
Lecture 2: Multiplicative weights
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 23, 2016

1 An iterative algorithm

In the last lecture, we considered thematrix scaling problem: Given non-negativematrices X, T ∈ �n×n
+ ,

our goal was to find non-negative diagonal matrices D1 ,D2 so that D1XD2 had the same row and
column sums as the target matrix T. In other words, we sought to weight the rows and columns
of X by positive numbers in order to achieve this. We used entropy optimization to prove the
following theorem.

Theorem 1.1. Give X � (xi j) and T � (ti j), if it holds that xi j � 0 ⇐⇒ ti j � 0 for all i , j ∈ [n], then
such a weighting exists.

Our previous method showed the existence of such a weighting. Now we will study the structure
of the optimization in order to find a simple algorithm to (approximately) find it. For simplicity, let
us consider the case when ti j � 1/n2 for all i , j ∈ [n]. We may assume (by a global scaling) that∑

i , j xi j � 1.

We will start with the initial solution Y(0) � X. And recall the constraints we would like to hold for
our final matrix Y � (yi j):

1. For all i ∈ [n], ∑n
j�1 yi j �

1
n .

2. For all j ∈ [n], ∑n
i�1 yi j �

1
n .

Of course, if Y(0) already satisfies these constraints, we can pack up and go home, but we are likely
not so fortunate.

A natural approach is to consider a single violated constraint: A row or column with the wrong
sum. We can fix it (by rescaling it to have sum 1/n), and then iterate. The only subtle issue is
whether this actually converges; when fixing one row, for instance, we could mess up all the column
sums we already had correct! We will prove the following.

Let X � (xi j) be a matrix with all positive entries. Define

E(X) �

√√√√√
1
n

n∑
i�1

*.
,
1 −

n∑
j�1

Xi j
+/
-

2

.

This is the mean squared error of the row sums. We will think of X̄ � X/
∑

i , j xi j and T as
distributions on [n] × [n]. (The following bound on the rate of convergence is decent, but certainly
not the best possible.)

Theorem 1.2 (Knopp-Sinkhorn scaling algorithm). Given a matrix X � (xi j) and an accuracy parameter
0 < δ < 1, the algorithm which iteratively normalizes all rows and columns repeatedly yields a matrix X′ all
of whose column sums are one and such that E(X′) 6 δ. The number of iterations required is at most

6
δ2 D(T ‖ X̄) 6 6

δ2 log
(

max(X)
min(X)

)
1

where min(X) and max(X) are the smallest and largest entries in X.

To analyze a measure of progress for such algorithms, let’s think slightly more generally.

1.1 An algorithm in continuous time

We will design an algorithm that runs in continuous time. Let us think about a matrix Y ∈ �n×n as
a function Y : [n] × [n]→ �. For i , j ∈ [n], define the functions {Ri , C j : [n] × [n]→ �} by

Ri(a , b) �



1 a � i

0 otherwise.

C j(a , b) �



1 b � j

0 otherwise.

As matrices, Ri is the {0, 1} matrix with 1’s on the ith row, and C j is the {0, 1} matrix with 1’s on
the jth column.

For each time s > 0, let ψs be one of
�
Ri , C j ,−Ri ,−C j : i , j ∈ [n]	. These correspond to the 4n

fundamental directions in which we can move: Either scaling up or down a row or column. We
define the function

Y(s)(i , j) � exp
(∫ s

0
ψτ(i , j) dτ

)
X(i , j) .

The important point here is that Y(s) is obtained by multiplying the rows and columns of X by
non-negative weights. For instance, when ψs � Ri , we are (infinitesimally) multiplying the ith row
of our current matrix by edτ (scaling it up). When ψs � −C j , we are multiplying the jth column by
e−dτ (scaling it down).

For the sake of analysis, we want our matrices to remain on the probability simplex, so let us also
define the scaled matrices:

Ȳ(s)(i , j) � Y(s)∑
i , j Y(s)(i , j) .

