
Cyclone, Regions, and
Language-Based Safety

CS598e, Princeton University
27 February 2002

Dan Grossman
Cornell University

27 February 2002 Dan Grossman - COS598e at Princeton 2

Some Meta-Comments

• This is a class lecture
(not a conference talk or colloquium)

• Ask questions, especially when I assume you
have K&R memorized

• Cyclone is really used, but this is a chance to:
– focus on some of the advanced features
– take advantage of a friendly audience

27 February 2002 Dan Grossman - COS598e at Princeton 3

Where to Get Information

• www.cs.cornell.edu/projects/cyclone (with user’s guide)
• www.cs.cornell.edu/home/danieljg

• Cyclone: A Safe Dialect of C [USENIX 02]
• Region-Based Memory Management in Cyclone [PLDI

02], proof in TR
• Existential Types for Imperative Languages [ESOP 02]

• The group: Trevor Jim (AT&T), Greg Morrisett, Mike
Hicks, James Cheney, Yanling Wang

• Related work: bibliographies and rest of your course (so
pardon omissions)

27 February 2002 Dan Grossman - COS598e at Princeton 4

Cyclone in One Slide

A safe, convenient, and modern language/compiler
at the C level of abstraction

• Safe: Memory safety, abstract types, no core dumps
• C-level: User-controlled data representation, easy

interoperability, resource-management control
• Convenient: “looks like C, acts like C”, but may need

more type annotations
• Modern: discriminated unions, pattern-matching,

exceptions, polymorphism, existential types, regions,
…

“New code for legacy or inherently low-level systems”

27 February 2002 Dan Grossman - COS598e at Princeton 5

I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials

27 February 2002 Dan Grossman - COS598e at Princeton 6

A Complete Program

#include <stdio.h>
int main(int argc, char?? argv){
char s[] = "%s ";
while(--argc)
printf(s, *++argv);

printf("\n");
return 0;

}

27 February 2002 Dan Grossman - COS598e at Princeton 7

More Than Curly Braces

#include <stdio.h>
int main(int argc,char??argv){

char s[] = "%s ";
while(--argc)

printf(s, *++argv);
printf("\n");
return 0;

}

• diff to C: 2 characters

• pointer arithmetic

• s stack-allocated

• “\n” allocated as in C

• mandatory return

Bad news: Data representation for argv and arguments
to printf is not like in C

Good news: Everything exposed to the programmer,
future versions will be even more C-like

27 February 2002 Dan Grossman - COS598e at Princeton 8

Basic Design Principles

• Type Safety (!)
• “If it looks like C, it acts like C”

– no hidden state, easier interoperability
• Support as much C as possible

– can’t “reject all programs”
• Add easy-to-use features to capture common idioms

– parametric polymorphism, regions
• No interprocedural analysis
• Well-defined language at the source level

– no automagical compiler that might fail

27 February 2002 Dan Grossman - COS598e at Princeton 9

I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials

27 February 2002 Dan Grossman - COS598e at Princeton 10

Cyclone Pointers

• C pointers serve a few common purposes, so
we distinguish them

• Basics:

pointer to array of t values, plus
bounds information; or NULL

t?

pointer to one t valuet@

pointer to one t value or NULLt*

27 February 2002 Dan Grossman - COS598e at Princeton 11

Basic Pointers cont’d

Already interesting:

• Subtyping: t@ < t* < t?
– one has a run-time effect, one doesn’t
– downcasting via run-time checks

• Checked pointer arithmetic on t?
– don’t check until subscript despite ANSI C

• t? are “fat”, hurting C interoperability

• t* and t? may have inserted NULL checks
– why not just use the hardware trap?

