
Type-Safety, Concurrency, and Beyond:
Programming-Language Technology for

Reliable Software

Dan Grossman
University of Washington

15 February 2005

PL for Better Software

15 February 2005 Dan Grossman 2

• Software is part of society’s critical infrastructure

Where we learn of security lapses:
bboards → tech news → business-page → front-page

• PL is uniquely positioned to help. “We own”:
– The build process and run-time
– Intellectual tools to prove program properties

• But solid science/engineering is key
– The UMPLFAP* solution is a non-starter
– Crisp problems and solutions

*Use My Perfect Language For All Programming

Better low-level code

15 February 2005 Dan Grossman 3

My focus for the last n years:
bring type-safety to low-level languages

• For some applications, C remains the best choice (!)
– Explicit data representation
– Explicit memory management
– Tons of legacy code

• But C without the dangerous stuff is too impoverished
– No arrays, threads, null-pointers, varargs, …

• Cyclone: a safe, modern language at the C-level
– A necessary but insufficient puzzle piece

Beyond low-level type safety

15 February 2005 Dan Grossman 4

0. Brief Cyclone overview
– Synergy of types, static analysis, dynamic

checks (example: not-NULL pointers)
– The need for more (example: data races)

1. Better concurrency primitives (AtomCAML)

Brief plug for:
2. A C-level module system (CLAMP)
3. Better error messages (SEMINAL)

Research that needs doing and needs
eager, dedicated, clever people

Cyclone in brief

15 February 2005 Dan Grossman 5

A safe, convenient, and modern language
at the C level of abstraction

• Safe: memory safety, abstract types, no core dumps
• C-level: user-controlled data representation and

resource management, easy interoperability
• Convenient: may need more type annotations, but

work hard to avoid it
• Modern: add features to capture common idioms

“new code for legacy or inherently low-level systems”

Status

15 February 2005 Dan Grossman 6

Cyclone really exists (except memory-safe threads)
• >150K lines of Cyclone code, including the compiler

– Compiles itself in 30 seconds
• Targets gcc

(Linux, Cygwin, OSX, OpenBSD, Mindstorm, Gameboy, …)

• User’s manual, mailing lists, …
• Still a research vehicle

Example projects

15 February 2005 Dan Grossman 7

• Open Kernel Environment [Bos/Samwel, OPENARCH 02]
• MediaNet [Hicks et al, OPENARCH 03]
• RBClick [Patel/Lepreau, OPENARCH 03]
• STP [Patel et al., SOSP 03]
• FPGA synthesis [Teifel/Manohar, ISACS 04]
• Maryland undergrad O/S course (geekOS) [2004]
• Windows device driver (6K lines)

• Always looking for systems projects that would benefit
from Cyclone

www.research.att.com/projects/cyclone

Not-null pointers

15 February 2005 Dan Grossman 8

• Subtyping: t@ < t* but t@@ < t*@

but

• Downcast via run-time check, often avoided via flow
analysis

t* pointer to a t value or NULL

t@ pointer to a t value

<
v

v

/

<
v

/
v

Example

15 February 2005 Dan Grossman 9

FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);
void g() {
FILE* f = fopen(“foo”, “r”);
int c;
while((c = fgetc(f)) != EOF) {…}
fclose(f);

}

• Gives warning and inserts one null-check
• Encourages a hoisted check

A classic moral

15 February 2005 Dan Grossman 10

FILE* fopen(const char@, const char@);
int fgetc(FILE@);
int fclose(FILE@);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

Key Design Principles in Action

15 February 2005 Dan Grossman 11

• Types to express invariants
– Preconditions for arguments
– Properties of values in memory

• Flow analysis where helpful
– Lets users control explicit checks
– Soundness + aliasing limits usefulness

• Users control data representation
– Pointers are addresses unless user allows

otherwise

• Often can interoperate with C safely just via types

It’s always aliasing

15 February 2005 Dan Grossman 12

void f(int*@p) {
if(*p != NULL) {
g();
**p = 42;//inserts check

}
}

37
p

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)

It’s always aliasing

15 February 2005 Dan Grossman 13

void f(int*@p) {
int* x = *p;
if(x != NULL) {
g();
*x = 42;//no check

}
}

37
p

x

But can avoid checks when compiler knows all aliases.
Can know by:
• Types: precondition checked at call site
• Flow: new objects start unaliased
• Else user should use a temporary (the safe thing)