The potential function. We will analyze convergence by showing that as long as we are fixing
violated constraints, there is a potential function measuring our progress. Consider:

Φ(s) � D(T ‖ Ȳ(s)) .
Observe that Φ(0) � D(T ‖ X) < ∞ and Φ(s) > 0 for all s > 0 because, as we saw in the last lecture,
relative entropy is always non-negative.

Lemma 1.3. It holds that
d
ds
Φ(s) �

∑
i , j

ψs(i , j)
(
Ȳ(s)(i , j) − 1

n2

)
.

Before proving this lemma, let’s try to understand its content. Recall that ψs ∈ {Ri ,−Ri , C j ,−C j},
so the right-hand side is precisely the violation of Ȳ(s) on some row or column constraint (whichever
one we have chosen to focus on at time s).

2

For instance, if for some i ∈ [n], we have∑
j

Ȳ(s)(i , j) � 1
n
− ε, ε > 0

so that the ith row sum of Ȳ is too small, then by choosing ψs � Ri , we will increase the ith row
sum, and correspondingly the derivative of the potential function will be −ε.

Proof. Let us calculate

d
ds
Φ(s) � d

ds

∑
i , j

1
n2 log

1/n2

Ȳ(s)(i , j)

� −
1
n2

∑
i , j

d
ds

log Ȳ(s)(i , j)

� −
1
n2

∑
i , j

d
ds

log
Y(s)(i , j)∑
i , j Y(s)(i , j) .

First, we compute
d
ds

log Y(s)(i , j) � ψs(i , j) .
And then:

d
ds

log *.
,

∑
i , j

Y(s)(i , j)+/
-
�

∑
i , j Y(s)(i , j)ψs(i , j)∑

i , j Y(s)(i , j) �

∑
i , j

Ȳ(s)(i , j)ψs(i , j) .

We conclude that

d
ds
Φ(s) � 1

n2

∑
i , j

*.
,

∑
i , j

Ȳ(s)(i , j)ψs(i , j) − ψs(i , j)+/
-

�

∑
i , j

Ȳ(s)(i , j)ψs(i , j) − 1
n2

∑
i , j

ψs(i , j)

�

∑
i , j

ψs(i , j)
(
Ȳ(s)(i , j) − 1

n2

)
. �

Fixing a violated constraint. In the preceding algorithm, we can focus on any constraint at any
time s. A natural thing to do is find a violated constraint, and then improve it until it becomes
satisfied. Let us suppose we have∑

j

Ȳ(s)(i , j) � 1
n
− ε, ε ∈

(
0,

1
n

)
for some i ∈ [n].
In order to see how long we spend fixing this constraint, we need to compute the change in the
violation when ψs � Ri , i.e.

d
ds

∑
k

Ȳ(s)(i , k) �
∑

k

d
ds

Y(s)(i , k)∑
i , j Y(s)(i , j) .

3

We have
d
ds

Y(s)(i , k)∑
i , j Y(s)(i , j) � Ȳ(s)(i , k) −

∑
j Ȳ(s)(i , j)∑

i , j Y(s)(i , j) 6 Ȳ(s)(i , k)
so that

d
ds

∑
k

Ȳ(s)(i , k) 6
∑

k

Ȳ(s)(i , k) .

By a simple application of Grönwall’s inequality, we conclude that at time s′ > s,∑
k

Ȳ(s′)(i , k) 6 e s′−s
∑

k

Ȳ(s)(i , k) .

In particular, we spend time at least

log
(1

1 − εn

)
> εn .

Similarly, if ∑
j

Ȳ(s)(i , j) � 1
n
+ ε, ε ∈

(
0,

1
n

)
,

then the time spent is
log (1 + εn) > εn

2
.

Recall that the potential function is initially decreasing at the rate −ε. And this happens for time
≈ εn. Thus the total decrease in fixing such a constraint is at least cε2n for some constant c > 0.
(One can do the integral carefully and conclude that c > 1/6.) We conclude that we can fix at most

6
D(T ‖ X)
ε2n

ε-violated constraints before they are all satisfied within ε.

