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Some Meta-Comments

• This is a class lecture 
(not a conference talk or colloquium)

• Ask questions, especially when I assume you 
have K&R memorized

• Cyclone is really used, but this is a chance to:
– focus on some of the advanced features
– take advantage of a friendly audience
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Where to Get Information

• www.cs.cornell.edu/projects/cyclone (with user’s guide)
• www.cs.cornell.edu/home/danieljg

• Cyclone: A Safe Dialect of C [USENIX 02]
• Region-Based Memory Management in Cyclone [PLDI 

02], proof in TR
• Existential Types for Imperative Languages [ESOP 02]

• The group: Trevor Jim (AT&T), Greg Morrisett, Mike 
Hicks, James Cheney, Yanling Wang

• Related work: bibliographies and rest of your course (so 
pardon omissions)
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Cyclone in One Slide

A safe, convenient, and modern language/compiler
at the C level of abstraction

• Safe: Memory safety, abstract types, no core dumps
• C-level: User-controlled data representation, easy 

interoperability, resource-management control
• Convenient: “looks like C, acts like C”, but may need 

more type annotations
• Modern: discriminated unions, pattern-matching, 

exceptions, polymorphism, existential types, regions, 
…

“New code for legacy or inherently low-level systems”
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I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials
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A Complete Program

#include <stdio.h>
int main(int argc, char?? argv){
char s[] = "%s ";
while(--argc)
printf(s, *++argv);

printf("\n");
return 0;

}
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More Than Curly Braces

#include <stdio.h>
int main(int argc,char??argv){

char s[] = "%s ";
while(--argc)

printf(s, *++argv);
printf("\n");
return 0;

}

• diff to C: 2 characters

• pointer arithmetic

• s stack-allocated

• “\n” allocated as in C

• mandatory return

Bad news: Data representation for argv and arguments 
to printf is not like in C

Good news: Everything exposed to the programmer, 
future versions will be even more C-like
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Basic Design Principles

• Type Safety (!)
• “If it looks like C, it acts like C”

– no hidden state, easier interoperability
• Support as much C as possible

– can’t “reject all programs”
• Add easy-to-use features to capture common idioms

– parametric polymorphism, regions
• No interprocedural analysis
• Well-defined language at the source level

– no automagical compiler that might fail
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I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials
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Cyclone Pointers

• C pointers serve a few common purposes, so 
we distinguish them

• Basics:

pointer to array of t values, plus 
bounds information; or NULL

t?

pointer to one t valuet@

pointer to one t value or NULLt*
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Basic Pointers cont’d

Already interesting:

• Subtyping: t@ < t* < t?
– one has a run-time effect, one doesn’t
– downcasting via run-time checks

• Checked pointer arithmetic on t?
– don’t check until subscript despite ANSI C

• t? are “fat”, hurting C interoperability

• t* and t? may have inserted NULL checks
– why not just use the hardware trap?
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Example

FILE* fopen(const char?, const char?);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warnings and inserts a NULL check
• Encourages a hoisted check
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The Same Old Moral

FILE* fopen(const char?, const char?);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

• “never NULL” is an invariant an analysis may not find

• Memory safety is indispensable
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More Pointer Types

• Constant-size arrays: t*{18}, t@{42}, t x[100]

• Width subtyping: t*{42} < t*{37}

• Brand new: Zero-terminators

• Coming soon: “abstract constants” (i.e. singleton ints) 

• What about lifetime of the object pointed to?
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I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials
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“Change void* to Alpha”

struct Lst {
void* hd;
struct Lst* tl;

};

struct Lst* map(
void* f(void*);
struct Lst*);

struct Lst* append(
struct Lst*,
struct Lst*);

struct Lst<`a> {
`a hd;
struct Lst<`a>* tl;

};

struct Lst<`b>* map(
`b f(`a),
struct Lst<`a> *);

struct Lst<`a>* append(
struct Lst<`a>*,
struct Lst<`a>*);
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Not Much New Here

• struct Lst is a type constructor:
Lst = λα. { α hd;   (Lst α) * tl; }

• The functions are polymorphic:
map : ∀α, β. (α→β, Lst α) → (Lst β)

• Closer to C than ML
– less type inference allows first-class polymorphism 
– data representation restricts `a to thin pointers, int

(why not structs? why not float? why int?)

