
Atomicity for Today's
Programming Languages

Dan Grossman
University of Washington

24 March 2005

Atomic

24 March 2005 Dan Grossman 2

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

Overview

24 March 2005 Dan Grossman 3

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

Locks in high-level languages

24 March 2005 Dan Grossman 4

Java a reasonable proxy for state-of-the-art

synchronized e { s }

Related features:
• Reentrant locks (no self-deadlock)
• Syntactic sugar for acquiring this for method call
• Condition variables (release lock while waiting)
• …
Java 1.5 features:
• Semaphores
• Atomic variables (compare-and-swap, etc.)
• Non-lexical locking

Common bugs

24 March 2005 Dan Grossman 5

• Races
– Unsynchronized access to shared data
– Higher-level races: multiple objects inconsistent

• Deadlocks (cycle of threads waiting on locks)
Example [JDK1.4, version 1.70, Flanagan/Qadeer PLDI2003]

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
…

}
// length and getChars also synchronized

Detecting concurrency errors

24 March 2005 Dan Grossman 6

Dynamic approaches
• Lock-sets: Warn if:

– An object’s accesses come from > 1 thread
– Common locks held on accesses = empty-set

• Happens-before: Warn if an object’s accesses are
reorderable without
– Changing a thread’s execution
– Changing memory-barrier order

neither sound nor complete
(happens-before more complete)

[Savage97, Cheng98, von Praun01, Choi02]

Detecting concurrency errors

24 March 2005 Dan Grossman 7

Static approaches: lock types
• Type system ensures:

For each shared data object, there exists a lock that
a thread must hold to access the object

• Polymorphism essential
– fields holding locks, arguments as locks, …

• Lots of add-ons essential
– read-only, thread-local, unique-pointers, …

• Deadlock avoiding partial-order possible
incomplete, sound only for single objects

[Flanagan,Abadi,Freund,Qadeer99-02, Boyapati01-02,Grossman03]

Enforcing Atomicity

24 March 2005 Dan Grossman 8

• Lock-based code often enforces atomicity (or tries to)
• Building on lock types, can use Lipton’s theory of

movers to detect [non]atomicity in locking code
• atomic becomes a checked type annotation
• Detects StringBuffer race (but not deadlock)

• Support for an inherently difficult task
– the programming model remains tough

[Flanagan,Qadeer,Freund03-05]

Overview

24 March 2005 Dan Grossman 9

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

Atomic

24 March 2005 Dan Grossman 10

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp;

}}
semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

Target

24 March 2005 Dan Grossman 11

Applications that use threads to:
• mask I/O latency
• provide GUI responsiveness
• handle multiple requests
• structure code with multiple control stacks
• …

Not:
• high-performance scientific computing
• backbone routers
• …

6.5 ways atomic is better

24 March 2005 Dan Grossman 12

1. Atomic makes deadlock less common

• Deadlock with parallel
“untransfer”

• Trivial deadlock if locks
not re-entrant

• 1 lock at a time ⇒ race
with “total funds available”

transfer(Acct that,
int x){

synchronized(this){
synchronized(that){
this.withdraw(x);
that.deposit(x);

}}}

6.5 ways atomic is better

24 March 2005 Dan Grossman 13

2. Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

• Want to write foo to be
race and deadlock free
– What locks should I

acquire? (Are y and z
immutable?)

– In what order?

// x, y, and z are
// globals
void foo() {
synchronized(???){
x.f1 = y.f2 + z.f3;

}}

6.5 ways atomic is better

24 March 2005 Dan Grossman 14

3. Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1(){
x.balance = -1000;

}

void bad2(){
synchronized(lk) {
while(true) ;

}
}

• Unsynchronized actions by
other threads are invisible
to atomic

• Atomic blocks that are too
long may get starved, but
won’t starve others

– Can give longer time
slices

6.5 ways atomic is better

24 March 2005 Dan Grossman 15

4. Atomic makes abstractions thread-safe without
committing to serialization

class Set { // synchronization unknown
void insert(int x) {…}
bool member(int x) {…}
int size () {…}

}

To wrap this with synchronization:
Grab the same lock before any call. But:

– Unnecessary: no operations run in parallel
(even if member and size could)

– Insufficient: implementation may have races

6.5 ways atomic is better

24 March 2005 Dan Grossman 16

5. Atomic is usually what programmers want
[Flanagan, Qadeer, Freund]

• Many Java methods marked synchronized are
actually atomic

• Of those that aren’t, many races are application-
level bugs

• synchronized is an implementation detail
– does not belong in interfaces (atomic does)!

interface I { /* thread-safe? */ int m(); }
class A { synchronized int m() {

<<call code with races>>
}}

class B { int m() { return 3; }}

6.5 ways atomic is better

24 March 2005 Dan Grossman 17

6. Atomic can efficiently implement locks
class SpinLock {
bool b = false;
void acquire() {
while(true) {
while(b) /*spin*/;
atomic {
if(b) continue;
b = true;
return; }

}
}
void release() {
b = false;
}

}

• Cute O/S homework
problem

• In practice,
implement locks like
you always have?

