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Instructor: James R. Lee Last updated: February 15, 2016

1 Quantum states and von Neumann entropy

Recall that Ssym ⊆ �
n×n is the set of real, symmetric n × n matrices. Let spec(A) denote the set of

eigenvalues of A. Recall that Sn
++ ⊆ S

n
+ denote the subsets of positive definite and positive semi-

definite matrices, respectively. We write A � 0 and A � 0 to denote the respective memberships
A ∈ Sn

++ and A ∈ Sn
+ .

A matrix Q ∈ Sn
+ with Tr(Q) � 1 is called a density matrix and it is the basic object of quantum

information theory. Note that if Q were diagonal, it would correspond in the natural way to a
classical probability distribution over n objects. A general density matrix Q represents the quantum
state of a system with n degrees of freedom.

Quantum measurements. Although we will not need this, it may help to think about a quantum
state operationally. A resolution of the identity if a decomposition Id �

∑k
i�1 ρi , where ρ1 , . . . , ρk � 0.

One can perform a “quantum measurement” corresponding to such a resolution, where the
probability of obtaining outcome i is Tr(ρiQ).

1.1 Trace convexity

In order to define the quantum notions of entropy and relative entropy, it helps to understand that
convex functionals on �+ can be lifted to convex functionals on Sn

+ .

For an interval J ⊆ �, define the set Ssym(J) � {A ∈ Ssym : spec(A) ∈ J}. Now any function
f : J → � can be defined on Ssym(J) as follows. If A � PT DP, where D � diag(λ1 , λ2 , . . . , λn) is a
diagonal matrix containing the eigenvalues of A, then

f (A) def
� PT

*...
,

f (λ1)
. . .

f (λn)

+///
-

P .

This allows us to define the von Neumann entropy of a density Q as

S(Q) � −Tr(Q log Q) � −
∑

i

λi log λi ,

where {λi} denote the eigenvalues of Q, and we continue to use the convention that 0 log 0 � 0.
Again, observe that for diagonal matrices, this is just the usual Shannon entropy. In a moment, we
will prove the following.

Lemma 1.1. For an interval J ⊆ �, if the function f : J → � is (strictly) convex and continuous, then the
function A 7→ Tr[ f (A)] is (strictly) convex and continuous on Ssym(J).
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This will imply that the function Q 7→ Tr(Q log Q) is strictly convex on Sn
+ . In particular, it gives

rise to the Bregman divergence

S(A ‖ B) � Tr(A log A) − Tr(B log B) − Tr
((A − B)∇Tr(B log B))

� Tr(A(log A − log B)) − Tr(A − B) .
If Tr(A) � Tr(B) � 1, this yields the quantum relative entropy between A and B:

S(A ‖ B) def
� Tr(A(log A − log B)) .

In particular, by general properties of Bregman divergences, we have S(A ‖ B) > 0 and S(A ‖ B) �
0 �⇒ A � B.

Proof of Lemma 1.1. First of all, since f is continuous, the map A 7→ Tr[ f (A)] is continuous, and we
need only verify that it is midpoint convex (since then general convexity follows by continuity).

Let {u j} be an orthornormal basis of eigenvectors for (A + B)/2. We will use the convexity of f
twice. First:

Tr
[

f
(A + B

2

)]
�

n∑
j�1

f
(〈

u j ,
A + B

2
u j

〉)
6

1
2

n∑
j�1

f
�


u j ,Au j
��

+ f
�


u j , Bu j
��
.

The next calculation holds for any orthonormal basis {u j}. Let {vi} be an orthonormal eigenbasis
for A and write u j �

∑
i〈u j , vi〉vi . Use convexity of f again to write:

f
�〈u j ,Au j〉� � f *

,

n∑
i�1

〈u j , vi〉2 〈vi ,Avi〉+
-

6
n∑

i�1

〈u j , vi〉2 f (〈vi ,Avi〉) ,

where we have used the fact that
∑

i〈u j , vi〉2 � ‖u j‖2 � 1. Now sum both sides over j and use∑
j〈u j , vi〉2 � ‖vi‖2 � 1 to conclude that

n∑
j�1

f
�〈u j ,Au j〉� 6

n∑
i�1

f (〈vi ,Avi〉) � Tr[ f (A)] .