• Not C++ templates
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Existential Types

• C doesn’t have closures or objects, so users create 
their own “callback” types:

struct T {
int (*f)(void*, int);
void* env;

};

• We need an α (not quite the syntax): 
struct T { ∃ α
int (@f)(α, int);
α env;

};
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Existential Types cont’d

struct T { ∃ α
int (@f)(α,int);
α env;

};

• α is the witness type

• creation requires a 
“consistent witness”

• type is just struct T

• use requires an explicit “unpack” or “open”:

int applyT(struct T pkg, int arg) {
let T{<β> .f=fp, .env=ev} = pkg;
return fp(ev,arg);

}
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Closures and Existential Types

• Consider compiling higher-order functions: 
λx.e : α→β ⇒

∃γ{ λx.e’:(α’* γ)→β’, env:γ }

• That’s why explicit existentials are rare in high-level 
languages

• In Cyclone we can write:
struct Fn<`a,`b> { ∃ `c 

`b (@f)(`a,`c); `c env;
};
But this is not a function pointer
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I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials
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Safe Memory Management

• Accessing recycled memory violates safety (dangling 
pointers)

• Memory leaks crash programs

• In most safe languages, objects conceptually live 
forever

• Implementations use garbage collection

• Cyclone needs more options, without sacrificing 
safety/performance
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The Selling Points

• Sound: programs never follow dangling pointers

• Static: no “has it been deallocated” run-time checks 

• Convenient: few explicit annotations, often allow 
address-of-locals

• Exposed: users control lifetime/placement of objects

• Comprehensive: uniform treatment of stack and heap

• Scalable: all analysis intraprocedural
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Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• All objects in a region are deallocated simultaneously 
(no free on an object)

• Allocation via a region handle

An old idea with recent support in languages (e.g., RC) 
and implementations (e.g., ML Kit)
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Cyclone Regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks: 
{int x; int y; s}

• dynamic regions: lexically scoped lifetime, but 
growable: region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– heap’s handle: heap_region
– stack region’s handle: none
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The implementation is dirt simple because the type 
system statically prevents dangling pointers

void f() {
int* x;
if(1) {
int y=0;
x=&y;

}
*x;

}

int* g(region_t r) {
return rnew(r,3);

}
void f() {
int* x;
region r { x=g(r); }
*x;

}

That’s the Easy Part
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The Big Restriction

• Annotate all pointer types with a region name
(a type variable of region kind)

• int@ρ can point only into the region created 
by the construct that introduces ρ
– heap introduces ρH
– L:… introduces ρL
– region r {s} introduces ρr

r has type region_t<ρr>
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So What?

Perhaps the scope of type variables suffices

void f() {
int*ρL x;
if(1) {
L: int y=0;

x=&y;
}
*x;

}

• type of x makes no sense

• good intuition for now

• but simple scoping will not 
suffice in general
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Where We Are

• Basic region region constructs
• Type system annotates pointers with type 

variables of region kind
• More expressive: region polymorphism
• More expressive: region subtyping
• More convenient: avoid explicit annotations
• Revenge of existential types
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Region Polymorphism

Apply everything we did for type variables to region 
names (only it’s more important!)

void swap(int @ρ1 x, int @ρ2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int@ρ sumptr(region_t<ρ> r, int x, int y){
return rnew(r) (x+y);

}
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Polymorphic Recursion

void fact(int@ρ result, int n) {
L:  int x=1;

if(n > 1) fact<ρL>(&x,n-1);
*result = x*n; 

}

int g = 0;

int main() { 
fact<ρH>(&g,6); 
return g; 

}
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Type Definitions

struct ILst<ρ1,ρ2> { 
int@ρ1 hd;
struct ILst<ρ1,ρ2> *ρ2 tl; 

};

• What if we said ILst <ρ2,ρ1> instead?

• Moral: when you’re well-trained, you can 
follow your nose
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Region Subtyping

If p points to an int in a region with name ρ1, is it ever 
sound to give p type int* ρ2?