• Atomic and locks
peacefully co-exist
– Use both if you

want

6.5 ways atomic is better

24 March 2005 Dan Grossman 18

6.5 Concurrent programs have the granularity problem:

• Too little synchronization:
non-determinism, races, bugs

• Too much synchronization:
poor performance, sequentialization

Example: Should a chaining hashtable have one lock,
one lock per bucket, or one lock per entry?

atomic doesn’t solve the problem, but makes it easier
to mix coarse-grained and fine-grained operations

Overview

24 March 2005 Dan Grossman 19

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

A classic idea

24 March 2005 Dan Grossman 20

• Transactions in databases and distributed systems
– Different trade-offs and flexibilities
– Limited (not a general-purpose language)

• Hoare-style monitors and conditional critical regions

• Restartable atomic sequences to implement locks
– Implements locks w/o hardware support [Bershad]

• Atomicity for individual persistent objects [ARGUS]

• Rollback for various recoverability needs

• Disable interrupts

Rapid new progress

24 March 2005 Dan Grossman 21

• atomic for Java
– Uses Software Transactional Memory (STM)

[Herlihy, Israeli, Shavit]
– shadow-memory, version #s, commit-phase, …

• Composable atomic for Haskell
– Explicit retry: abort/retry after world changes
– Sequential composition: “do s1 then s2”
– Alternate composition: “do s1, but if aborts, do s2”
– Leave transactions “open” for composition

(atomic “closes” them)

[Harris, Fraser, Herlihy, Marlow, Peyton-Jones]
OOPSLA03, PODC04, PPoPP05

Rapid new progress

24 March 2005 Dan Grossman 22

Closely related notions:

• Hardware for transactions
– Instead of cache coherence, locking primitives, …
– Programming: explicit forks and parallel loops
– Long transactions may lock the bus

[Hammond et al. ASPLOS04]

• Transactional monitors for Java
– Most but not all of atomic’s advantages
– Encouraging performance results

[Welc et al. ECOOP04]

• Improve lock performance via transactions
[Rajwar, Goodman ASPLOS02]

Claim

24 March 2005 Dan Grossman 23

We can realize suitable implementations of atomic
on today's hardware using a purely

software approach to logging-and-rollback

• Alternate approach to STMs; potentially:
– better guarantees
– faster common case

• No need to wait for new hardware
– A solution for today
– A solution for backward-compatibility
– Not yet clear what hardware should provide

Overview

24 March 2005 Dan Grossman 24

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

Interleaved execution

24 March 2005 Dan Grossman 25

The “uniprocessor” assumption:
Threads communicating via shared memory don't

execute in “true parallel”

Actually more general than uniprocessor: threads on
different processors can pass messages

An important special case:
• Many language implementations make this

assumption
• Many concurrent apps don’t need a multiprocessor

(e.g., a document editor)
• If uniprocessors are dead, where’s the funeral?

Implementing atomic

24 March 2005 Dan Grossman 26

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in an atomic block,
rollback the thread

• Duplicate code so non-atomic code is not slowed
down by logging/rollback

• In an atomic block, buffer output and log input
– Necessary for rollback but may be inconvenient
– A general native-code API

Logging example

24 March 2005 Dan Grossman 27

• Executing atomic block
in h builds a LIFO log of
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and

stack to beginning of atomic
On exit from atomic: drop log

Logging efficiency

24 March 2005 Dan Grossman 28

y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Don’t log memory allocated after atomic was entered

(in particular, local variables like z)
• No need to log an address after the first time

– To keep logging fast, switch from an array to a
hashtable only after “many” (50) log entries

– Tell programmers non-local writes cost more

Duplicating code

24 March 2005 Dan Grossman 29

Duplicate code so callees know
to log or not:
• For each function f, compile
f_atomic and f_normal