Applying the same reasoning for B completes the proof. One can easily observe from the argument
that strict convexity of f yields strict convexity of Tr[ f (A)] as well. �

2 Quantum state approximation and entropy maximization

We will useU � Id /Tr(Id) to denote the “maximally mixed state.” By minimizing S(P ‖U) over
all density matrices P subject to linear constraints, one can prove the following, in analogy with our
approximation of high-entropy distributions.
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Theorem 2.1. Suppose that Q ∈ Sn
+ satisfies Tr(Q) � 1, and let {F1 , F2 , . . .} ⊆ Sn

sym denote a sequence of
tests. Given any ε > 0, consider the quantum entropy optimization problem:

minimize S(P ‖ U) subject to P � 0, Tr(P) � 1
Tr(FiP) 6 Tr(FiQ) + ε ∀i .

The unique optimal solution satisfies

P∗ �
exp (−∑

i ciFi)
Tr

�
exp (−∑

i ciFi)� ,

where {ci > 0} are non-negative constants satisfying∑
i

ci 6
S(Q ‖U)

ε
.

This can be proved relatively easily using duality theory for convex programs (and, in particular,
Slater’s condition, where the presence of Q and ε > 0 implies that strong duality holds). Already
the key calculation occurs in the case of a single test; let us prove this special case.

Proof. Assume there is a single test F1. We claim that the unique optimal solution to the optimization
problem

minimize S(P ‖U) + Tr(FP) subject to P � 0, Tr(P) � 1

is given by P∗ � e−F/Tr(e−F). If we prove this, then we can set F � cF1 where c � S(P ‖U)/ε.
By minimality, we conclude that

S(P∗ ‖U) + c Tr(F1P∗) 6 S(Q ‖U) + c Tr(F1Q) ,
which implies, since S(P∗ ‖U) > 0, that

Tr(F1P∗) 6 Tr(F1Q) + ε ,
completing the argument.

So let us now verify that P∗ is the minimizer ofΨ(P) :� Tr(P log P) + Tr(FP) over density matrices.
The original objective function above only differs from this one by an additive constant. First,
evaluateΨ(P∗) � − log Tr(e−F).
Then observe that since quantum relative entropy is always non-negative, we have

0 6 S(P ‖ P∗) � Tr(P log P) + Tr(PF) + log Tr(e−F) ,
which is equivalent to

Ψ(P) > − log Tr(e−F) � Ψ(P∗) ,
showing that indeed P∗ is minimal. �
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2.1 Approximation by a low-degree square

Let us now use Theorem 2.1 to approximate a function Q : {0, 1}n
→ S

r
+ by a low-degree square.

Recall that for a function F : {0, 1}n
→ S

r
sym, we denote deg(F(x)) � maxi j deg(F(x)i j).

Theorem 2.2. Suppose that Q : {0, 1}n
→ S

r
+ satisfies �x Tr(Q(x)) � 1, and furthermore we are given

tests F1 , F2 , . . . : {0, 1}n
→ S

r
sym. Then for every ε > 0, there exists a function R : {0, 1}n

→ S
r
+ such that

�x Tr(R(x)2) � 1 and for all i � 1, 2, . . ., we have

�
x

Tr(Fi(x)R(x)2) 6 �
x

Tr(Fi(x)Q(x)) + ε ,

and furthermore

deg(R) 6 O(1)1 +�x Tr(Q(x))S(Q(x) ‖U)
ε

·max
x ,i

‖Fi(x)‖ ·max
i

deg(Fi) . (2.1)

Note that hereR(x)2 refers to thematrix product square. This is the analogof the junta-approximation
theorem we saw for high-entropy distributions. To prove it using Theorem 2.1, one needs to convert
Q and {F1 , F2 , . . .} to block-diagonal matrices as follows:

Q̄ � �
x

Q(x) ⊗ ex eT
x

F̄i �
∑

x

Fi(x) ⊗ ex eT
x

Applying Theorem 2.1 with approximation parameter ε/2 (and then unpacking the block-diagonal
optimizer), one gets an approximator of the form

P∗(x) � exp (−∑
i ciFi(x))

Tr
�
exp (−∑

i ciFi(x))� ,

with
∑

i ci 6 2 S(Q̄ ‖U)
ε , and S(Q̄ ‖U) � �x Tr(Q(x))S(Q(x) ‖U).

