
Lecture 3: Online mirror descent and density approximation
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 23, 2016

1 Mirror descent

Let’s attempt to rephrase what we did last time in a more general setting. The idea is to view our
algorithm as a sort of “regularized” local improvement algorithm. One should consult [Ch. 4,
Bubeck, 2014] and [Ch. 5, Hazan, 2015] (and the references therein) for further information about
online mirror descent and related algorithms coming from the convex optimization and machine
learning. Our treatment in this section follows [Bubeck, 2014].

First, we introduce the notion of a Bregman divergence (of which the relative entropy is one
example).

Bregman divergences. Given a differentiable, strictly convex function F : D → � on a convex set
D ⊆ �n , we can define the associated Bregman divergence DF : D ×D → �+ by

DF(x , y) � F(x) − (
F(y) + 〈∇F(y), x − y〉) .

This is the “error” in using the first-order Taylor approximation of F at y to compute F(x).
Exercise 1.1. Prove that DF(x , y) > 0 for all x , y ∈ D.

A basic example is F(x) � ‖x‖2
2 in which case DF(x , y) � ‖x − y‖2

2 . Another highly relevant example
arises whenD � �n

+ and F : D → � is given by the negative entropy F(x) � ∑n
i�1 xi log xi . In that

case, one easily calculates

DF(x , y) �
n∑

i�1

xi log
xi

yi
+

n∑
i�1

(yi − xi) .

Observe that if x and y are probability measures, i.e.
∑n

i�1 xi �
∑n

i�1 yi � 1, then DF(x , y) � D(x ‖ y).
In general, Bregman divergences are not symmetric (as in the case of the relative entropy), but they
share some nice properties of the squared Euclidean distance. One reason for this (especially in the
treatment of Section 2.2) is that locally a Bregman divergence is the square of a Euclidean norm.

Local norms. For simplicity, let us consider a continuously differentiable and strictly convex
F : D → �, and assume that the D is an open convex set. Since F is convex, the Hessian ∇2F is
positive semi-definite onD (see Lecture 1), and we have

F(y + h) � F(y) + 〈∇F(y), h〉 + 1
2
〈h ,∇2F(y)h〉 + O(‖h‖3

2)

as ‖h‖2 → 0.

Thus we can write

DF(y + h , y) � 1
2
〈h ,∇2F(y)h〉 + O(‖h‖3

2) ≈
1
2
‖h‖2

∇2F(y)
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where the approximation is up to third order error, and we use the notation

‖h‖A �
√〈h ,Ah〉

when A is self-adjoint and positive semi-definite. When A is actually positive definite (as is the case
for ∇2F(y) because F is strictly convex), this defines a norm on �n .

Now one can see the fundamental reason for the asymmetry of the divergence: DF(x , y) is computed
using the local Euclidean geometry given by ∇2F at the point y. What’s somewhat more interesting
is that the divergence remains interesting for points x and y that are separated.

1.1 Bregman projection

Let C ⊆ �n be a closed convex set. Given a Bregman divergence DF, we can define the Bregman
projection of a point x ∈ �n on C by

ΠF
C
(y) � argmin

x∈C
DF(x , y) .

By strong convexity of F, the projection is unique.

There is a corresponding “Pythagorean theorem” (it helps to think about the model case DF(x , y) �
‖x − y‖2).

Lemma 1.2. For all x ∈ C and y ∈ �n , we have

DF(x ,ΠF
C
(y)) 6 DF(x , y) − DF(ΠF

C
(y), y) .

A good way to think about this lemma: Think about x as the target, and our current point is y. Since
x ∈ C, it makes sense that projecting to C will get us closer to x. The lemma gives us a quantitative
version that says: The further away we were from C, the closer we get to the target by projecting.

Mirror maps. LetD ⊆ �n be an open convex set, and let Φ : D → � be a strictly convex function.
We call Φ a mirror map if it additionally satisfies:

1. Φ is differentiable onD.

2. The range of ∇Φ : D → � is all of �n .

3. ∇Φ(x)→∞ as x approaches ∂D (i.e., ∇Φ blows up on the boundary ofD).

Example 1.3. Two prominent scenarios are

1. D � �n and Φ(x) � ‖x‖2 with ∇Φ(x) � 2x.

2. D � �n
++ � {x ∈ �n : x1 , . . . , xn > 0} and Φ(x) � ∑n

i�1 xi log xi with

∇Φ(x) � (1 + log x1 , · · · , 1 + log xn) .

