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• Software is part of society’s critical infrastructure

Where we learn of security lapses:
bboards → tech news → business-page → front-page

• PL is uniquely positioned to help. “We own”:
– The build process and run-time
– Intellectual tools to prove program properties

• But solid science/engineering is key
– The UMPLFAP* solution is a non-starter
– Crisp problems and solutions

*Use My Perfect Language For All Programming



Better low-level code
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My focus for the last n years:
bring type-safety to low-level languages

• For some applications, C remains the best choice (!)
– Explicit data representation
– Explicit memory management
– Tons of legacy code

• But C without the dangerous stuff is too impoverished
– No arrays, threads, null-pointers, varargs, …

• Cyclone: a safe, modern language at the C-level
– A necessary but insufficient puzzle piece



Beyond low-level type safety
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0.  Brief Cyclone overview
– Synergy of types, static analysis, dynamic 

checks (example: not-NULL pointers)
– The need for more (example: data races)

1. Better concurrency primitives (AtomCAML)

Brief plug for:
2. A C-level module system (CLAMP)
3. Better error messages (SEMINAL)

Research that needs doing and needs
eager, dedicated, clever people



Cyclone in brief
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A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps
• C-level: user-controlled data representation and 

resource management, easy interoperability 
• Convenient: may need more type annotations, but 

work hard to avoid it
• Modern: add features to capture common idioms

“new code for legacy or inherently low-level systems”



Status

15 February 2005 Dan Grossman 6

Cyclone really exists (except memory-safe threads)
• >150K lines of Cyclone code, including the compiler

– Compiles itself in 30 seconds
• Targets gcc 

(Linux, Cygwin, OSX, OpenBSD, Mindstorm, Gameboy, …)

• User’s manual, mailing lists, …
• Still a research vehicle



Example projects
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• Open Kernel Environment [Bos/Samwel, OPENARCH 02]
• MediaNet [Hicks et al, OPENARCH 03]
• RBClick [Patel/Lepreau, OPENARCH 03]
• STP [Patel et al., SOSP 03]
• FPGA synthesis [Teifel/Manohar, ISACS 04]
• Maryland undergrad O/S course (geekOS) [2004]
• Windows device driver (6K lines)

• Always looking for systems projects that would benefit 
from Cyclone

www.research.att.com/projects/cyclone



Not-null pointers
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• Subtyping: t@ < t* but t@@ < t*@

but

• Downcast via run-time check, often avoided via flow 
analysis

t* pointer to a t value or NULL

t@ pointer to a t value

<
v

v

/

<
v

/
v
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FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);
void g() {
FILE* f = fopen(“foo”, “r”);
int c;
while((c = fgetc(f)) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check



A classic moral
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FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)



Key Design Principles in Action
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• Types to express invariants
– Preconditions for arguments
– Properties of values in memory

• Flow analysis where helpful
– Lets users control explicit checks
– Soundness + aliasing limits usefulness

• Users control data representation
– Pointers are addresses unless user allows 

otherwise

• Often can interoperate with C safely just via types



It’s always aliasing
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void f(int*@p) {
if(*p != NULL) {
g();
**p = 42;//inserts check

}
}

37
p

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)



It’s always aliasing
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void f(int*@p) {
int* x = *p;
if(x != NULL) {
g();
*x = 42;//no check

}
}

37
p

x

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)



Data-race example
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struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

3

p2 5

p1



Data-race example
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struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5

change p1->arr

3

p2 5

p1



Data-race example

15 February 2005 Dan Grossman 16

struct SafeArr { 
int  len; 
int* arr; 

};

if(p1->len > 4)  *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5
check p1->len > 4
write p1->arr[4] XXX

change p1->arr

3

p2 5

p1



Lock types
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Type system ensures:
For each shared data object, there exists a lock that 
a thread must hold to access the object

• Basic approach for Java found many bugs
[Flanagan et al, Boyapati et al]

• Adaptation to Cyclone works out
– See my last colloquium talk (March 2003)
– But locks are the wrong thing for reliable 

concurrency



Cyclone summary
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Achieving memory safety a key first step, but

1. Locks for memory safety is really weak (applications 
always need to keep multiple objects synchronized)
– Solve the problem for high-level PLs first

2. A million-line system needs more modularity than 
“no buffer overflows”

3. Fancy types mean weird error messages and/or 
buggy compiler

Good news: 3 new research projects



Atomicity overview
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• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor
– Preliminary ideas that use locks cleverly

Foreshadowing: 
– hard part is efficient implementation
– key is cheap logging and rollback



Threads in PL
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• Positive shift: Threads are a C library and a Java 
language feature

