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An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp; 

}}
semantics: 
lock acquire/release

semantics: 
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or 
unfair scheduling (e.g., disabling interrupts)
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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Java a reasonable proxy for state-of-the-art

synchronized e { s }

Related features:
• Reentrant locks (no self-deadlock)
• Syntactic sugar for acquiring this for method call
• Condition variables (release lock while waiting)
• …
Java 1.5 features:
• Semaphores
• Atomic variables (compare-and-swap, etc.)
• Non-lexical locking
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• Races
– Unsynchronized access to shared data
– Higher-level races: multiple objects inconsistent

• Deadlocks (cycle of threads waiting on locks)
Example [JDK1.4, version 1.70, Flanagan/Qadeer PLDI2003]

synchronized append(StringBuffer sb) { 
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(…);

sb.getChars(0,len,this.value,this.count);
…

}
// length and getChars also synchronized
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Dynamic approaches
• Lock-sets: Warn if:

– An object’s accesses come from > 1 thread
– Common locks held on accesses = empty-set

• Happens-before: Warn if an object’s accesses are 
reorderable without
– Changing a thread’s execution
– Changing memory-barrier order

neither sound nor complete
(happens-before more complete)

[Savage97, Cheng98, von Praun01, Choi02]
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Static approaches: lock types
• Type system ensures:

For each shared data object, there exists a lock that 
a thread must hold to access the object

• Polymorphism essential 
– fields holding locks, arguments as locks, …

• Lots of add-ons essential 
– read-only, thread-local, unique-pointers, …

• Deadlock avoiding partial-order possible
incomplete, sound only for single objects

[Flanagan,Abadi,Freund,Qadeer99-02, Boyapati01-02,Grossman03]
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• Lock-based code often enforces atomicity (or tries to)
• Building on lock types, can use Lipton’s theory of 

movers to detect [non]atomicity in locking code
• atomic becomes a checked type annotation
• Detects StringBuffer race (but not deadlock)

• Support for an inherently difficult task
– the programming model remains tough

[Flanagan,Qadeer,Freund03-05]
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {

int tmp = balance;
tmp += x;
balance = tmp; 

}}
semantics: 
lock acquire/release

semantics: 
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or 
unfair scheduling (e.g., disabling interrupts)
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Applications that use threads to:
• mask I/O latency 
• provide GUI responsiveness 
• handle multiple requests
• structure code with multiple control stacks
• … 

Not: 
• high-performance scientific computing 
• backbone routers
• …
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1. Atomic makes deadlock less common

• Deadlock with parallel 
“untransfer”

• Trivial deadlock if locks 
not re-entrant

• 1 lock at a time ⇒ race 
with “total funds available”

transfer(Acct that, 
int x){

synchronized(this){
synchronized(that){
this.withdraw(x);
that.deposit(x);

}}}
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2. Atomic allows modular code evolution
– Race avoidance: global object→lock mapping
– Deadlock avoidance: global lock-partial-order

• Want to write foo to be 
race and deadlock free
– What locks should I 

acquire? (Are y and z 
immutable?)

– In what order?

// x, y, and z are
// globals
void foo() {
synchronized(???){
x.f1 = y.f2 + z.f3;

}}
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3. Atomic localizes errors
(Bad code messes up only the thread executing it)

void bad1(){
x.balance = -1000;

}

void bad2(){
synchronized(lk) {
while(true) ;

}
}

• Unsynchronized actions by 
other threads are invisible 
to atomic

• Atomic blocks that are too 
long may get starved, but 
won’t starve others

– Can give longer time 
slices
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4. Atomic makes abstractions thread-safe without 
committing to serialization

class Set { // synchronization unknown
void insert(int x) {…}
bool member(int x) {…}
int size  ()      {…}

}

To wrap this with synchronization: 
Grab the same lock before any call.  But:

– Unnecessary: no operations run in parallel 
(even if member and size could)

– Insufficient: implementation may have races



6.5 ways atomic is better
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5. Atomic is usually what programmers want 
[Flanagan, Qadeer, Freund]