Data-race example

15 February 2005 Dan Grossman 14

struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

3

p2 5

p1

Data-race example

15 February 2005 Dan Grossman 15

struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5

change p1->arr

3

p2 5

p1

Data-race example

15 February 2005 Dan Grossman 16

struct SafeArr {
int len;
int* arr;

};

if(p1->len > 4) *p1 = *p2;
(p1->arr)[4] = 42;

change p1->len to 5
check p1->len > 4
write p1->arr[4] XXX

change p1->arr

3

p2 5

p1

Lock types

15 February 2005 Dan Grossman 17

Type system ensures:
For each shared data object, there exists a lock that
a thread must hold to access the object

• Basic approach for Java found many bugs
[Flanagan et al, Boyapati et al]

• Adaptation to Cyclone works out
– See my last colloquium talk (March 2003)
– But locks are the wrong thing for reliable

concurrency

Cyclone summary

15 February 2005 Dan Grossman 18

Achieving memory safety a key first step, but

1. Locks for memory safety is really weak (applications
always need to keep multiple objects synchronized)
– Solve the problem for high-level PLs first

2. A million-line system needs more modularity than
“no buffer overflows”

3. Fancy types mean weird error messages and/or
buggy compiler

Good news: 3 new research projects

Atomicity overview

15 February 2005 Dan Grossman 19

• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor
– Preliminary ideas that use locks cleverly

Foreshadowing:
– hard part is efficient implementation
– key is cheap logging and rollback

Threads in PL

15 February 2005 Dan Grossman 20

• Positive shift: Threads are a C library and a Java
language feature

• But: Locks are an error-prone, low-level mechanism
that is a poor match for much programming
– Java programs/libraries full of races and

deadlocks
– Java 1.5 just provides more low-level mechanisms

• Target domain: Apps that use threads to mask I/O
latency and provide responsiveness (e.g., GUIs)
– Not high-performance scientific computing

Atomic

15 February 2005 Dan Grossman 21

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

6.5 ways atomic is better

15 February 2005 Dan Grossman 22

1. Atomic makes deadlock less common

• Deadlock with parallel
“untransfer”
– Sun JDK had this for

buffer append!
• Trivial deadlock if locks

not re-entrant
• 1 lock at a time ⇒ race

with “total funds available”

transfer(Acct that,
int x){

synchronized(this){
synchronized(that){
this.withdraw(x);
that.deposit(x);

}}}

6.5 ways atomic is better

15 February 2005 Dan Grossman 23

2. Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

• Want to write foo to be
race and deadlock free
– What locks should I

acquire? (Are y and z
immutable?)

– In what order?

// x, y, and z are
// globals
void foo() {
synchronized(???){
x.f1 = y.f2 + z.f3;

}}

6.5 ways atomic is better

15 February 2005 Dan Grossman 24

3. Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1() {
x.balance = -1000;

}

void bad2(){
synchronized(lk) {
while(true) ;

}
}

• Unsynchronized actions by
other threads are invisible
to atomic

• Atomic blocks that are too
long may get starved, but
won’t starve others

– Can give longer time
slices

6.5 ways atomic is better

15 February 2005 Dan Grossman 25

4. Atomic makes abstractions thread-safe without
committing to serialization

class Set { // synchronization unknown
void insert(int x) {…}
bool member(int x) {…}
int size() {…}
}

To wrap this with synchronization:
Grab the same lock before any call. But:

– Unnecessary: no operations run in parallel
(even if member and size could)

– Insufficient: implementation may have races

6.5 ways atomic is better

15 February 2005 Dan Grossman 26

5. Atomic is usually what programmers want
[Flanagan, Qadeer, Freund]

• Vast majority of Java methods marked
synchronized are actually atomic

• Of those that aren’t, vast majority of races are
application-level bugs

• synchronized is an implementation detail
– does not belong in interfaces (atomic does)!

interface I { synchronized int m(); }
class A { synchronized int m() {// an I

<<call code with races>>
}}

class B { int m() { return 3; }}// not an I

6.5 ways atomic is better

15 February 2005 Dan Grossman 27

6. Atomic can efficiently implement locks
class Lock {
bool b = false;
void acquire() {
while(true) {
while(b) /*spin*/;
atomic {
if(b) continue;
b = true;
return; }

}
}
void release() {
b = false;
}

}

• Cute O/S homework
problem

• In practice,
implement locks like
you always have

• Atomic and locks
peacefully co-exist
– Use both if you

want

6.5 ways atomic is better

15 February 2005 Dan Grossman 28

6.5 Concurrent programs have the granularity problem:

• Too little synchronization:
non-determinism, races, bugs

• Too much synchronization:
poor performance, sequentialization

Example: Should a chaining hashtable have one lock,
one lock per bucket, or one lock per entry?