• If so, let int*ρ1 < int*ρ2

• Region subtyping is the outlives relationship
void f() { region r1 {… region r2 {…}…}}

• But pointers are still invariant:
int*ρ1*ρ < int*ρ2*ρ only if ρ1 = ρ2

• Still following our nose
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Subtyping cont’d

• Thanks to LIFO, a new region is outlived by all others
• The heap outlives everything

void f (int b, int*ρ1 p1, int*ρ2 p2) {
L:  int*ρL p;

if(b) p = p1; else p=p2;
/* ...do something with p... */ 

}

• Moving beyond LIFO will restrict subtyping, but the 
user will have more options
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Where We Are

• Basic region region constructs
• Type system annotates pointers with type 

variables of region kind
• More expressive: region polymorphism
• More expressive: region subtyping
• More convenient: avoid explicit annotations
• Revenge of existential types
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Who Wants to Write All That?

• Intraprocedural inference
– determine region annotation based on uses
– same for polymorphic instantiation
– based on unification (as usual)
– so forget all those L: things

• Rest is by defaults
– Parameter types get fresh region names (so 

default is region-polymorphic with no equalities)
– Everything else (return values, globals, struct 

fields) gets ρH
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Examples

void fact(int@ result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;

}
void g(int*ρ* pp, int*ρ p) { *pp = p; }

• The callee ends up writing just the equalities the 
caller needs to know; caller writes nothing

• Same rules for parameters to structs and typedefs
• In porting, “one region annotation per 200 lines”
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I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials
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But Are We Sound?

• Because types can mention only in-scope type 
variables, it is hard to create a dangling pointer

• But not impossible: an existential can hide type 
variables

• Without built-in closures/objects, eliminating 
existential types is a real loss

• With built-in closures/objects, you have the same 
problem
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The Problem
struct T { ∃ α
int (@f)(α);
α env;

};

int read(int@ρ x) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans = {<int@ρL>
.f = read<ρL>,         
.env = &x};

return ans; 
}

ret addr

x

…

0
0x…
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And The Dereference

void bad() {
let T{<β> .f=fp, .env=ev} = dangle();
fp(ev);

}

Strategy:
• Make the system “feel like” the scope-rule except 

when using existentials
• Make existentials usable (strengthen struct T)
• Allow dangling pointers, prohibit dereferencing them
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Capabilities and Effects

• Attach a compile-time capability (a set of region 
names) to each program point

• Dereference requires region name in capability

• Region-creation constructs add to the capability, 
existential unpacks do not

• Each function has an effect (a set of region names)
– body checked with effect as capability
– call-site checks effect (after type instantiation) is a 

subset of capability
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Not Much Has Changed Yet…

If we let the default effect be the region names in the 
prototype (and ρH), everything seems fine

void fact(int@ρ result, int n ;{ρ}) {
L: int x = 1;

if(n > 1) fact<ρL>(&x,n-1);
*result = x*n; 

}
int g = 0;
int main(;{}) { 
fact<ρH>(&g,6); 
return g; 

}
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But What About Polymorphism?

struct Lst<α> { 
α hd; 
struct Lst<α>* tl; 

};
struct Lst<β>* map(β f(α ;??), 

struct Lst<α> *ρ l
;??);

• There’s no good answer
• Choosing {} prevents using map for lists of non-heap 

pointers (unless f doesn’t dereference them)
• The Tofte/Talpin solution: effect variables

a type variable of kind “set of region names”
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Effect-Variable Approach

• Let the default effect be:
– the region names in the prototype (and ρH)
– the effect variables in the prototype
– a fresh effect variable

struct Lst<β>* map(
β f(α ; ε1), 
struct Lst<α> *ρ l
; ε1 + ε2 + {ρ});
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It Works

struct Lst<β>* map(
β f(α ; ε1),
struct Lst<α> *ρ l
; ε1 + ε2 + {ρ});

int read(int @ρ x ;{ρ}+ε1) { return *x; }
void g(;{}) {
L: int x=0;

struct Lst<int@ρL>*ρH l = 
new Lst(&x,NULL);

map< α=int@ρL β=int ρ=ρH ε1=ρL ε2={} >
(read<ε1={} ρ=ρL>, l); 

}
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Not Always Convenient

• With all default effects, type-checking will never fail 
because of effects (!)