• Many Java methods marked synchronized are 
actually atomic

• Of those that aren’t, many races are application-
level bugs

• synchronized is an implementation detail
– does not belong in interfaces (atomic does)!

interface I { /* thread-safe? */ int m(); }
class A { synchronized int m() {

<<call code with races>>
}}

class B { int m() { return 3; }}
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6. Atomic can efficiently implement locks
class SpinLock {
bool b = false;
void acquire() { 
while(true) {
while(b) /*spin*/;
atomic { 
if(b) continue;
b = true;
return; }

}
}
void release() { 
b = false; 
}

}

• Cute O/S homework 
problem

• In practice, 
implement locks like 
you always have?

• Atomic and locks 
peacefully co-exist
– Use both if you 

want



6.5 ways atomic is better
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6.5  Concurrent programs have the granularity problem:

• Too little synchronization: 
non-determinism, races, bugs

• Too much synchronization: 
poor performance, sequentialization

Example: Should a chaining hashtable have one lock, 
one lock per bucket, or one lock per entry?

atomic doesn’t solve the problem, but makes it easier 
to mix coarse-grained and fine-grained operations
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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• Transactions in databases and distributed systems
– Different trade-offs and flexibilities
– Limited (not a general-purpose language)

• Hoare-style monitors and conditional critical regions

• Restartable atomic sequences to implement locks
– Implements locks w/o hardware support [Bershad]

• Atomicity for individual persistent objects [ARGUS]

• Rollback for various recoverability needs

• Disable interrupts
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• atomic for Java 
– Uses Software Transactional Memory (STM) 

[Herlihy, Israeli, Shavit] 
– shadow-memory, version #s, commit-phase, …

• Composable atomic for Haskell
– Explicit retry: abort/retry after world changes
– Sequential composition: “do s1 then s2”
– Alternate composition: “do s1, but if aborts, do s2”
– Leave transactions “open” for composition 

(atomic “closes” them)

[Harris, Fraser, Herlihy, Marlow, Peyton-Jones]
OOPSLA03, PODC04, PPoPP05
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Closely related notions:

• Hardware for transactions
– Instead of cache coherence, locking primitives, …
– Programming: explicit forks and parallel loops
– Long transactions may lock the bus

[Hammond et al. ASPLOS04]

• Transactional monitors for Java
– Most but not all of atomic’s advantages
– Encouraging performance results

[Welc et al. ECOOP04]

• Improve lock performance via transactions 
[Rajwar, Goodman ASPLOS02]
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We can realize suitable implementations of atomic 
on today's hardware using a purely 

software approach to logging-and-rollback

• Alternate approach to STMs; potentially:
– better guarantees
– faster common case

• No need to wait for new hardware
– A solution for today
– A solution for backward-compatibility
– Not yet clear what hardware should provide
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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The “uniprocessor” assumption:
Threads communicating via shared memory don't 

execute in “true parallel”

Actually more general than uniprocessor: threads on 
different processors can pass messages

An important special case:
• Many language implementations make this 

assumption
• Many concurrent apps don’t need a multiprocessor 

(e.g., a document editor)
• If uniprocessors are dead, where’s the funeral?



Implementing atomic

24 March 2005 Dan Grossman 26

Key pieces:

• Execution of an atomic block logs writes

• If scheduler pre-empts a thread in an atomic block, 
rollback the thread 

• Duplicate code so non-atomic code is not slowed 
down by logging/rollback 

• In an atomic block, buffer output and log input
– Necessary for rollback but may be inconvenient
– A general native-code API



Logging example
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• Executing atomic block 
in h builds a LIFO log of 
old values:

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}

y:0 z:? x:0 y:2

Rollback on pre-emption:
• Pop log, doing assignments
• Set program counter and 

stack to beginning of atomic
On exit from atomic: drop log



Logging efficiency
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y:0 z:? x:0 y:2

Keeping the log small:
• Don’t log reads (key uniprocessor optimization)
• Don’t log memory allocated after atomic was entered 

(in particular, local variables like z)
• No need to log an address after the first time

– To keep logging fast, switch from an array to a 
hashtable only after “many” (50) log entries