In general, it will be best to think about ∇Φ as a “dual object.” In finite-dimensional optimization
settings, we have the space of points (potential solutions), and the space of directions (potential
ways to improve). For us, both objects lie in �n , and thus they are often conflated, but it helps the
mental picture sometimes to separate them. In this case, it’s best to think about ∇Φ as a vector field
specifying a direction ∇Φ(x) at every point x ∈ D.
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Optimization setup. Suppose now that C is a compact, convex set with C ⊆ D, and f : C → � is
a convex function. Our object of study will be the optimization

min
x∈C

f (x) . (1.1)

But we may not know f (or in the next lecture, we may choose not to examine f entirely); instead at
every discrete time step t � 1, 2, . . ., we will have access to a subgradient of f , i.e. some direction
along which we can improve a little.

Definition 1.4. If U ⊆ �n is an open convex set and f : U → � is convex on U, a vector v ∈ �n is
called a subgradient of f at the point x0 ∈ U if

f (x) − f (x0) > 〈v , x − x0〉
for all x ∈ U. The collection of subgradients of f at x0 will be denoted ∂ f (x0) ⊆ �n .

Restating the definition: Any movement within U along the direction v increases the value of f . It
helps to remember that in order to decrease f (we are minimizing it, after all) we should try to
move in the direction −v.

Online mirror descent. We will generate a sequence of points {x0 , x1 , x2 , . . .}. We assume
we have a sequence {v0 , v1 , v2 , . . .} of directions satisfying vt ∈ ∂ f (xt). Initially, we choose
x0 � argminx∈C Φ(x). Then given xt , we put

xt+1 � argmin
x∈C

DΦ(x , xt) + η〈vt , x〉 . (1.2)

Here, η > 0 is a step size parameter we will specify carefully in a moment.

Exercise 1.5. Show that when Φ is the negative entropy and C �
�
x ∈ �n

+ :
∑n

i�1 xi � 1
	
is the

probability simplex, the solution to (1.2) is

xt+1(i) � exp
�
−ηvt(i)�∑n

i�1 exp
�
−ηvt(i)� xt(i)xt(i) .

In other words, one recovers the “exponential weights” update algorithm we saw earlier (in greater
generality now).

In general, we should think of (1.2) as a form of cautious (or, “regularized”) “subgradient descent.”
We would like to move in the direction −vt , but we also value remaining close to the previous point
xt in terms of the “distance” given by the Bregman divergence DΦ.

In order to analyze this algorithm, we need a few quantitative definitions. Say that the function
Φ : D → � is ρ-strongly convex with respect to the norm ‖ · ‖ if for all x , y ∈ D, we have

Φ(y) > Φ(x) + 〈∇Φ(x), y − x〉 + ρ

2
‖x − y‖2 .

Pinsker’s inequality is precisely the assertion that Φ is 1-strongly convex on the probability simplex
equipped with the `1 norm.

Say that themap f : C → � is L-Lipschitz (with respect to the norm ‖ · ‖) if ‖ f (x)− f (y)‖ 6 L · ‖x− y‖
for all x , y ∈ C. See [Th. 4.2, Bubeck, 2014] for a proof of the following statement. Note that the
bound (1.3) is more general than what appears there, but follows from the last line of the proof.
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Theorem 1.6. Let R � supx∈C Φ(x) −Φ(x0). If Φ is ρ-strongly convex mirror map and f is L-Lipschitz
with respect to the norm ‖ · ‖, then for all t > 1, the algorithm specified by (1.2) with step size

η � L−1

√
2ρR

t

yields a sequence of points {x0 , x1 , x2 , . . . , xt−1} such that for any x ∈ C,

f *
,

1
t

t−1∑
s�0

xs+
-
6 f (x) +

√
2DΦ(x , x0)

ρt
L . (1.3)

2 Continuous dynamics

In the preceding lecture, we saw a continuous-time algorithm for matrix scaling. We now generalize
that approach to the setting of the previous section. A few aspects become more intuitive, and the
“targeting” principle in Lemma 2.1 will be a useful intuition.

2.1 Relative entropy and sparse approximation

Consider the setting of relative entropy, where: D � �n
++, Φ(x) �

∑n
i�1 x(i) log x(i), and C ��

x ∈ �n :
∑n

i�1 x(i) � 1
	
.

We will now produce a continuous sequence {xt : t > 0} ⊆ �n of points and we assume we have
a family {vt : t > 0} ⊆ �n of directions (we do not require them to be subgradients of f ). We
will choose our next point using an infinitesimal version of the update (1.2) where we send η→ 0.
(For clarity of exposition, we have chosen to eliminate the negative sign, and thus our vt here
corresponds to −vt previously.)

