
Lecture 1: Entropy, convexity, and matrix scaling
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 24, 2016

1 Entropy

Since this course is about entropy maximization, it makes sense to start by defining entropy. For
quite a while, it will suffice to work over a finite (and non-empty) probability space Ω. A probability
mass function p : Ω → [0, 1] is any function satisfying

∑
x∈Ω p(x) � 1. One defines the Shannon

entropy of p as the value
H(p) def

� −

∑
x∈Ω

p(x) log p(x) .

(Note that we take 0 log 0 � limu→0 u log u � 0.)

As usual, we will abuse notation in the following way: If X is a random variable with law p, we
will also use H(X) to denote this value, and refer to it as the entropy of X. Here, and in the entire
course, log denotes the natural logarithm. One often interprets H(X) as representing the amount of
“uncertainty” in the value of the random variable X.

The maximum entropy distribution on Ω. Denote by ∆Ω ⊆ �Ω the set of all probability mass
functions on Ω. One can consider the optimization:

maximize {H(p) : p ∈ ∆Ω} . (1.1)

To see that this optimization has a unique solution, observe two facts:

1. The set ∆Ω is a compact, convex set.

2. The function p 7→ H(p) is strictly concave on ∆Ω. This is the rather intuitive property that
entropy increases under averaging: For p , q ∈ ∆Ω and λ ∈ [0, 1],

H
�
λp + (1 − λ)q�

> λH(p) + (1 − λ)H(q) .
Moreover, if p , q, then the inequality is strict.

A proof: The map u 7→ −u log u is strictly concave on [0, 1]; this follows from the fact that
its derivative −(1 + log u) is strictly decreasing on [0, 1]. Now, a sum of concave functions
is concave, so we conclude that H is concave. Moreover, if p , q, then they differ in some
coordinate; strict concavity of the map u 7→ −u log u applied to that coordinate yields strong
concavity of H.

A strictly concave function on a convex set has at most one maximum. Since our set ∆Ω is compact
and H is continuous, H achieves a maximum on ∆Ω, hence our optimization (1.1) has a unique
solution.

Of course, the optimizer is readily apparent: It is given by the uniform distribution µ(x) � 1
|Ω| for

all x ∈ Ω. And we have H(µ) � log |Ω|. To see that µ is indeed the optimizer of (1.1), consider
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any p , µ. There must exist x , y ∈ Ω such that p(x) < p(y). For t > 0, define the function
pt � p + t(1x − 1y).1 Note that pt ∈ ∆Ω for t 6 p(y).
But:

d
dt

H(pt)���t�0
� log

p(y)
p(x) > 0 ,

so p was not a global maximizer.

This phenomenon of “checking for improvement in every allowable direction” is a necessary and
sufficient condition for optimality more generally.

Exercise (1 point) 1.1. Suppose that C ⊆ �n is a closed and convex set and f : C → � is a
continuously differentiable convex function on C. Then x∗ is a global minimizer of f on C if and
only if it holds that for every x ∈ C,

〈∇ f (x∗), x − x∗〉 > 0 .

Use this fact to justify (2.4) below.

1.1 Relative entropy

Given two probability mass functions p , q ∈ ∆Ω, one defines the relative entropy of p with respect to q
(also called the Kullback-Leibler divergence) by

D(p ‖ q) def
�

∑
x∈Ω

p(x) log
p(x)
q(x) .

If there is an x ∈ Ω such that p(x) > q(x) � 0, we set D(p ‖ q) � ∞.

This quantity is often thought of in the following context: q is a prior probability distribution
(representing, say, the assumed state of the world), and p is the posterior distribution (after one has
learned something by interacting with the world). In this case, D(p ‖ q) represents the amount of
information gained. Another operational definition: D(p ‖ q) is the expected number of extra bits
needed to encode a sample from p given a code that was optimized for q.

Hypothesis testing. I have always liked the hypothesis testing interpretation coming from Sanov’s
theorem. Suppose we are given n i.i.d. samples x1 , x2 , . . . , xn ∈ Ω all chosen according to p or all
chosen according to q (we will generally represent the corresponding product measures by pn and
qn , respectively).

Our goal is to design a {0, 1}-valued hypothesis tester T (this is actually a family of tests—one for
every n) such that

1. We always accept the null hypothesis asymptotically: qn (T(x1 , . . . , xn) � 1)→ 1 as n →∞.

2. And we make the false positive probability err(T, n) � pn (T(x1 , . . . , xn) � 1) as small as
possible.

Define α∗(T) � lim infn→∞
− log err(T,n)

n . The idea is that T accepts a pn sample with probability like
e−α

∗(T)n as n →∞ (if we ignore second-order terms in the exponent).