atomic doesn’t solve the problem, but makes it easier
to mix coarse-grained and fine-grained operations

Atomicity overview

15 February 2005 Dan Grossman 29

• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor

Interleaved execution

15 February 2005 Dan Grossman 30

The “uniprocessor” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Actually more general than uniprocessor: threads on
different processors can pass messages

An important special case:
• Many language implementations make this

assumption
• Many concurrent apps don’t need a multiprocessor

(e.g., a document editor)
• If uniprocessors are dead, where’s the funeral?

Implementing atomic

15 February 2005 Dan Grossman 31

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in an atomic block,
rollback the thread

• Duplicate code so non-atomic code is not slowed
down by logging/rollback

• In an atomic block, buffer output and log input
– Necessary for rollback but may be inconvenient

Logging example

15 February 2005 Dan Grossman 32

• Executing atomic block
in h builds a LIFO log of
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic: drop log

Logging efficiency

15 February 2005 Dan Grossman 33

y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Don’t log memory allocated after atomic was entered

(in particular, local variables like z)
• No need to log an address after the first time

– To keep logging fast, only occasionally “trim”
• Tell programmers non-local writes cost more

Keeping logging fast: Simple resizing or chunked array

Duplicating code

15 February 2005 Dan Grossman 34

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers (e.g.,
vtables) compile to pair of
code pointers

Cute detail: compiler erases any
atomic block in f_atomic

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Qualitative evaluation

15 February 2005 Dan Grossman 35

• Non-atomic code executes unchanged
• Writes in atomic block are logged (2 extra writes)
• Worst case code bloat of 2x

• Thread scheduler and code generator must conspire

• Still have to deal with I/O
– Atomic blocks probably shouldn’t do much

Handling I/O

15 February 2005 Dan Grossman 36

• Buffering sends (output) is easy and necessary
• Logging receives (input) is easy and necessary

– And may as well rollback if the thread blocks
• But may miss subtle non-determinism:
void f() {
write_file_foo(); // flushed?
read_file_foo();

}
void g() {
atomic {f();} // read won’t see write
f(); // read may see write

}

• Alternative: receive-after-send-in-atomic throws exception

Prototype

15 February 2005 Dan Grossman 37

• AtomCAML: modified OCaml bytecode compiler
• Advantages of mostly functional language

– Fewer writes (don’t log object initialization)
– To the front-end, atomic is just a function

atomic : (unit -> ’a) -> ’a

• Key next step: port applications that use locks
– Planet active network from UPenn
– MetaPRL logical framework from CalTech

Atomicity overview

15 February 2005 Dan Grossman 38

• Why “atomic” is better than mutual-exclusion locks
– And why it belongs in a language

• How to implement atomic on a uniprocessor

• How to implement atomic on a multiprocessor

A multiprocessor approach

15 February 2005 Dan Grossman 39

• Give up on zero-cost reads
• Give up on safe, unsynchronized accesses

– All shared-memory access must be within atomic
(conceptually; compiler can insert them)

• But: Try to minimize inter-thread communication

Strategy: Use locks to implement atomic
• Each shared object guarded by a readers/writer lock

– Key: many objects can share a lock
• Logging and rollback to prevent deadlock

Example redux

15 February 2005 Dan Grossman 40

• Atomic code acquires lock(s)
for x and y (1 or 2 locks)

• Release locks on rollback or
completion

• Avoid deadlock automatically.
Possibilities:
– Rollback on lock-unavailable
– Scheduler detects deadlock,

initiates rollback

• Only 1 problem…

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x + 1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

What locks what?

15 February 2005 Dan Grossman 41

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism

What locks what?

15 February 2005 Dan Grossman 42

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
– Programmers can’t do it well either, though we

make them try

What locks what?