27 February 2002 Dan Grossman - COS598e at Princeton 12

Example

FILE* fopen(const char?, const char?);
int fgetc(FILE @);
int fclose(FILE @);
void g() {
FILE* f = fopen(“foo”);
while(fgetc(f) != EOF) {…}
fclose(f);

}

• Gives warnings and inserts a NULL check
• Encourages a hoisted check

27 February 2002 Dan Grossman - COS598e at Princeton 13

The Same Old Moral

FILE* fopen(const char?, const char?);
int fgetc(FILE @);
int fclose(FILE @);

• Richer types make interface stricter

• Stricter interface make implementation easier/faster

• Exposing checks to user lets them optimize

• Can’t check everything statically (e.g., close-once)

• “never NULL” is an invariant an analysis may not find

• Memory safety is indispensable

27 February 2002 Dan Grossman - COS598e at Princeton 14

More Pointer Types

• Constant-size arrays: t*{18}, t@{42}, t x[100]

• Width subtyping: t*{42} < t*{37}

• Brand new: Zero-terminators

• Coming soon: “abstract constants” (i.e. singleton ints)

• What about lifetime of the object pointed to?

27 February 2002 Dan Grossman - COS598e at Princeton 15

I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials

27 February 2002 Dan Grossman - COS598e at Princeton 16

“Change void* to Alpha”

struct Lst {
void* hd;
struct Lst* tl;

};

struct Lst* map(
void* f(void*);
struct Lst*);

struct Lst* append(
struct Lst*,
struct Lst*);

struct Lst<`a> {
`a hd;
struct Lst<`a>* tl;

};

struct Lst<`b>* map(
`b f(`a),
struct Lst<`a> *);

struct Lst<`a>* append(
struct Lst<`a>*,
struct Lst<`a>*);

27 February 2002 Dan Grossman - COS598e at Princeton 17

Not Much New Here

• struct Lst is a type constructor:
Lst = λα. { α hd; (Lst α) * tl; }

• The functions are polymorphic:
map : ∀α, β. (α→β, Lst α) → (Lst β)

• Closer to C than ML
– less type inference allows first-class polymorphism
– data representation restricts `a to thin pointers, int

(why not structs? why not float? why int?)

• Not C++ templates

27 February 2002 Dan Grossman - COS598e at Princeton 18

Existential Types

• C doesn’t have closures or objects, so users create
their own “callback” types:

struct T {
int (*f)(void*, int);
void* env;

};

• We need an α (not quite the syntax):
struct T { ∃ α
int (@f)(α, int);
α env;

};

27 February 2002 Dan Grossman - COS598e at Princeton 19

Existential Types cont’d

struct T { ∃ α
int (@f)(α,int);
α env;

};

• α is the witness type

• creation requires a
“consistent witness”

• type is just struct T

• use requires an explicit “unpack” or “open”:

int applyT(struct T pkg, int arg) {
let T{<β> .f=fp, .env=ev} = pkg;
return fp(ev,arg);

}

27 February 2002 Dan Grossman - COS598e at Princeton 20

Closures and Existential Types

• Consider compiling higher-order functions:
λx.e : α→β ⇒

∃γ{ λx.e’:(α’* γ)→β’, env:γ }

• That’s why explicit existentials are rare in high-level
languages

• In Cyclone we can write:
struct Fn<`a,`b> { ∃ `c

`b (@f)(`a,`c); `c env;
};
But this is not a function pointer

27 February 2002 Dan Grossman - COS598e at Princeton 21

I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials

27 February 2002 Dan Grossman - COS598e at Princeton 22

Safe Memory Management

• Accessing recycled memory violates safety (dangling
pointers)

• Memory leaks crash programs

• In most safe languages, objects conceptually live
forever

• Implementations use garbage collection

• Cyclone needs more options, without sacrificing
safety/performance

27 February 2002 Dan Grossman - COS598e at Princeton 23

The Selling Points

• Sound: programs never follow dangling pointers

• Static: no “has it been deallocated” run-time checks

• Convenient: few explicit annotations, often allow
address-of-locals

• Exposed: users control lifetime/placement of objects

• Comprehensive: uniform treatment of stack and heap

• Scalable: all analysis intraprocedural

27 February 2002 Dan Grossman - COS598e at Princeton 24

Regions

• a.k.a. zones, arenas, …

• Every object is in exactly one region

• All objects in a region are deallocated simultaneously
(no free on an object)