1We use 1z to denote the indicator function that takes value one at z ∈ Ω and 0 elsewhere.

2



Exercise (2 points) 1.2. For every p and q with D(p ‖ q) < ∞, it holds that

sup
T
α∗(T) � D(p ‖ q) .

In other words, the relative entropy captures the optimal one-sided hypothesis testing error for
testing i.i.d. samples from p vs. q.

[Hint: To prove this, one should use the maximum likelihood test that classifies a sample x �

(x1 , . . . , xn) based on whether pn(x) > qn(x).]

1.2 Properties of the relative entropy

First, note that if µ is the uniform distribution on Ω, then for any p ∈ ∆Ω,

D(p ‖ µ) � log |Ω| − H(p) .
Thus in this case, one might think of D(p ‖ µ) as the “entropy deficit” (with respect to the uniform
measure).

In general, D(p ‖ q) is now a strictly convex function of p on ∆Ω. This is verified just as we verified
that the Shannon entropy is strictly concave. In particular, we can use this to conclude that the
relative entropy is always non-negative: D(p ‖ q) > 0 for all p , q ∈ ∆Ω, with equality if and only
if p � q. Consider the optimization: min {D(p ‖ q) : p ∈ ∆Ω}. A strictly convex function takes a
unique minimum value on ∆Ω, and it is achieved when p � q, where D(q ‖ q) � 0. (Again, this can
be verified by moving on the line between p and q when p , q.)

A stronger convexity property is true, though we will not need it until later.

Exercise (1 point) 1.3. Prove that the relative entropy is jointly convex in its arguments: For every
four distributions p , p̂ , q , q̂ ∈ ∆Ω and every λ ∈ [0, 1], it holds that

D
�
λp + (1 − λ)p̂ ‖ λq + (1 − λ)q̂�

6 λD(p ‖ q) + (1 − λ)D(p̂ ‖ q̂) . (1.2)

There are a number of ways to prove this; you should do it using convex analysis, as follows. A basic
fact: If one has a twice differentiable function f : I → � for some interval I ⊆ �, then f is convex
on I if and only if its second derivative is non-negative on I. Generalizing this to n dimensions is a
little more involved because there are many more directions in which one has to test convexity.

Consider a closed convex set C ⊆ �n and f : C → �. If f has continuous second-order partial
derivatives on C, then f is convex on C if and only if its Hessian matrix is positive semi-definite on
the interior of C.

The Hessian Hess( f ) : C → �n×n assigns to every point x ∈ C the matrix given by

Hess( f )(x1 , . . . , xn)i j �
∂2

∂xi∂x j
f (x) .

In symbols, one can write Hess( f )i j �
∂2 f
∂xi∂x j

. It is the matrix of the second-order partial derivatives
of f . Since we have assumed the second-order partial derivatives are continuous, Hess( f ) is a
symmetric matrix, therefore all its eigenvalues are real.

You should prove (1.2) in two steps: First reduce it to proving convexity of a two-variate function
1 : [0, 1]2 → �, and then prove that 1 is convex by computing Hess(1) and showing its eigenvalues
are non-negative.
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Note that the preceding exercise follows intuitively if you solve Exercise 1.2 first: It is clearly easier
to hypothesis test whether the samples (x1 , . . . , xn) come either from p-or-q or from p′-or-q′ then if
each sample could be from either pair (formally, a hypothesis tester for the harder problem yields a
tester for the easier problem).

2 Matrix scaling

Now we come to our first application: The matrix scaling problem. We are given two n × n square
matrices with non-negative entries X, T ∈ �n×n

+ . Our goal is to multiply the rows and columns of
the input matrix X � (xi j) by positive numbers so that the resulting matrix has the same row and
column sums as the target matrix T � (ti j). A particulary important case is when ti j � 1/n for all
i , j ∈ [n], in which case we are asking for a scaling of X that is doubly-stochastic.

Equivalently, we are trying to find non-negative diagonal matrices D1 ,D2 so that D1XD2 and T
have the same row and column sums. Let us call such a matrix a Sinkhorn scaling of X.

Theorem 2.1 (Sinkhorn scaling). If it holds that xi j � 0 ⇐⇒ ti j � 0 for all i , j ∈ [n], then such a
Sinkhorn scaling exists.

We will prove this using entropy maximization or, more precisely, relative entropy minimization.
First, by a global rescaling, we may assume that

∑
i , j ti j �

∑
i , j xi j � 1.

Denote byU ⊆ �n×n the convex set of all matrices satisfying for all i , j ∈ [n] the constraints:

1. (non-negativity ) yi j > 0 and yi j � 0 if xi j � 0

2. (column sums equal)
∑

i yi j �
∑

i ti j

3. (row sums equal)
∑

j yi j �
∑

j ti j .