15 February 2005 Dan Grossman 43

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

When stuck in computer science, use 1 of the following:
a. Divide-and-conquer
b. Locality
c. Level of indirection
d. Encode computation as data
e. An abstract data-type

Locality

15 February 2005 Dan Grossman 44

Hunch: Objects accessed in the same atomic block will
likely be accessed in the same atomic block again

• So while holding their locks, change the object-to-lock
mapping to share locks
– Conversely, detect false contention and break sharing

• If hunch is right, future atomic block acquires fewer
locks
– Less inter-thread communication
– And many papers on heuristics and policies ☺

Related Work on Atomic

15 February 2005 Dan Grossman 45

Old ideas:
• Transactions in databases and distributed systems

– Different trade-offs and flexibilities
• Rollback for various recoverability needs
• Atomic sequences to implement locks [Bershad et al]
• Atomicity via restricted sharing [ARGUS]

Rapid new progress:
• Atomicity via shadow-memory & versioning [Harris et al]
• Checking for atomicity [Qadeer et al]
• Transactional memory in SW [Herlihy et al] or HW [tcc]

PLDI03, OOPSLA03, PODC03, ASPLOS04, …

Beyond low-level type safety

15 February 2005 Dan Grossman 46

0. Brief Cyclone overview
– Synergy of types, static analysis, dynamic

checks
– The need for more

1. Better concurrency primitives

Brief plug for:
2. A C-level module system (CLAMP)
3. Better error messages (SEMINAL)

Research that needs doing and needs
eager, dedicated, clever people

Clamp

15 February 2005 Dan Grossman 47

Clamp is a C-like Language for Abstraction, Modularity,
and Portability (it holds things together)

Go beyond Cyclone by using a module system to
encapsulate low-level assumptions, e.g.,:

• Module X assumes big-endian 32-bit words
• Module Y uses module X
• Do I need to change Y when I port?

(Similar ideas in Modula-3 and Knit, but no direct
support for the data-rep levels of C code.)

Clamp doesn’t exist yet; there are many interesting
questions

Error Messages

15 February 2005 Dan Grossman 48

What happens:
1. A researcher implements an elegant new analysis in

a compiler that is great for correct programs.
2. But the error messages are inscrutable, so the

compiler gets hacked up:
• Pass around more state
• Sprinkle special cases and strings everywhere
• Slow down the compiler
• Introduce compiler bugs

Recently I fixed a dangerous bug in Cyclone resulting
from not type-checking e->f as (*e).f

A new approach

15 February 2005 Dan Grossman 49

• One solution: 2 checkers, trust the fast one, use the
other for messages
– Hard to keep in sync; slow one no easier to write

• SEMINAL*: use fast one as a subroutine for search:
– Human speed (1-2 seconds)
– Find a similar term (with holes) that type-checks

• Easier to read than types
• Offer multiple ranked choices

• Example: “f(e1,e2,e3) doesn’t type-check, but
f(e1,_,e3) does and f(e1,e2->foo,e3) does”

• Help! (PL, compilers, AI, HCI, …)
*Searching for Error Messages in Advanced Languages

Summary

15 February 2005 Dan Grossman 50

• We must make it easier to build large, reliable software
– Current concurrency technology doesn’t
– Current modules for low-level code doesn’t
– Type systems are hitting the error-message wall

• Programming-languages research is fun
– Ultimate blend of theory and practice
– Unique place in “tool-chain control”
– Core computer science with much work remaining

Acknowledgments

15 February 2005 Dan Grossman 51

• Cyclone is joint work with Greg Morrisett (Harvard),
Trevor Jim (AT&T Research), Michael Hicks
(Maryland)
– Thanks: Ben Hindman for compiler hacking

• Atomicity is joint work with Michael Ringenburg
– Thanks: Cynthia Webber for some benchmarks
– Thanks: Manuel Fähndrich and Shaz Qadeer

(MSR) for motivating us

• For updates and other projects:
www.cs.washington.edu/research/progsys/wasp/

	Type-Safety, Concurrency, and Beyond: Programming-Language Technology for Reliable Software
	PL for Better Software
	Better low-level code
	Beyond low-level type safety
	Cyclone in brief
	Status
	Example projects
	Not-null pointers
	Example
	A classic moral
	Key Design Principles in Action
	It’s always aliasing
	It’s always aliasing
	Data-race example
	Data-race example
	Data-race example
	Lock types
	Cyclone summary
	Atomicity overview
	Threads in PL
	Atomic
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	Atomicity overview
	Interleaved execution
	Implementing atomic
	Logging example
	Logging efficiency
	Duplicating code
	Qualitative evaluation
	Handling I/O
	Prototype
	Atomicity overview
	A multiprocessor approach
	Example redux
	What locks what?
	What locks what?
	What locks what?
	Locality
	Related Work on Atomic
	Beyond low-level type safety
	Clamp
	Error Messages
	A new approach
	Summary
	Acknowledgments