• Allocation via a region handle

An old idea with recent support in languages (e.g., RC)
and implementations (e.g., ML Kit)

27 February 2002 Dan Grossman - COS598e at Princeton 25

Cyclone Regions

• heap region: one, lives forever, conservatively GC’d
• stack regions: correspond to local-declaration blocks:
{int x; int y; s}

• dynamic regions: lexically scoped lifetime, but
growable: region r {s}

• allocation: rnew(r,3), where r is a handle
• handles are first-class

– caller decides where, callee decides how much
– heap’s handle: heap_region
– stack region’s handle: none

27 February 2002 Dan Grossman - COS598e at Princeton 26

The implementation is dirt simple because the type
system statically prevents dangling pointers

void f() {
int* x;
if(1) {
int y=0;
x=&y;

}
*x;

}

int* g(region_t r) {
return rnew(r,3);

}
void f() {
int* x;
region r { x=g(r); }
*x;

}

That’s the Easy Part

27 February 2002 Dan Grossman - COS598e at Princeton 27

The Big Restriction

• Annotate all pointer types with a region name
(a type variable of region kind)

• int@ρ can point only into the region created
by the construct that introduces ρ
– heap introduces ρH
– L:… introduces ρL
– region r {s} introduces ρr

r has type region_t<ρr>

27 February 2002 Dan Grossman - COS598e at Princeton 28

So What?

Perhaps the scope of type variables suffices

void f() {
int*ρL x;
if(1) {
L: int y=0;

x=&y;
}
*x;

}

• type of x makes no sense

• good intuition for now

• but simple scoping will not
suffice in general

27 February 2002 Dan Grossman - COS598e at Princeton 29

Where We Are

• Basic region region constructs
• Type system annotates pointers with type

variables of region kind
• More expressive: region polymorphism
• More expressive: region subtyping
• More convenient: avoid explicit annotations
• Revenge of existential types

27 February 2002 Dan Grossman - COS598e at Princeton 30

Region Polymorphism

Apply everything we did for type variables to region
names (only it’s more important!)

void swap(int @ρ1 x, int @ρ2 y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int@ρ sumptr(region_t<ρ> r, int x, int y){
return rnew(r) (x+y);

}

27 February 2002 Dan Grossman - COS598e at Princeton 31

Polymorphic Recursion

void fact(int@ρ result, int n) {
L: int x=1;

if(n > 1) fact<ρL>(&x,n-1);
*result = x*n;

}

int g = 0;

int main() {
fact<ρH>(&g,6);
return g;

}

27 February 2002 Dan Grossman - COS598e at Princeton 32

Type Definitions

struct ILst<ρ1,ρ2> {
int@ρ1 hd;
struct ILst<ρ1,ρ2> *ρ2 tl;

};

• What if we said ILst <ρ2,ρ1> instead?

• Moral: when you’re well-trained, you can
follow your nose

27 February 2002 Dan Grossman - COS598e at Princeton 33

Region Subtyping

If p points to an int in a region with name ρ1, is it ever
sound to give p type int* ρ2?

• If so, let int*ρ1 < int*ρ2

• Region subtyping is the outlives relationship
void f() { region r1 {… region r2 {…}…}}

• But pointers are still invariant:
int*ρ1*ρ < int*ρ2*ρ only if ρ1 = ρ2

• Still following our nose

27 February 2002 Dan Grossman - COS598e at Princeton 34

Subtyping cont’d

• Thanks to LIFO, a new region is outlived by all others
• The heap outlives everything

void f (int b, int*ρ1 p1, int*ρ2 p2) {
L: int*ρL p;

if(b) p = p1; else p=p2;
/* ...do something with p... */

}

• Moving beyond LIFO will restrict subtyping, but the
user will have more options

27 February 2002 Dan Grossman - COS598e at Princeton 35

Where We Are

• Basic region region constructs
• Type system annotates pointers with type

variables of region kind
• More expressive: region polymorphism
• More expressive: region subtyping
• More convenient: avoid explicit annotations
• Revenge of existential types

27 February 2002 Dan Grossman - COS598e at Princeton 36

Who Wants to Write All That?