Define

xt(i) �
exp

(∫ t
0 vs(i) ds

)
∑n

j�1 exp
(∫ t

0 vs(i) ds
) x0(i) . (2.1)

The proof of the next lemma is a straightforward differentiation and is left to the reader.

Lemma 2.1. For any w ∈ C, it holds that

d
dt

D(w ‖ xt) � −〈vt , w − xt〉 .

Observe in (2.1) that xt is moving in the direction of vt exponentially. This lemma tells us that for
any w ∈ C, as long as we are moving toward w along the direction vt , the divergence from w to
xt is decreasing proportionally. If we care about the optimization (1.1), then we might think of
−vt ∈ ∂ f (xt) and w � x∗ � argminx∈C f (x). Since the relative entropy is always positive, Lemma 2.1
asserts that in this case we are always making progress toward x∗.

It’s useful to now how much progress we make if we move in one direction for a period of time.
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Lemma 2.2. Suppose that for t ∈ [t0 , t1), it holds that vt � v for some fixed v ∈ �n . Then

d
dt
〈v , xt〉 �

n∑
i�1

v(i)2xt(i) − 〈v , xt〉2 .

In particular,
d
dt
〈v , xt〉 6 ‖v‖2

∞ .

Suppose that 〈v , xt〉 < 〈v ,w〉 for some v , w ∈ �n . Let us set vt � v for t ∈ [t0 , t1], where

t1 � inf {t > t0 : 〈v , xt〉 > 〈v , w〉} .
In other words, we move in the direction v until at time t1, we have 〈v , xt1〉 � 〈v , w〉. Our goal is to
measure the change in the potential.

Lemma 2.3. With the parameters, above we have

D(w ‖ xt0) − D(w ‖ xt1) >
〈v , xt0 − w〉2

2‖v‖2
∞

.

Proof. Let f (t) � 〈v , w − xt〉. By Lemma 2.2, we know that f ′(t) > −‖v‖2
∞. Combining this with

Lemma 2.1 yields

D(w ‖ xt0) − D(w ‖ xt1) �
∫ t1

t0

f (t) dt >
∫ t0+ f (t0)/‖v‖2

∞

t0

f (t0) − t‖v‖2
∞ dt �

f (t0)2
2‖v‖2

∞

. �

We can now use this to prove the existence of “dual sparse” solutions to systems of linear inequalities
on probability distributions that are not too far from the uniform measure.

Theorem 2.4. Let C �
�
x ∈ �n

+ :
∑n

i�1 x(i) � 1
	
. Suppose that A ∈ �m×n and b ∈ �m are given. Let

A1 , . . . ,Am ∈ �
n denote the rows of A. If there exists an x∗ ∈ C such that Ax∗ > b, then for every ε > 0,

there is a vector x ∈ C satisfying Ax > b − ε(1, 1, . . . , 1)T , and x is given by

x(i) � exp
�∑m

k�1 ckAk(i)�∑n
j�1 exp

�∑m
k�1 ckAk( j)� .

for some constants c1 , . . . , cm > 0 with

# {i : ci > 0} 6 2 · D
�
x∗ ‖ ( 1

n , · · · ,
1
n )

� maxi ‖Ai‖2
∞

ε2 . (2.2)

Proof. We use our continuous time algorithm to construct a family {xt}. We choose vt at every step
as follows: If there exists an ε-violated constraint

〈Ai , w〉 > 〈Ai , xt〉 − ε ,
then we set vs � Ai for s ∈ [t , t1], where t1 is the first time at which the constraint becomes satisfied.
We repeat this until no more ε-violated constraints exist.

By Lemma 2.3, in each such iteration the relative entropy D(x∗ ‖ xt) drops by at least

ε2

2L2

where L � max{‖A1‖∞ , . . . , ‖Am‖∞}. Since the relative entropy is always non-negative, the total
number of iterations is bounded by 2L2

ε2 · D(x∗ ‖ x0), completing the proof. �
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Achieving a sparse solution with online mirror descent. Finally, we observe that Theorem 1.6
yields a similar statement. We set

f (x) � max {(〈Ai , x〉 − bi)+ : i � 1, 2, . . . ,m} .
Here we have used the notation x+ � max(x , 0). Note that f is L-Lipschitz, where L �

max{‖A1‖∞ , . . . , ‖Am‖∞}. Using the fact that Φ is 1-strongly convex, we can apply Theorem 1.6
with x0 � ( 1

n , . . . ,
1
n ) and parameter t � 2L2

ε2 D(x∗ ‖ x0) to obtain a distribution

x̄ �
x1 + x2 + · · · + xt

t
∈ C ,

where each xi is of the form (2.2), with the identical bound 2L2

ε2 D(x∗ ‖ x0) on the dual sparsity of
each xi (by “sparsity” here we mean the number of constraints that are touched in obtaining the
solution x̄).