• Atomic blocks and atomic
functions call atomic functions

• Function pointers (e.g.,
vtables) compile to pair of
code pointers

Cute detail: compiler erases any
atomic block in f_atomic

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

Representing closures/objects

24 March 2005 Dan Grossman 30

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …

Representing closures/objects

24 March 2005 Dan Grossman 31

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml prototype:
bigger closures (and related GC changes)

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …

Representing closures/objects

24 March 2005 Dan Grossman 32

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative:
(slower calls in atomic)

header code ptr1 free variables…

add 3, push, …code ptr2

Representing closures/objects

24 March 2005 Dan Grossman 33

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OO already pays the overhead atomic needs
(interfaces, multiple inheritance, … no problem)

header class ptr fields…

… code ptrs…

Qualitative evaluation

24 March 2005 Dan Grossman 34

• Non-atomic code executes unchanged
• Writes in atomic block are logged (2 extra writes)
• Worst case code bloat of 2x

• Thread scheduler and code generator must conspire

• Still have to deal with I/O
– Atomic blocks probably shouldn’t do much

Handling I/O

24 March 2005 Dan Grossman 35

• Buffering sends (output) is easy and necessary
• Logging receives (input) is easy and necessary

– And may as well rollback if the thread blocks
• But may miss subtle non-determinism:
void f() {
write_file_foo(); // flushed?
read_file_foo();

}
void g() {
atomic {f();} // read won’t see write
f(); // read may see write

}

• Alternative: receive-after-send-in-atomic throws exception

General native mechanism

24 March 2005 Dan Grossman 36

• Previous approaches: disallow native calls in atomic
– raise an exception
– obvious role for a static analysis or effect system
– atomic no longer meaning preserving!

• We let the C library decide:
– Provide two functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise-exception,

or do something else
– in-atomic can register commit-actions and

rollback-actions (sufficient for buffering)
– problem: if commit-action has an error “too late”

Overview

24 March 2005 Dan Grossman 37

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

Prototype

24 March 2005 Dan Grossman 38

• AtomCaml: modified OCaml bytecode compiler
• Advantages of mostly functional language

– Fewer writes (don’t log object initialization)
– To the front-end, atomic is just a function

atomic : (unit -> ’a) -> ’a

• Compiler bootstraps (single-threaded)
• Using atomic to implement locks, CML, …
• Planet active network [Hicks et al, INFOCOM99, ICFP98]

“ported” from locks to atomic

Critical sections

24 March 2005 Dan Grossman 39

• Most code looks like this:
try
lock m;
let result = e in
unlock m;
result

with ex -> (unlock m; raise ex)

• And often this is easier and equivalent:
atomic(fun()-> e)

• But not if e:
– releases (and reacquires) m
– calls native code
– does something and “waits for response”

Condition Variables

24 March 2005 Dan Grossman 40

• Idiom releasing/reacquiring a lock: Condition variable
lock m;
let rec loop () =
if e1 then e3
else (wait cv m; e2; loop())

in loop ();
unlock m;

Condition Variables

24 March 2005 Dan Grossman 41

• Idiom releasing/reacquiring a lock: Condition variable
lock m;
let rec loop () =
if e1 then e3
else (wait cv m; e2; loop())

in loop ();
unlock m;

• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with
Some y -> y

| None -> wait’ cv;
loop(atomic(fun()-> e2; f()))

in loop(atomic f)

Condition Variables

24 March 2005 Dan Grossman 42

• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with
Some y -> y

| None -> wait’ cv;
loop(atomic(fun()-> e2; f()))

in loop(atomic(fun()-> f()))

• Unsynchronized wait’ is a race:
we could miss the signal (notify)

• Solution: split wait’ into
– “start listening” (called in f(), returns a “channel”)
– “wait on channel” (yields unless/until the signal)

Porting Planet

24 March 2005 Dan Grossman 43

• Found bugs
– Reader-writer locks unsound due to typo
– Clock library deadlocks if callback registers

another callback
• Most lock uses trivial to change to atomic
• Condition variables uses need only local restructuring
• Handful of “native calls in atomic”

– 2 pure (so hoist before atomic)
– 1 a clean-up action (so move after atomic)
– 3 we wrote new C versions that buffered

• Note: could have left some locks in but didn’t
• Synchronization performance all in the noise

Overview

24 March 2005 Dan Grossman 44

• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only

A multiprocessor approach

24 March 2005 Dan Grossman 45

• Give up on zero-cost reads
• Give up on safe, unsynchronized accesses

– All shared-memory access must be within atomic
(conceptually; compiler can insert them)

• But: Try to minimize inter-thread communication

Strategy: Use locks to implement atomic
• Each shared object guarded by a lock

– Key: many objects can share a lock
• Logging and rollback to prevent deadlock

Example redux

24 March 2005 Dan Grossman 46

• Atomic code acquires lock(s)
for x and y (1 or 2 locks)

• Release locks on rollback or
completion

• Avoid deadlock automatically.
Possibilities:
– Rollback on lock-unavailable
– Scheduler detects deadlock,

initiates rollback

• Only 1 problem…

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

What locks what?