• Intraprocedural inference
– determine region annotation based on uses
– same for polymorphic instantiation
– based on unification (as usual)
– so forget all those L: things

• Rest is by defaults
– Parameter types get fresh region names (so

default is region-polymorphic with no equalities)
– Everything else (return values, globals, struct

fields) gets ρH

27 February 2002 Dan Grossman - COS598e at Princeton 37

Examples

void fact(int@ result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;

}
void g(int*ρ* pp, int*ρ p) { *pp = p; }

• The callee ends up writing just the equalities the
caller needs to know; caller writes nothing

• Same rules for parameters to structs and typedefs
• In porting, “one region annotation per 200 lines”

27 February 2002 Dan Grossman - COS598e at Princeton 38

I Can’t Show You Everything…

• Basic example and design principles
• Some pretty-easy improvements

– Pointer types
– Type variables

• Region-based memory management
– A programmer’s view
– Interaction with existentials

27 February 2002 Dan Grossman - COS598e at Princeton 39

But Are We Sound?

• Because types can mention only in-scope type
variables, it is hard to create a dangling pointer

• But not impossible: an existential can hide type
variables

• Without built-in closures/objects, eliminating
existential types is a real loss

• With built-in closures/objects, you have the same
problem

27 February 2002 Dan Grossman - COS598e at Princeton 40

The Problem
struct T { ∃ α
int (@f)(α);
α env;

};

int read(int@ρ x) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans = {<int@ρL>
.f = read<ρL>,
.env = &x};

return ans;
}

ret addr

x

…

0
0x…

27 February 2002 Dan Grossman - COS598e at Princeton 41

And The Dereference

void bad() {
let T{<β> .f=fp, .env=ev} = dangle();
fp(ev);

}

Strategy:
• Make the system “feel like” the scope-rule except

when using existentials
• Make existentials usable (strengthen struct T)
• Allow dangling pointers, prohibit dereferencing them

27 February 2002 Dan Grossman - COS598e at Princeton 42

Capabilities and Effects

• Attach a compile-time capability (a set of region
names) to each program point

• Dereference requires region name in capability

• Region-creation constructs add to the capability,
existential unpacks do not

• Each function has an effect (a set of region names)
– body checked with effect as capability
– call-site checks effect (after type instantiation) is a

subset of capability

27 February 2002 Dan Grossman - COS598e at Princeton 43

Not Much Has Changed Yet…

If we let the default effect be the region names in the
prototype (and ρH), everything seems fine

void fact(int@ρ result, int n ;{ρ}) {
L: int x = 1;

if(n > 1) fact<ρL>(&x,n-1);
*result = x*n;

}
int g = 0;
int main(;{}) {
fact<ρH>(&g,6);
return g;

}

27 February 2002 Dan Grossman - COS598e at Princeton 44

But What About Polymorphism?

struct Lst<α> {
α hd;
struct Lst<α>* tl;

};
struct Lst<β>* map(β f(α ;??),

struct Lst<α> *ρ l
;??);

• There’s no good answer
• Choosing {} prevents using map for lists of non-heap

pointers (unless f doesn’t dereference them)
• The Tofte/Talpin solution: effect variables

a type variable of kind “set of region names”

27 February 2002 Dan Grossman - COS598e at Princeton 45

Effect-Variable Approach

• Let the default effect be:
– the region names in the prototype (and ρH)
– the effect variables in the prototype
– a fresh effect variable

struct Lst<β>* map(
β f(α ; ε1),
struct Lst<α> *ρ l
; ε1 + ε2 + {ρ});