• Transparent until there’s a function pointer in a struct:

struct Set<α,ε> {
struct Lst<α> elts;
int (@cmp)(α,α; ε)

};
Clients must know why ε is there

• And then there’s the compiler-writer
It was time to do something new
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Look Ma, No Effect Variables

• Introduce a type-level operator regions(τ)
• regions(τ) means the set of regions mentioned in t, 

so it’s an effect
• regions(τ) reduces to a normal form:

– regions(int) = {}
– regions(τ*ρ) = regions(τ) + {ρ}
– regions((τ1,…, τn) → τ =

regions(τ1) + … + regions(τn ) + regions(τ)
– regions(α) = regions(α)
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Simpler Defaults and Type-Checking

• Let the default effect be:
– the region names in the prototype (and ρH)
– regions(α) for all α in the prototype

struct Lst<β>* map(
β f(α ; regions(α) + regions(β)), 
struct Lst<α> *ρ l
; regions(α)+ regions(β) + {ρ});
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map Works

struct Lst<β>* map(
β f(α ; regions(α) + regions(β)), 
struct Lst<α> *ρ l
; regions(α) + regions(β) + {ρ});

int read(int @ρ x ;{ρ}) { return *x; }
void g(;{}) {
L: int x=0;

struct Lst<int@ρL>*ρH l = 
new Lst(&x,NULL);

map<α=int@ρL β=int ρ=ρH>
(read<ρ=ρL>, l); 

}
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Function-Pointers Work

• Conjecture: With all default effects and no 
existentials, type-checking won’t fail due to effects

• And we fixed the struct problem:

struct Set<α> {
struct Lst<α> elts;
int (@cmp)(α,α ; regions(α))

};
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Now Where Were We?

• Existential types allowed dangling pointers, so we 
added effects

• The effect of polymorphic functions wasn’t clear; we 
explored two solutions
– effect variables (previous work)
– regions(τ)

• simpler
• better interaction with structs

• Now back to existential types
– effect variables  (already enough)
– regions(τ)   (need one more addition)
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Effect-Variable Solution
struct T<ε>{ ∃ α
int (@f)(α ;ε);
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T<{ρL}> dangle() {
L: int x = 0;

struct T<{ρL}> ans = {<int@ρL>
.func = read<ρL>,         
.env = &x};

return ans;
}

ret addr

x

…

0
0x…
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Cyclone Solution, Take 1
struct T { ∃ α
int (@f)(α ; regions(α));
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans = {<int@ρL>
.func = read<ρL>,         
.env = &x};

return ans;
}

ret addr

x

…

0
0x…
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Allowed, But Useless!

void bad() {
let T{<β> .f=fp, .env=ev} = dangle();
fp(ev); // need regions(β)

}

• We need some way to “leak” the capability 
needed to call the function, preferably without 
an effect variable

• The addition: a region bound
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Cyclone Solution, Take 2
struct T<ρB> { ∃ α > ρB

int (@f)(α ; regions(α));
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T<ρL> dangle() {
L: int x = 0;

struct T<ρL> ans = {<int@ρL>
.func = read<ρL>,         
.env = &x};

return ans;
}

ret addr

x

…

0
0x…
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Not Always Useless
struct T<ρB> { ∃ α > ρB

int (@f)(α ; regions(α));
α env;

};

struct T<ρ> no_dangle(region_t<ρ> ;{ρ});

void no_bad(region_t<ρ> r ;{ρ}) {
let T{<β> .f=fp, .env=ev} = no_dangle(r);
fp(ev); // have ρ and ρ ⇒ regions(β)

}
“Reduces effect to a single region”
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Effects Summary

• Without existentials (closures,objects), simple region 
annotations sufficed

• With hidden types, we need effects

• With effects and polymorphism, we need abstract 
sets of region names
– effect variables worked but were complicated and 

made function pointers in structs clumsy
– regions(α) and region bounds were our technical 

contributions
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Conclusion

• Making an efficient, safe, convenient C is a lot of 
work

• Combine cutting-edge language theory with careful 
engineering and user-interaction

• Must get the common case right

• Plenty of work left (e.g., error messages)
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We Proved It

• 40 pages of formalization and proof
• Quantified types can introduce region bounds of the 

form ε>ρ
• “Outlives” subtyping with subsumption rule
• Type Safety proof shows

– no dangling-pointer dereference
– all regions are deallocated (“no leaks”)

• Difficulties
– type substitution and regions(α) 
– proving LIFO preserved

Important work, but “write only”?
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Project Ideas

• Write something interesting in Cyclone
– some secure interface
– objects via existential types

• Change implementation to restrict memory usage
– prevent stack overflow
– limit heap size

• Extend formalization
– exceptions
– garbage collection

For implementation, get the current version!
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