Now we approximate P∗(x) by a low-degree square by approximating ex � (ex/2)2 by a truncated
Taylor expansion of ex/2. The degree of truncation is determined by the approximation parameter
ε/2 and the maximum eigenvalue of the exponent, hence the form of the bound (2.1).

3 Hyperbolic cones and factorization scaling

We have examined two positive cones so far: The positive orthant �+ and the PSD cone Sn
+ . One

might ask if there are other natural cones over which we might do entropy optimization.

A prime example is the set of hyperbolic cones. For definitions and properties of these cones, please
refer to the links on the web page. For now, let us simply mention how they relate to the present
setting.

Consider a degree-d homogeneous polynomial p ∈ �[x1 , . . . , xn]. Say that p is hyperbolic in direction
e ∈ �n if the univariate polynomial t 7→ p(x − et) has all real roots for every x ∈ �n . In this case, let
λ1(x) 6 λ2(x) · · · 6 λd(x) denote these roots, and define the set

Λ+(e) � {x ∈ �n : λ1(x) > 0} .
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It turns out that Λ+(e) is a closed convex cone (called a hyperbolic cone).

It carries a natural entropy functional HΛ(x) � −∑n
i�1 λi(x) log λi(x). And this is a concave function

on Λ+(e). [Again, see the links on the web page until formal references are added here.]

Given a coneK ⊆ �n , we recall its dual coneK ∗ � {x ∈ �n : 〈x , y〉 > 0 ∀y ∈ �n}. One can speak in
general of a matrix M : X × Y → �+ factoring throughK as follows:

M(x , y) � 〈ux , vy〉
for some vectors {ux} ⊆ K and {vy} ⊆ K ∗. A natural question to ask is whether such a factorization
can be rescaled to be analytically “nice” whenK is a hyperbolic cone. In the following section, we
describe a rescaling for factorizations through the PSD cone that is a crucial preprocessing step
before applying Theorem 2.2 to prove a lower bound on γ̄sdp for the cut polytope.

It is an interesting open question whether there is analogous rescaling for hyperbolic cones.

Question 3.1 (Hyperbolic cone rescaling). Let K ⊆ �n be a hyperbolic cone of degree d, and
suppose {u1 , . . . , us} ⊆ K and {v1 , . . . , vt} ⊆ K ∗ are such that 〈ui , v j〉 > 0 for all i ∈ [s], j ∈ [t].
Is it the case that there exists a possibly different degree-d hyperbolic cone K̂ ⊆ �n and vectors
{û1 , . . . , ûs} ⊆ K̂ and {v̂1 , . . . , v̂t} ⊆ K̂ ∗ such that 〈ui , v j〉 � 〈ûi , v̂ j〉 for all i ∈ [s], j ∈ [t], and
furthermore

max
i , j

‖ûi‖ · ‖v̂ j‖ 6 poly(n , d) ·max
i , j

〈ui , v j〉 ?

This is already interesting when the defining hyperbolic polynomial p is multi-linear, in which case
one can assume that d 6 n.

3.1 John’s theorem and factorization rescaling
Finite-dimensional operator norms. Let H denote a finite-dimensional Euclidean space over �
equipped with inner product 〈·, ·〉 and norm | · |. For a linear operator A : H → H, we define the
operator, trace, and Frobenius norms by

‖A‖ � max
x,0

|Ax |
x
, ‖A‖∗ � Tr(√ATA), ‖A‖F �

√
Tr(ATA) .