27 February 2002 Dan Grossman - COS598e at Princeton 46

It Works

struct Lst<β>* map(
β f(α ; ε1),
struct Lst<α> *ρ l
; ε1 + ε2 + {ρ});

int read(int @ρ x ;{ρ}+ε1) { return *x; }
void g(;{}) {
L: int x=0;

struct Lst<int@ρL>*ρH l =
new Lst(&x,NULL);

map< α=int@ρL β=int ρ=ρH ε1=ρL ε2={} >
(read<ε1={} ρ=ρL>, l);

}

27 February 2002 Dan Grossman - COS598e at Princeton 47

Not Always Convenient

• With all default effects, type-checking will never fail
because of effects (!)

• Transparent until there’s a function pointer in a struct:

struct Set<α,ε> {
struct Lst<α> elts;
int (@cmp)(α,α; ε)

};
Clients must know why ε is there

• And then there’s the compiler-writer
It was time to do something new

27 February 2002 Dan Grossman - COS598e at Princeton 48

Look Ma, No Effect Variables

• Introduce a type-level operator regions(τ)
• regions(τ) means the set of regions mentioned in t,

so it’s an effect
• regions(τ) reduces to a normal form:

– regions(int) = {}
– regions(τ*ρ) = regions(τ) + {ρ}
– regions((τ1,…, τn) → τ =

regions(τ1) + … + regions(τn) + regions(τ)
– regions(α) = regions(α)

27 February 2002 Dan Grossman - COS598e at Princeton 49

Simpler Defaults and Type-Checking

• Let the default effect be:
– the region names in the prototype (and ρH)
– regions(α) for all α in the prototype

struct Lst<β>* map(
β f(α ; regions(α) + regions(β)),
struct Lst<α> *ρ l
; regions(α)+ regions(β) + {ρ});

27 February 2002 Dan Grossman - COS598e at Princeton 50

map Works

struct Lst<β>* map(
β f(α ; regions(α) + regions(β)),
struct Lst<α> *ρ l
; regions(α) + regions(β) + {ρ});

int read(int @ρ x ;{ρ}) { return *x; }
void g(;{}) {
L: int x=0;

struct Lst<int@ρL>*ρH l =
new Lst(&x,NULL);

map<α=int@ρL β=int ρ=ρH>
(read<ρ=ρL>, l);

}

27 February 2002 Dan Grossman - COS598e at Princeton 51

Function-Pointers Work

• Conjecture: With all default effects and no
existentials, type-checking won’t fail due to effects

• And we fixed the struct problem:

struct Set<α> {
struct Lst<α> elts;
int (@cmp)(α,α ; regions(α))

};

27 February 2002 Dan Grossman - COS598e at Princeton 52

Now Where Were We?

• Existential types allowed dangling pointers, so we
added effects

• The effect of polymorphic functions wasn’t clear; we
explored two solutions
– effect variables (previous work)
– regions(τ)

• simpler
• better interaction with structs

• Now back to existential types
– effect variables (already enough)
– regions(τ) (need one more addition)

27 February 2002 Dan Grossman - COS598e at Princeton 53

Effect-Variable Solution
struct T<ε>{ ∃ α
int (@f)(α ;ε);
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T<{ρL}> dangle() {
L: int x = 0;

struct T<{ρL}> ans = {<int@ρL>
.func = read<ρL>,
.env = &x};

return ans;
}

ret addr

x

…

0
0x…

27 February 2002 Dan Grossman - COS598e at Princeton 54

Cyclone Solution, Take 1
struct T { ∃ α
int (@f)(α ; regions(α));
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans = {<int@ρL>
.func = read<ρL>,
.env = &x};

return ans;
}

ret addr

x

…

0
0x…

27 February 2002 Dan Grossman - COS598e at Princeton 55

Allowed, But Useless!

void bad() {
let T{<β> .f=fp, .env=ev} = dangle();
fp(ev); // need regions(β)

}

• We need some way to “leak” the capability
needed to call the function, preferably without
an effect variable