If we are scaling to a doubly-stochastic matrix, it is more natural to require the row and column
sums to lie in the interval [1 − δ, 1 + δ], and we can achieve this by setting ε � δ/n so that the
number of iterations is 6n

δ2 D(T ‖ X). This does not immediately yield Theorem 1.2 because we have
globally scaled the matrix at every step to maintain the constraint that

∑
i j Ȳ(s)

i j � 1.

1.2 Analyzing the Knopp-Sinkhorn algorithm

In fact, the algorithm discussed in Theorem 1.2 has slightly nicer properties than ours. It achieves
the rescaling

∑
i j Ȳ(s)

i j � 1 implicitly because after all the row sums are normalized to 1/n, the matrix
automatically satisfies this global scaling constraint. Since the row (and column) updates are to
independent coordinates, the potential function merely adds, and we see that the total potential
change is at least

n
6

n∑
i�1

ε2
i ,

where εi is the violation of the ith row. Thus if we seek to, say, get all the column sums to be exactly
one and have all the row sums r1 , . . . , rn satisfy

√√
1
n

n∑
i�1

(ri − 1)2 6 δ ,

4

then the total number of iterations required is at most

6
D(T ‖ X)

δ2 .

On the other hand, our analysis has the advantage that we didn’t need to use “independence” of
the rows (respectively, the columns). This will be a big advantage in the next lecture when we apply
it to a problem in discrete Fourier analysis. The quadratic dependence on the error parameter is
a hallmark of this type of algorithm; it’s important to recall where it comes from: The potential
change per step is proportional to ε2 where ε is the violation. This is because the potential function
is decreasing by ≈ ε for an amount of time which is also ≈ ε.

1.3 An application to detecting perfect matchings in bipartite graphs

Here is a cute application of the Knopp-Sinkhorn (KS) scaling algorithm (due to [Linial-
Samorodnitsky-Wigderson, 2000]). Let G � (U,V, E) be a bipartite graph with vertex set U ∪V and
edges E ⊆ U ×V . Assume that |U | � |V |. A perfect matching is a subset M ⊆ E with |M | � |U | � |V |
such that every vertex of G touches exactly one edge of M.

Let A be the adjacency matrix of G. Do ≈ n4 log n iterations of the KS scaling algorithm (alternating
between rescaling of rows and columns) such that all the column sums are equal to one. If all the
row sums are in the interval (1 − 1

n , 1 +
1
n), output YES. Otherwise, output NO.

Exercise 1.4 (Not for credit—done in class). Show that this algorithm is always correct, outputting
YES if and only if G has a perfect matching. Note that the n4 bound can be improved at least to n2

by being more careful in the analysis.

2 Convergence rates

[This section (which will not be presented in lecture) is still unwritten; there are two exercises in
Section 2.2.]

Dependencies like those in Theorem 1.2 on the bit complexity of the input matrix X and the
error parameter δ > 0 will become important for some structural results we encounter soon (in
the next lecture, in fact). So it is interesting that, in the setting of matrix scaling, one can do
significantly better using a more sophisticated algorithm. This material comes from the papers
[Linial-Samorodnitsky-Wigderson, 2000] and [Franklin-Lorenz, 1989].

2.1 Franklin-Lorenz convergence analysis

2.2 Bit complexity of X

Exercise 2.1. Consider the matrix

X �
*..
,

1/2 ε ε
1/2 ε ε
0 1 − 2ε 1 − 2ε

+//
-

5

Prove that it will take Ω(log 1
ε) rounds of scaling before A is close to doubly-stochastic. Therefore

the dependence of our bound on the entries of X is necessary in Theorem 1.2.

Expository 2.2. Give an exposition of the algorithm and analysis of LSW. They use the permanent of
a matrix as a potential function measuring progress of the iterative rescaling algorithm. They are
able to remove the dependence on the bit complexity of X by first preprocessing X 7→ X′ so that
per(X′) > n−n .

2.3 Dependence on the error

6

	An iterative algorithm
	An algorithm in continuous time
	Analyzing the Knopp-Sinkhorn algorithm
	An application to detecting perfect matchings in bipartite graphs

	Convergence rates
	Franklin-Lorenz convergence analysis
	Bit complexity of X
	Dependence on the error