– Tell programmers non-local writes cost more



Duplicating code
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Duplicate code so callees know
to log or not: 
• For each function f, compile 
f_atomic and f_normal

• Atomic blocks and atomic 
functions call atomic functions

• Function pointers  (e.g., 
vtables) compile to pair of 
code pointers

Cute detail: compiler erases any 
atomic block in f_atomic

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}



Representing closures/objects
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Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCaml:

header code ptr free variables…

add 3, push, …
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Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml prototype:
bigger closures (and related GC changes)

header code ptr1 free variables…

add 3, push, …

code ptr2

add 3, push, …



Representing closures/objects
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Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative:
(slower calls in atomic)

header code ptr1 free variables…

add 3, push, …code ptr2



Representing closures/objects
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Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OO already pays the overhead atomic needs
(interfaces, multiple inheritance, … no problem)

header class ptr fields…

… code ptrs…



Qualitative evaluation
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• Non-atomic code executes unchanged
• Writes in atomic block are logged (2 extra writes)
• Worst case code bloat of 2x

• Thread scheduler and code generator must conspire

• Still have to deal with I/O
– Atomic blocks probably shouldn’t do much



Handling I/O
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• Buffering sends (output) is easy and necessary
• Logging receives (input) is easy and necessary

– And may as well rollback if the thread blocks
• But may miss subtle non-determinism:
void f() {
write_file_foo(); // flushed?
read_file_foo();

}
void g() {
atomic {f();} // read won’t see write
f();          // read may see write

}

• Alternative: receive-after-send-in-atomic throws exception



General native mechanism
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• Previous approaches: disallow native calls in atomic
– raise an exception
– obvious role for a static analysis or effect system
– atomic no longer meaning preserving!

• We let the C library decide:
– Provide two functions (in-atomic, not-in-atomic)
– in-atomic can call not-in-atomic, raise-exception, 

or do something else
– in-atomic can register commit-actions and 

rollback-actions (sufficient for buffering)
– problem: if commit-action has an error “too late” 
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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• AtomCaml: modified OCaml bytecode compiler
• Advantages of mostly functional language

– Fewer writes (don’t log object initialization)
– To the front-end, atomic is just a function

atomic : (unit -> ’a) -> ’a

• Compiler bootstraps (single-threaded)
• Using atomic to implement locks, CML, …
• Planet active network [Hicks et al, INFOCOM99, ICFP98]

“ported” from locks to atomic



Critical sections
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• Most code looks like this: 
try
lock m;
let result = e in
unlock m;
result

with ex -> (unlock m; raise ex)

• And often this is easier and equivalent:
atomic(fun()-> e)

• But not if e:
– releases (and reacquires) m
– calls native code
– does something and “waits for response”



Condition Variables
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• Idiom releasing/reacquiring a lock: Condition variable
lock m;
let rec loop () =
if e1 then e3 
else (wait cv m; e2; loop()) 

in loop ();
unlock m;



Condition Variables
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• Idiom releasing/reacquiring a lock: Condition variable
lock m;
let rec loop () =
if e1 then e3 
else (wait cv m; e2; loop()) 

in loop ();
unlock m;

• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with 
Some y -> y

| None -> wait’ cv; 
loop(atomic(fun()-> e2; f()))

in loop(atomic f)



Condition Variables
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• This almost works
let f() = if e1 then Some e3 else None
let rec loop x =
match x with 
Some y -> y

| None -> wait’ cv; 
loop(atomic(fun()-> e2; f()))

in loop(atomic(fun()-> f()))

• Unsynchronized wait’ is a race: 
we could miss the signal (notify) 

• Solution: split wait’ into 
– “start listening” (called in f(), returns a “channel”) 
– “wait on channel” (yields unless/until the signal)



Porting Planet
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• Found bugs
– Reader-writer locks unsound due to typo
– Clock library deadlocks if callback registers 

another callback
• Most lock uses trivial to change to atomic
• Condition variables uses need only local restructuring
• Handful of “native calls in atomic”