Note that since yi j � 0 when xi j � 0, such variables do not actually play a role inU .

Condition (2), together with the fact that
∑

i , j ti j � 1, implies that
∑

i , j yi j � 1 for all Y � (yi j) ∈ U .
In particular, we can think about the members ofU as probability distributions on [n] × [n]. This
leads to our optimization problem:

minimize {D(Y ‖ X) : Y ∈ U} . (2.1)

Note that we are minimizing the relative entropy over a closed, convex set of probability measures.
It’s also clearly the case thatU is non-empty: It contains the target matrix T! Thus (2.1) has a unique
optimal solution. What is perhaps more surprising (and we are in store for more such surprises) is
that the optimal solution Y∗ will be precisely of the form D1XD2 for some non-negative diagonal
matrices D1 and D2, yielding a proof of Theorem 2.1.

Remark 2.2. While Theorem 2.1 might seem restrictive, note that given an input matrix X and desired
row and column sums r1 , . . . , rn > 0 and c1 , . . . , cn > 0, we can consider the polytopeU where the
constraints in (ii) and (iii) are replaced by

∑
i yi j � c j and

∑
j yi j � ri , respectively. Our analysis will

show that the optimal solution to (2.1) finds a Sinkhorn scaling of X with the prescribed row and
column sums whenever such a scaling exists.
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Suppose first that r1 , . . . , rn , c1 , . . . , cn > 0 are all strictly positive. Then if X admits a Sinkhorn
scaling Z � D1XD2 with the prescribed row and column sums, it admits one with D1 ,D2 strictly
positive. In that case, we can simply take our target to be T � Z. Observe that our feasible region
U does not depend on the target, only on the row/column sums.

If sum prescribed row/column sums are zero, then the constraints in (ii) and (iii) combined with the
non-negativity constraints will force possibly other yi j values equal to zero, and the same analysis
applies. (The key fact we will need later for strong duality to hold is strict feasibly ofU in the sense
of Slater’s condition, and the presence of identically zero yi j variables does not affect this.)

2.1 The Lagrangian and optimality conditions

The setU defined above is not just convex; it is actually a polyhedron: A finite-dimensional set
of points satisfying a set of linear inequalities. The theory of minimality for convex functions on
polyhedra is very rich. One of the most useful techniques involves relaxing the hard constraints
given byU to obtain an unconstrained optimization problem: This is the method of Lagrangian
multipliers.

We introduce 2n unconstrained dual variables {αi , β j : i , j ∈ [n]} ⊆ � and consider the function

Λ(y; α, β) �
∑

i j

yi j log
yi j

xi j
+

∑
i

αi

∑
j

(ti j − yi j) +
∑

j

β j

∑
i

(ti j − yi j) .

Recalling that Y∗ is the unique optimal solution to (2.1), observe that

D(Y∗ ‖ X) � min
y>0

max
α,β

Λ(y; α, β) ,
since if we choose any y <U , the inner maximum will be∞, and for y ∈ U , we have Λ(y; α, β) �∑

i j yi j log yi j
xi j
.

When strong duality holds, we can actually reverse the max and min to obtain

D(Y∗ ‖ X) � max
α,β

min
y>0

Λ(y; α, β) . (2.2)

Slater’s condition tells us that ifU contains a strictly feasible point, then strong duality holds. In our
setting, this corresponds to a point ofU for which all the inequality constraints yi j > 0 are strict
inequalities, and T provides such a point since whenever yi j is an actual variable (and not merely
the constant 0), we have ti j > 0. Moreover, by our assumption that xi j � 0 �⇒ ti j � 0 �⇒ yi j � 0,
we see that for the dual optimization (2.2) is bounded below, implying that a primal-dual optimal
solution (Y∗ , α∗ , β∗) exists.
For concreteness, at the end of this section, we state Slater’s condition and strong duality in general
terms.

Continuing, strong duality tells us that here exist values for the dual variables α∗ and β∗ such that

D(Y∗ ‖ X) � min
y>0

Λ(y; α∗ , β∗) . (2.3)

Let us assume, for the moment, that y∗i j > 0 whenever ti j > 0. Later, we will show that this
assumption is valid. In this case, the positive orthant �n×n

+ contains a neighborhood of Y∗, and
therefore by Exercise 1.1, we should have

∇y Λ(Y∗; α∗ , β∗) � 0 . (2.4)
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Computing the derivative, this implies that for every i , j ∈ [n] with ti j > 0, we have

1 + log y∗i j − α
∗

i − β
∗

j − log xi j � 0 .

Rearranging yields
y∗i j � xi j e

α∗i+β
∗

j−1
.

Thus we have obtained our goal: Y∗ has the same row and column sums as T, and it is also obtained
from X by multiplying the rows and columns by non-negative weights!

