2;
f();
g();

}
}

29 March 2007 Dan Grossman, Software Transactions 34

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

29 March 2007 Dan Grossman, Software Transactions 35

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

One approach: bigger closures

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Note: atomic is first-class, so it is just one of these too!

29 March 2007 Dan Grossman, Software Transactions 36

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

Alternate approach: slower calls in atomic

header code ptr1 free variables…

add 3, push, …code ptr2

add 3, push, …

Note: Same overhead as OO dynamic dispatch

29 March 2007 Dan Grossman, Software Transactions 37

Interaction with GC

What if GC occurs mid-transaction?
• The log is a root (in case of rollback)
• Moving objects is fine

– Rollback produces equivalent state
– Naïve hardware solutions may log/rollback GC!

What about rolling back the allocator?
• Don’t bother: after rollback, objects allocated in

transaction are unreachable
– Naïve hardware solutions may log/rollback

initialization writes!

29 March 2007 Dan Grossman, Software Transactions 38

Evaluation

Strong atomicity for Caml at little cost
– Already assumes a uniprocessor
– See the paper for “in the noise” performance

• Mutable data overhead

• Rare rollback

log (2 more writes)nonewrite
nonenoneread

in atomicnot in atomic

29 March 2007 Dan Grossman, Software Transactions 39

Lesson

Implementing (strong) atomicity in software for a
uniprocessor is so efficient it deserves special-casing

Note: Don’t run other multicore services on a uni either

29 March 2007 Dan Grossman, Software Transactions 40

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 41

……

System Architecture

foo.ajavafoo.ajava
Polyglot

Our
compiler

javac

class files

AThread.
java
AThread.
java

Our
“run-time”

Note: Preserves separate
compilation

29 March 2007 Dan Grossman, Software Transactions 42

Key pieces

• A field read/write first acquires ownership of object

– In transaction, a write also logs the old value

– No synchronization if already own object

• Polling for releasing ownership

– Transactions rollback before releasing

• Read/write barriers via method calls

(JIT can inline them later)

• Some Java cleverness for efficient logging

• Lots of details for other Java features

29 March 2007 Dan Grossman, Software Transactions 43

Acquiring ownership

All objects have an owner field
class AObject extends Object {
Thread owner; //who owns the object
void acq(){ //owner=caller (blocking)
if(owner==currentThread())

return;
… // complicated slow-path
}

}

• Synchronization only when contention
• With “owner=currentThread()” in constructor, thread-

local objects never incur synchronization

29 March 2007 Dan Grossman, Software Transactions 44

Releasing ownership
• Must “periodically” check “to release” set

– If in transaction, first rollback
• Retry later (backoff to avoid livelock)

– Set owners to null
• Source-level “periodically”

– Insert call to check() on loops and non-leaf calls
– Trade-off synchronization and responsiveness:

int count = 1000; //thread-local
void check(){
if(--count >= 0) return;
count=1000; really_check();
}

29 March 2007 Dan Grossman, Software Transactions 45

But what about…?

Modern, safe languages are big…

See paper & tech. report for:
constructors, primitive types, static fields,
class initializers, arrays, native calls,
exceptions, condition variables, library classes,
…

29 March 2007 Dan Grossman, Software Transactions 46

Lesson

Transactions for high-level programming languages do
not need low-level implementations

But good performance does tend to need parallel
readers, which is future work for this system.

29 March 2007 Dan Grossman, Software Transactions 47

Today
Issues in language design and semantics
1. Transactions for software evolution
2. Transactions for strong isolation [PLDI07]*

3. The need for a memory model [MSPC06a]**

Software-implementation techniques
1. On one core [ICFP05]
2. Without changing the virtual machine [MSPC06b]
3. Static optimizations for strong isolation [PLDI07]*

* Joint work with Intel PSL
** Joint work with Manson and Pugh

29 March 2007 Dan Grossman, Software Transactions 48

Strong performance problem
Recall uniprocessor overhead:

somenonewrite
nonenoneread

in atomicnot in atomic

With parallelism:

somenone iff weakwrite
somenone iff weakread

in atomicnot in atomic

29 March 2007 Dan Grossman, Software Transactions 49

Optimizing away barriers

Thread local

Immutable

Not accessed
in transaction

New: static analysis for not-accessed-in-transaction …

29 March 2007 Dan Grossman, Software Transactions 50

Not-accessed-in-transaction

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic

Yet another client of pointer-analysis

none
none

no atomic
access

some
none

no atomic
write

in atomic

somesomewrite
somesomeread

atomic
write

not in atomic

29 March 2007 Dan Grossman, Software Transactions 51

Analysis details

• Whole-program, context-insensitive, flow-insensitive
– Scalable, but needs whole program

• Can be done before method duplication
– Keep lazy code generation without losing precision

• Given pointer information, just two more passes
1. How is an “abstract object” accessed

transactionally?
2. What “abstract objects” might a non-transactional

access use?

29 March 2007 Dan Grossman, Software Transactions 52

Static counts
Not the point, but good evidence
• Usually better than thread-local analysis

344131575621Write
24364798804ReadJBB
0 161736Write
08993106ReadTsp
0796198859885Write
0 87961267112671ReadSpecJVM98

TL onlyNAIT onlyNAIT or TLTotalAccessApp
Barrier removed by

29 March 2007 Dan Grossman, Software Transactions 53

Experimental Setup

UW: static analysis using whole-program pointer analysis
• Scalable (context- and flow-insensitive) using Paddle/Soot

Intel PSL: high-performance strong STM via compiler and run-time
• StarJIT

– IR and optimizations for transactions and isolation barriers
– Inlined isolation barriers

• ORP
– Transactional method cloning
– Run-time optimizations for strong isolation

• McRT
– Run-time for weak and strong STM

29 March 2007 Dan Grossman, Software Transactions 54

Benchmarks

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 16

Threads

Ti
m

e
(s

)

Synch W eak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

Tsp

29 March 2007 Dan Grossman, Software Transactions 55

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Threads

A
ve

ra
ge

 ti
m

e
pe

r 1
0,

00
0

op
s

(s
)

Synch Weak Atom Strong Atom No Opts +JIT Opts +DEA +Static Opts

JBB

29 March 2007 Dan Grossman, Software Transactions 56

Lesson

The cost of strong isolation is in nontransactional barriers
and compiler optimizations help a lot

29 March 2007 Dan Grossman, Software Transactions 57

Credit

Uniprocessor: Michael Ringenburg
Source-to-source: Benjamin Hindman
Barrier-removal: Steven Balensiefer, Kate Moore

Memory-model issues: Jeremy Manson, Bill Pugh
High-performance strong STM: Tatiana Shpeisman,

Vijay Menon, Ali-Reza Adl-Tabatabai, Richard
Hudson, Bratin Saha

wasp.cs.washington.edu

29 March 2007 Dan Grossman, Software Transactions 58

Lessons

1. Locks do not compose; transactions do
2. “Weak” is worse than most think and sometimes

worse than locks
3. It is unclear when transactions should be ordered,

but languages need memory models

4. Implementing atomicity in software for a uniprocessor
is so efficient it deserves special-casing

5. Transactions for high-level programming languages
do not need low-level implementations

6. The cost of strong isolation is in nontransactional
barriers and compiler optimizations help a lot