• But: Locks are an error-prone, low-level mechanism 
that is a poor match for much programming
– Java programs/libraries full of races and 

deadlocks
– Java 1.5 just provides more low-level mechanisms

• Target domain: Apps that use threads to mask I/O 
latency and provide responsiveness (e.g., GUIs)
– Not high-performance scientific computing



Atomic
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An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp; 

}}
semantics: 
lock acquire/release

semantics: 
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or 
unfair scheduling (e.g., disabling interrupts)



6.5 ways atomic is better
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1. Atomic makes deadlock less common

• Deadlock with parallel 
“untransfer”
– Sun JDK had this for 

buffer append!
• Trivial deadlock if locks 

not re-entrant
• 1 lock at a time ⇒ race 

with “total funds available”

transfer(Acct that, 
int x){

synchronized(this){
synchronized(that){
this.withdraw(x);
that.deposit(x);

}}}



6.5 ways atomic is better
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2. Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

• Want to write foo to be 
race and deadlock free
– What locks should I 

acquire? (Are y and z 
immutable?)

– In what order?

// x, y, and z are
// globals
void foo() {
synchronized(???){
x.f1 = y.f2 + z.f3;

}}



6.5 ways atomic is better
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3. Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1() {
x.balance = -1000;

}

void bad2(){
synchronized(lk) {
while(true) ;

}
}

• Unsynchronized actions by 
other threads are invisible 
to atomic

• Atomic blocks that are too 
long may get starved, but 
won’t starve others

– Can give longer time 
slices



6.5 ways atomic is better
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4. Atomic makes abstractions thread-safe without 
committing to serialization

class Set { // synchronization unknown
void insert(int x) {…}
bool member(int x) {…}
int size() {…}
}

To wrap this with synchronization: 
Grab the same lock before any call.  But:

– Unnecessary: no operations run in parallel 
(even if member and size could)

– Insufficient: implementation may have races



6.5 ways atomic is better

15 February 2005 Dan Grossman 26

5. Atomic is usually what programmers want 
[Flanagan, Qadeer, Freund]

• Vast majority of Java methods marked 
synchronized are actually atomic

• Of those that aren’t, vast majority of races are 
application-level bugs

• synchronized is an implementation detail
– does not belong in interfaces (atomic does)!

interface I { synchronized int m(); }
class A { synchronized int m() {// an I

<<call code with races>>
}}

class B { int m() { return 3; }}// not an I



6.5 ways atomic is better
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6. Atomic can efficiently implement locks
class Lock {
bool b = false;
void acquire() { 
while(true) {
while(b) /*spin*/;
atomic { 
if(b) continue;
b = true;
return; }

}
}
void release() { 
b = false; 
}

}

• Cute O/S homework 
problem

• In practice, 
implement locks like 
you always have

• Atomic and locks 
peacefully co-exist
– Use both if you 

want



6.5 ways atomic is better
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6.5  Concurrent programs have the granularity problem:

• Too little synchronization: 
non-determinism, races, bugs

• Too much synchronization: 
poor performance, sequentialization

Example: Should a chaining hashtable have one lock, 
one lock per bucket, or one lock per entry?

atomic doesn’t solve the problem, but makes it easier 
to mix coarse-grained and fine-grained operations



Atomicity overview
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• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor



Interleaved execution
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The “uniprocessor” assumption:
Threads communicating via shared memory don't 

execute in “true parallel”

Actually more general than uniprocessor: threads on 
different processors can pass messages

An important special case:
• Many language implementations make this 

assumption
• Many concurrent apps don’t need a multiprocessor 

(e.g., a document editor)
• If uniprocessors are dead, where’s the funeral?



Implementing atomic
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Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in an atomic block, 
rollback the thread 

• Duplicate code so non-atomic code is not slowed 
down by logging/rollback 

• In an atomic block, buffer output and log input
– Necessary for rollback but may be inconvenient



Logging example
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• Executing atomic block 
in h builds a LIFO log of 
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and 

stack to beginning of atomic
On exit from atomic: drop log



Logging efficiency
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y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Don’t log memory allocated after atomic was entered 

(in particular, local variables like z)
• No need to log an address after the first time

– To keep logging fast, only occasionally “trim”
• Tell programmers non-local writes cost more

Keeping logging fast: Simple resizing or chunked array



Duplicating code
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Duplicate code so callees know
to log or not: 
• For each function f, compile 
f_atomic and f_normal

• Atomic blocks and atomic 
functions call atomic functions

• Function pointers  (e.g., 
vtables) compile to pair of 
code pointers

Cute detail: compiler erases any 
atomic block in f_atomic

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}



Qualitative evaluation
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• Non-atomic code executes unchanged
• Writes in atomic block are logged (2 extra writes)
• Worst case code bloat of 2x