We are left to show that our assumption y∗i j > 0 (whenever ti j > 0) is true. This is a consequence of
a slightly more general phenomenon.

Lemma 2.3 (Franklin-Lorenz). Consider A ∈ �m×n and b ∈ �m , and assume that At � b for some
t ∈ �n with t > 0 (pointwise). If x ∈ �n satisfies x > 0 and

∑n
i�1 xi � 1, then the optimization

minimize



n∑
i�1

yi log
yi

xi
: Ay � b , y > 0,

n∑
i�1

yi � 1



has a unique minimizer y∗ with y∗ > 0.

Proof. As we have already seen, the existence of a unique optimizer follows from strict convexity,
continuity of the objective function, and the fact that the domain is compact and convex. The
interesting content of the lemma is that y∗ > 0 pointwise.

Suppose this is not the case and let I � {i : y∗i � 0}. Consider for λ ∈ [0, 1], the feasible point
yλ � (1 − λ)y∗ + λt ,

and let us calculate

d
dλ

D(yλ ‖ x) �
n∑

i�1

(
1 + log

(1 − λ)y∗i + λti

xi

)
(ti − y∗i ) .

For i < I, the corresponding term is bounded as λ → 0, but for i ∈ I, each term goes to −∞.
Therefore every neighborhood of y∗ contains a point with lower objective value, contradicting our
assumption that y∗ is minimal. �

Remark 2.4. One might wonder whether the condition ti j � 0 �⇒ xi j � 0 is really needed in
Theorem 2.1. We used it only for the purpose of establishing strong duality via Slater’s condition.
But a simple example shows where we can go wrong without it:

T �

(
0 1
1 0

)
X �

(
1 1
1 0

)
It is manifestly impossible to find a doubly-stochastic Sinkhorn scaling of X.

The principle of maximum entropy. This is our first experience with the “principle of maximum
entropy.” Roughly, this principle states that if we are given a set of constraints on a probability
distribution, then the “best” (simplest?) distribution that fits the data will be the one of maximum
entropy. The idea here is to avoid overfitting: To obtain a distribution that contains no artifacts
beyond those implied by the constraints. A more refined version might say that we minimize the
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relative entropy to a “background” measure so as to obtain a solution that is as simple as possible
with respect to that measure (recall how we minimize D(Y ‖ X) where X is our target).

And indeed, this is what happened: Our optimal solution was a simple perturbation of X (obtained
by multiplying the rows and columns by positive weights). A more fleshed out version of this
principle might state that the simplicity of our solution is related to the simplicity of the constraints;
since the constraints involve only rows or columns, so did the relationship between Y∗ and X. Still,
the efficacy of this method remains a mystery to some extent, and it would be good to have a more
principled explanation.

2.2 Slater’s condition and strong duality

Theorem 2.5. Suppose that for i � 0, 1, 2, . . . ,m, the function fi : Di → � is convex on its domain
Di ⊆ �

n . LetD �
⋂m

i�0Di . Consider A ∈ �n×k and b ∈ �k , and the convex optimization problem:

minimize f0(x)
subject to fi(x) 6 0 i � 1, 2, . . . ,m

Ax � b

x ∈ D

Slater’s condition: There exists a point x̂ ∈ relint (D) such that fi(x̂) < 0 for i � 1, 2, . . . ,m, and
Ax̂ � b.

If Slater’s condition holds, then the duality gap is zero. Moreover, if the dual value is finite, then it is attained.

Concretely, consider dual variables α ∈ �m
+ and β ∈ �k , and the Lagrangian

Λ(x; α, β) � f0(x) +
m∑

i�1
αi fi(x) + 〈β,Ax − b〉 .

Under Slater’s condition, we have

min
x∈D

max
α>0, β

Λ(x; α, β) � max
α>0, β

min
x∈D

Λ(x; α, β) . (2.5)

Moreover, if (2.5) is finite, then there exists a triple (x∗ , α∗ , β∗) that achieves the optimum, i.e. an optimal
primal-dual solution.

Remark 2.6. The interior of a setD ⊆ �n is the set of points inD that have an open neighborhood
also contained inD. The relative interior discussed above is a slightly more sophisticated concept
defined by

relint(D) � {x ∈ D : ∃ε > 0, B(x , ε) ∩ aff(D) ⊆ D} ,
where B(x , ε) is the ball of radius ε around x in �n and

aff(D) �



k∑
i�1

ci xi : k > 0, xi ∈ D , ci ∈ �,
k∑

i�1
ci � 1




is the affine hull ofD.

The motivation for the relative interior comes from considering, say, a line segment in the plane.
The interior of the segment is empty, while the relative interior consists of the entire segment except
for its endpoints.
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