24 March 2005 Dan Grossman 47

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism

What locks what?

24 March 2005 Dan Grossman 48

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
– Programmers can’t do it well either, though we

make them try

What locks what?

24 March 2005 Dan Grossman 49

There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

When stuck in computer science, use 1 of the following:
a. Divide-and-conquer
b. Locality
c. Level of indirection
d. Encode computation as data
e. An abstract data-type

Locality

24 March 2005 Dan Grossman 50

Hunch: Objects accessed in the same atomic block will
likely be accessed in the same atomic block again

• So while holding their locks, change the object-to-lock
mapping to share locks
– Conversely, detect false contention and break

sharing

• If hunch is right, future atomic block acquires fewer
locks
– Less inter-thread communication
– And many papers on heuristics and policies ☺

Cheap Profiling

24 March 2005 Dan Grossman 51

Can cheaply monitor the lock assignment
• Per shared object:

“my current lock”
• Per lock (i.e., objects ever used for locking):

“number of objects I lock”:
optional: “how much recent contention on me?”

• Also: atomic log of objects accessed

Revisit STMs

24 March 2005 Dan Grossman 52

• STMs or lock-based logging-rollback?
– It’s time to try out all the basics
– What would hybrids look like?
– Analogy: 1960s garbage-collectors

• STM advantage: more optimistic, …

• Locks advantage: spatial locality; less wasted
computation, …

Summary

24 March 2005 Dan Grossman 53

• Atomic is a big win for reliable concurrency
• Key is implementation techniques and properties

– Disabling interrupts
– Uniprocessor logging-rollback
– STMs
– Multiprocessor logging-rollback
– Hardware support?

• Even when it exists, we’ll want pure software
approaches

• Too early even to know what we want

Acknowledgments

24 March 2005 Dan Grossman 54

• Joint work with PhD student Michael Ringenburg
– Thanks to Manuel Fähndrich and Shaz Qadeer

(MSR) for motivating us

• For updates and other projects:
www.cs.washington.edu/research/progsys/wasp/

24 March 2005 Dan Grossman 55

[end of presentation; auxiliary slides follow]

Condition Variables

24 March 2005 Dan Grossman 56

• This really works
type 'a attempt = Go of 'a

| Wait of channel
let f() = if e1

then Go e3
else Wait (listen cv)

let rec loop x =
match x with
Go y -> y

| Wait ch ->
wait’ ch; loop(atomic(fun()->e2;f()))

in loop(atomic f)

• Note: These condition variables are implemented in
AtomCaml on top of atomic
– (in 20 lines, including broadcast)

Condition variables

24 March 2005 Dan Grossman 57

type channel = bool ref
type condvar = channel list ref
let create () = ref []
let signal cv =

atomic(fun()->
match !cv with

[] -> ()
| hd::tl -> (cv := tl; hd := false))

let listen cv =
atomic(fun()->
let r = ref true in
cv := r :: !cv;
r)

let wait ch =
atomic(fun()->
if !ch then yield_r ch else ())

	Atomicity for Today's Programming Languages
	Atomic
	Overview
	Locks in high-level languages
	Common bugs
	Detecting concurrency errors
	Detecting concurrency errors
	Enforcing Atomicity
	Overview
	Atomic
	Target
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	6.5 ways atomic is better
	Overview
	A classic idea
	Rapid new progress
	Rapid new progress
	Claim
	Overview
	Interleaved execution
	Implementing atomic
	Logging example
	Logging efficiency
	Duplicating code
	Representing closures/objects
	Representing closures/objects
	Representing closures/objects
	Representing closures/objects
	Qualitative evaluation
	Handling I/O
	General native mechanism
	Overview
	Prototype
	Critical sections
	Condition Variables
	Condition Variables
	Condition Variables
	Porting Planet
	Overview
	A multiprocessor approach
	Example redux
	What locks what?
	What locks what?
	What locks what?
	Locality
	Cheap Profiling
	Revisit STMs
	Summary
	Acknowledgments
	
	Condition Variables
	Condition variables