• The addition: a region bound

27 February 2002 Dan Grossman - COS598e at Princeton 56

Cyclone Solution, Take 2
struct T<ρB> { ∃ α > ρB

int (@f)(α ; regions(α));
α env;

};

int read(int@ρ x; {ρ}) { return *x; }

struct T<ρL> dangle() {
L: int x = 0;

struct T<ρL> ans = {<int@ρL>
.func = read<ρL>,
.env = &x};

return ans;
}

ret addr

x

…

0
0x…

27 February 2002 Dan Grossman - COS598e at Princeton 57

Not Always Useless
struct T<ρB> { ∃ α > ρB

int (@f)(α ; regions(α));
α env;

};

struct T<ρ> no_dangle(region_t<ρ> ;{ρ});

void no_bad(region_t<ρ> r ;{ρ}) {
let T{<β> .f=fp, .env=ev} = no_dangle(r);
fp(ev); // have ρ and ρ ⇒ regions(β)

}
“Reduces effect to a single region”

27 February 2002 Dan Grossman - COS598e at Princeton 58

Effects Summary

• Without existentials (closures,objects), simple region
annotations sufficed

• With hidden types, we need effects

• With effects and polymorphism, we need abstract
sets of region names
– effect variables worked but were complicated and

made function pointers in structs clumsy
– regions(α) and region bounds were our technical

contributions

27 February 2002 Dan Grossman - COS598e at Princeton 59

Conclusion

• Making an efficient, safe, convenient C is a lot of
work

• Combine cutting-edge language theory with careful
engineering and user-interaction

• Must get the common case right

• Plenty of work left (e.g., error messages)

27 February 2002 Dan Grossman - COS598e at Princeton 60

We Proved It

• 40 pages of formalization and proof
• Quantified types can introduce region bounds of the

form ε>ρ
• “Outlives” subtyping with subsumption rule
• Type Safety proof shows

– no dangling-pointer dereference
– all regions are deallocated (“no leaks”)

• Difficulties
– type substitution and regions(α)
– proving LIFO preserved

Important work, but “write only”?

27 February 2002 Dan Grossman - COS598e at Princeton 61

Project Ideas

• Write something interesting in Cyclone
– some secure interface
– objects via existential types

• Change implementation to restrict memory usage
– prevent stack overflow
– limit heap size

• Extend formalization
– exceptions
– garbage collection

For implementation, get the current version!

	Cyclone, Regions, and Language-Based Safety
	Some Meta-Comments
	Where to Get Information
	Cyclone in One Slide
	I Can’t Show You Everything…
	A Complete Program
	More Than Curly Braces
	Basic Design Principles
	I Can’t Show You Everything…
	Cyclone Pointers
	Basic Pointers cont’d
	Example
	The Same Old Moral
	More Pointer Types
	I Can’t Show You Everything…
	“Change void* to Alpha”
	Not Much New Here
	Existential Types
	Existential Types cont’d
	Closures and Existential Types
	I Can’t Show You Everything…
	Safe Memory Management
	The Selling Points
	Regions
	Cyclone Regions
	That’s the Easy Part
	The Big Restriction
	So What?
	Where We Are
	Region Polymorphism
	Polymorphic Recursion
	Type Definitions
	Region Subtyping
	Subtyping cont’d
	Where We Are
	Who Wants to Write All That?
	Examples
	I Can’t Show You Everything…
	But Are We Sound?
	The Problem
	And The Dereference
	Capabilities and Effects
	Not Much Has Changed Yet…
	But What About Polymorphism?
	Effect-Variable Approach
	It Works
	Not Always Convenient
	Look Ma, No Effect Variables
	Simpler Defaults and Type-Checking
	map Works
	Function-Pointers Work
	Now Where Were We?
	Effect-Variable Solution
	Cyclone Solution, Take 1
	Allowed, But Useless!
	Cyclone Solution, Take 2
	Not Always Useless
	Effects Summary
	Conclusion
	We Proved It
	Project Ideas