LetM(H)denote the set of self-adjoint linear operators on H. Note that for A ∈ M(H), the preceding
three norms are precisely the `∞, `1, and `2 norms of the eigenvalues of A. For A, B ∈ M(H), we
use A � 0 to denote that A is positive semi-definite and A � B for A−B � 0. We useD(H) ⊆ M(H)
for the set of density operators: Those A ∈ M(H) with A � 0 and Tr(A) � 1.

One should recall that Tr(AT B) is an inner product on the space of linear operators, and we have
the operator analogs of the Hölder inequalities: Tr(AT B) 6 ‖A‖ · ‖B‖∗ and Tr(AT B) 6 ‖A‖F‖B‖F.

Rescaling PSD factorizations. As in the case of non-negative rank, consider finite sets X and Y
and a matrix M : X × Y → �+. For the purposes of proving a lower bound on the psd rank of some
matrix, we would like to have a nice analytic description.

To that end, suppose we have a rank-r psd factorization

M(x , y) � Tr(A(x)B(y))
where A : X → Sr

+ and B : Y → Sr
+. The following result of Briët, Dadush and Pokutta (2013) gives

us a way to “scale” the factorization so that it becomes nicer analytically. (The improved bound
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stated here is from an article of Fawzi, Gouveia, Parrilo, Robinson, and Thomas, and we follow their
proof.)

Lemma 3.2. Every M with rankpsd(M) 6 r admits a factorization M(x , y) � Tr(P(x)Q(y)) where
P : X → Sr

+ and Q : Y → Sr
+ and, moreover,

max{‖P(x)‖ · ‖Q(y)‖ : x ∈ X, y ∈ Y} 6 r‖M‖∞ ,
where ‖M‖∞ � maxx∈X,y∈Y M(x , y).

Proof. Start with a rank-r psd factorization M(x , y) � Tr(A(x)B(y)). Observe that there is a
degree of freedom here, because for any invertible operator J, we get another psd factorization
M(x , y) � Tr

��
JA(x)JT�

·
�(J−1)T B(y)J−1��

.

Let U � {u ∈ �r : ∃x ∈ X A(x) � uuT} and V � {v ∈ �r : ∃y ∈ X B(y) � vvT}. Set ∆ � ‖M‖∞.
We may assume that U and V both span �r (else we can obtain a lower-rank psd factorization).
Both sets are bounded by finiteness of X and Y.

Let C � conv(U) and note that C is centrally symmetric and contains the origin. Now John’s
theorem tells us there exists a linear operator J : �r

→ �r such that

B`2 ⊆ JC ⊆
√

rB`2 , (3.1)

where B`2 denotes the unit ball in the Euclidean norm. Let us now set P(x) � JA(x)JT and
Q(y) � (J−1)T B(y)J−1.

Eigenvalues of P(x):. Let w be an eigenvector of P(x) normalized so the corresponding eigenvalue
is ‖w‖2

2 . Then P(x) � wwT , implying that J−1w ∈ U (here we use that A � 0 �⇒ SAST
� 0 for any

S). Since w � J(J−1w), (3.1) implies that ‖w‖2 6
√

r. We conclude that every eigenvalue of P(x) is
at most r.

Eigenvalues of Q(y):. Let w be an eigenvector of Q(y) normalized so that the corresponding
eigenvalue is ‖w‖2

2 . Then as before, we have Q(y) � wwT and this implies JT w ∈ V . Now, on the
one hand we have

max
z∈ JC

〈z , w〉 > ‖w‖2 (3.2)

since JC ⊇ B`2 .

On the other hand:
max
z∈ JC

〈z , w〉2
� max

z∈C
〈Jz ,w〉2

� max
z∈C

〈z , JT w〉2 . (3.3)

Finally, observe that for any u ∈ U and v ∈ V , we have

〈u , v〉2
� 〈uuT , vvT〉 6 max

x∈X,y∈Y
〈A(x), B(y)〉 6 ∆ .

By convexity, this implies that maxz∈C 〈z , v〉2 6 ∆ for all v ∈ V , bounding the right-hand side of
(3.3) by ∆. Combining this with (3.2) yields ‖w‖2

2 6 ∆. We conclude that all the eigenvalues of Q(y)
are at most ∆. �
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