– 2 pure (so hoist before atomic)
– 1 a clean-up action (so move after atomic)
– 3 we wrote new C versions that buffered

• Note: could have left some locks in but didn’t
• Synchronization performance all in the noise
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• Language and language-tool support for locks

• The case for atomic

• Other approaches to atomic

• Logging-and-rollback for a uniprocessor

– AtomCaml implementation

– Programming experience

• Logging-and-rollback for a multiprocessor

– High-level design only
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• Give up on zero-cost reads
• Give up on safe, unsynchronized accesses

– All shared-memory access must be within atomic
(conceptually; compiler can insert them)

• But: Try to minimize inter-thread communication

Strategy: Use locks to implement atomic
• Each shared object guarded by a lock

– Key: many objects can share a lock
• Logging and rollback to prevent deadlock



Example redux
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• Atomic code acquires lock(s) 
for x and y (1 or 2 locks)

• Release locks on rollback or 
completion

• Avoid deadlock automatically. 
Possibilities:
– Rollback on lock-unavailable
– Scheduler detects deadlock, 

initiates rollback

• Only 1 problem…

int x=0, y=0;
void f() {
int z = y+1;
x = z;

}
void g() {
y = x+1;

}
void h() {
atomic {
y = 2;
f();
g();

}
}



What locks what?
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

– More locks = more communication
– Fewer locks = less parallelism
– Programmers can’t do it well either, though we 

make them try



What locks what?
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There is little chance any compiler in my lifetime will
infer a decent object-to-lock mapping

When stuck in computer science, use 1 of the following:
a. Divide-and-conquer
b. Locality
c. Level of indirection
d. Encode computation as data
e. An abstract data-type



Locality
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Hunch: Objects accessed in the same atomic block will 
likely be accessed in the same atomic block again

• So while holding their locks, change the object-to-lock 
mapping to share locks
– Conversely, detect false contention and break 

sharing

• If hunch is right, future atomic block acquires fewer 
locks
– Less inter-thread communication
– And many papers on heuristics and policies ☺



Cheap Profiling
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Can cheaply monitor the lock assignment
• Per shared object: 

“my current lock”
• Per lock (i.e., objects ever used for locking):

“number of objects I lock”: 
optional: “how much recent contention on me?”

• Also: atomic log of objects accessed



Revisit STMs

24 March 2005 Dan Grossman 52

• STMs or lock-based logging-rollback?
– It’s time to try out all the basics
– What would hybrids look like?
– Analogy: 1960s garbage-collectors

• STM advantage: more optimistic, …

• Locks advantage: spatial locality; less wasted 
computation, …



Summary
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• Atomic is a big win for reliable concurrency
• Key is implementation techniques and properties

– Disabling interrupts
– Uniprocessor logging-rollback
– STMs
– Multiprocessor logging-rollback
– Hardware support?

• Even when it exists, we’ll want pure software 
approaches

• Too early even to know what we want



Acknowledgments

24 March 2005 Dan Grossman 54

• Joint work with PhD student Michael Ringenburg
– Thanks to Manuel Fähndrich and Shaz Qadeer

(MSR) for motivating us

• For updates and other projects:
www.cs.washington.edu/research/progsys/wasp/



24 March 2005 Dan Grossman 55

[end of presentation; auxiliary slides follow]
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• This really works
type 'a attempt = Go  of 'a

| Wait of channel
let f() = if   e1

then Go e3 
else Wait (listen cv)

let rec loop x =
match x with 
Go   y -> y

| Wait ch -> 
wait’ ch; loop(atomic(fun()->e2;f()))

in loop(atomic f)

• Note: These condition variables are implemented in 
AtomCaml on top of atomic 
– (in 20 lines, including broadcast)



Condition variables
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type channel = bool ref
type condvar = channel list ref
let create () = ref []
let signal cv =

atomic(fun()->
match !cv with

[]     -> ()
| hd::tl -> (cv := tl; hd := false))

let listen cv =
atomic(fun()->
let r = ref true in
cv := r :: !cv;
r)

let wait ch =
atomic(fun()->
if !ch then yield_r ch else ())
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