2.2 General version

Much of the preceding section generalizes to the setting of strictly convex, twice-differentiable
Φ : D → � and the associated divergence DΦ. If we have a function f : C → � on a convex set C,
one can consider the following continuous-time mirror descent:

x′(t) � JΠ(x(t)) �
∇

2Φ(x(t))�−1 �
−∇ f (x(t))� .

where Π � ΠΦ
C
is the corresponding Bregman projection. It turns out (I think) that if Φ is a mirror

map onD, then this can be thought of as gradient descent on C as an embedded submanifold ofD,
where the latter domain is equipped with the Riemannian metric coming from ∇2Φ.

[More notes to be added here. Dear reader, if you know of a reference for this perspective, please
let me know.]

The primal-dual view. There is a primal-dual perspective on the algorithm described in (1.2) that
may be helpful. Every iteration involves three steps: (i) Moving from the primal to the dual via the
map x 7→ ∇Φ(x), (ii) improving in the dual, (iii) projecting back to the feasible region.

As before, let x0 � argminx∈C Φ(x). Now given xt ∈ C, we choose yt+1 ∈ D so that

∇Φ(yt+1) � ∇Φ(xt) − ηvt . (2.3)

Such a yt+1 exists by property (ii) of a mirror map. Finally, we define xt+1 � ΠΦ
C
(yt+1) as the

Bregman projection of yt+1 ∈ �
n back to the feasible region.

To see that this gives the same sequence {x0 , x1 , x2 , . . .} we saw before, observe that

xt+1 � ΠΦ
C
(yt+1) � argmin

x∈C
DΦ(x , yt+1)

� argmin
x∈C

Φ(x) −Φ(yt+1) − 〈∇Φ(yt+1), x − yt+1)
� argmin

x∈C
Φ(x) − 〈∇Φ(yt+1), x〉 using (2.3)

� argmin
x∈C

Φ(x) − 〈∇Φ(xt) − ηvt , x〉
� argmin

x∈C
η〈x , vt〉 + DΦ(x , xt) ,

just as in (1.2).
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3 Density approximation

For applications in the next few weeks, I want to move to a more functional setting (i.e., we will
replace vectors by functions on a finite set).

Let X be a finite set, equipped with a measure µ. For a function f : X → �, we write

�
µ
[ f ] �

∑
x∈X

µ(x) f (x)

for the expected value of f with respect to µ. We say that f is a density with respect to µ if f (x) > 0
for all x ∈ X, and �µ[ f ] � 1. Let ∆X denote the set of all densities on X.

For f ∈ ∆X , we introduce the notation

Entµ( f ) � D( f µ ‖ µ) � �
µ
[ f log f ] .

If 1 ∈ ∆X as well, define a relative entropy between the respective densities:

Dµ( f ‖ 1) � �
µ

[
f log

f
1

]
.

Recall that (as we have seen in Lecture 1), Entµ( f ) is a convex function of f : For f , 1 ∈ ∆X and
λ ∈ [0, 1], we have

Entµ(λ f + (1 − λ)1) 6 λEntµ( f ) + (1 − λ)Entµ(1) .
We will work in the inner product space L2(X, µ) whose elements are functions f : X → �. The
inner product of f , 1 ∈ L2(X, µ) is given by

〈 f , 1〉 � �
µ
[ f 1] .

Let us now restate Theorem 2.4 in the functional setting. Although the proof of a very similar
statement follows rather immediately from Theorem 1.6; the origin of the theorem lies in the paper
[Lee-Raghenvedra-Steurer 2015].

Theorem 3.1 (Dual-sparse approximation). Consider some F ⊆ L2(X, µ). Let f ∈ ∆X and ε > 0 be
given. Then there exist non-negative constants {cϕ : ϕ ∈ F } such that

#{cϕ > 0 : ϕ ∈ F } 6 2
maxϕ∈F ‖ϕ‖2

∞

ε2 Entµ( f ) ,

and the density

f̃ �

exp
(∑

ϕ∈F cϕϕ
)

�µ exp
(∑

ϕ∈F cϕϕ
)

satisfies 〈 f̃ , ϕ〉 > 〈 f , ϕ〉 − ε for all ϕ ∈ F .
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