• Thread scheduler and code generator must conspire

• Still have to deal with I/O
– Atomic blocks probably shouldn’t do much



Handling I/O
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• Buffering sends (output) is easy and necessary
• Logging receives (input) is easy and necessary

– And may as well rollback if the thread blocks
• But may miss subtle non-determinism:
void f() {
write_file_foo(); // flushed?
read_file_foo();

}
void g() {
atomic {f();} // read won’t see write
f();          // read may see write

}

• Alternative: receive-after-send-in-atomic throws exception



Prototype
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• AtomCAML: modified OCaml bytecode compiler
• Advantages of mostly functional language

– Fewer writes (don’t log object initialization)
– To the front-end, atomic is just a function

atomic : (unit -> ’a) -> ’a

• Key next step: port applications that use locks
– Planet active network from UPenn
– MetaPRL logical framework from CalTech



Atomicity overview
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• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor



A multiprocessor approach
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• Give up on zero-cost reads
• Give up on safe, unsynchronized accesses

– All shared-memory access must be within atomic
(conceptually; compiler can insert them)

• But: Try to minimize inter-thread communication

Strategy: Use locks to implement atomic
• Each shared object guarded by a readers/writer lock

– Key: many objects can share a lock
• Logging and rollback to prevent deadlock



Example redux
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• Atomic code acquires lock(s) 
for x and y (1 or 2 locks)

• Release locks on rollback or 
completion

• Avoid deadlock automatically. 
Possibilities:
– Rollback on lock-unavailable
– Scheduler detects deadlock, 

initiates rollback

• Only 1 problem…

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}



What locks what?
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism



What locks what?
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
– Programmers can’t do it well either, though we 

make them try



What locks what?
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

When stuck in computer science, use 1 of the following:
a. Divide-and-conquer
b. Locality
c. Level of indirection
d. Encode computation as data
e. An abstract data-type



Locality
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Hunch: Objects accessed in the same atomic block will 
likely be accessed in the same atomic block again

• So while holding their locks, change the object-to-lock 
mapping to share locks
– Conversely, detect false contention and break sharing

• If hunch is right, future atomic block acquires fewer 
locks
– Less inter-thread communication
– And many papers on heuristics and policies ☺



Related Work on Atomic
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Old ideas:
• Transactions in databases and distributed systems

– Different trade-offs and flexibilities
• Rollback for various recoverability needs
• Atomic sequences to implement locks [Bershad et al]
• Atomicity via restricted sharing [ARGUS]

Rapid new progress:
• Atomicity via shadow-memory & versioning [Harris et al]
• Checking for atomicity [Qadeer et al]
• Transactional memory in SW [Herlihy et al] or HW [tcc]

PLDI03, OOPSLA03, PODC03, ASPLOS04, …
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0. Brief Cyclone overview
– Synergy of types, static analysis, dynamic 

checks 
– The need for more

1. Better concurrency primitives

Brief plug for:
2. A C-level module system (CLAMP)
3. Better error messages (SEMINAL)

Research that needs doing and needs
eager, dedicated, clever people



Clamp
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Clamp is a C-like Language for Abstraction, Modularity, 
and Portability (it holds things together)

Go beyond Cyclone by using a module system to 
encapsulate low-level assumptions, e.g.,:

• Module X assumes big-endian 32-bit words
• Module Y uses module X
• Do I need to change Y when I port?

(Similar ideas in Modula-3 and Knit, but no direct 
support for the data-rep levels of C code.)

Clamp doesn’t exist yet; there are many interesting 
questions



Error Messages
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What happens:
1. A researcher implements an elegant new analysis in 

a compiler that is great for correct programs.
2. But the error messages are inscrutable, so the 

compiler gets hacked up:
• Pass around more state
• Sprinkle special cases and strings everywhere
• Slow down the compiler
• Introduce compiler bugs

Recently I fixed a dangerous bug in Cyclone resulting 
from not type-checking e->f as (*e).f



A new approach
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• One solution: 2 checkers, trust the fast one, use the 
other for messages
– Hard to keep in sync; slow one no easier to write

• SEMINAL*: use fast one as a subroutine for search:
– Human speed (1-2 seconds)
– Find a similar term (with holes) that type-checks

• Easier to read than types
• Offer multiple ranked choices

• Example: “f(e1,e2,e3) doesn’t type-check, but 
f(e1,_,e3) does and f(e1,e2->foo,e3) does”

• Help! (PL, compilers, AI, HCI, …)
*Searching for Error Messages in Advanced Languages



Summary
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• We must make it easier to build large, reliable software
– Current concurrency technology doesn’t
– Current modules for low-level code doesn’t
– Type systems are hitting the error-message wall

• Programming-languages research is fun
– Ultimate blend of theory and practice
– Unique place in “tool-chain control”
– Core computer science with much work remaining
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