Lecture 4: Covering the large spectrum via dual-sparse approximation
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee
Last updated: January 19, 2016

1 Discrete Fourier analysis

In this lecture, we use the dual-sparse approximation theorem from the last lecture to prove some results in discrete Fourier analysis. For simplicity, we restrict ourselves to the setting of $G=\mathbb{F}_{2}^{n}$, but the theorems hold (when suitably restated) for any finite abelian group G.

Fourier analysis over \mathbb{F}_{2}^{n}. We use $\mathbb{F}_{2}=\{0,1\}$ to denote the field on two elements. Let $G=\mathbb{F}_{2}^{n}$ be equipped with the uniform measure μ. We use $\hat{G}=\mathbb{F}_{2}^{n}$ to denote the dual group (though we use the notations G and \hat{G} to distinguish primal and dual objects). We will use the definitions from Lecture 3 (Section 3).
For every $\gamma \in \hat{G}$, we define the corresponding character $u_{\gamma}: G \rightarrow \mathbb{R}$ by

$$
u_{\gamma}(x)=(-1)^{\gamma_{1}+\cdots+\gamma_{n}} .
$$

The functions $\left\{u_{\gamma}: \gamma \in \hat{G}\right\}$ form an orthornormal basis for $L^{2}(G, \mu)$, and thus every $f \in L^{2}(G, \mu)$ can be written uniquely as

$$
f=\sum_{\gamma \in \hat{G}} \hat{f}(\gamma) u_{\gamma}
$$

where $\hat{f}(\gamma)=\left\langle f, u_{\gamma}\right\rangle$.
We will be interested in the "large spectrum" of a function $f \in L^{2}(G, \mu)$: For a parameter $\delta>0$, define

$$
\operatorname{Spec}_{\delta}(f)=\{\gamma \in \hat{G}:|\hat{f}(\gamma)|>\delta\}
$$

Say that a subset $S \subseteq \hat{G}$ is d-covered if

$$
\begin{equation*}
S \subseteq\left\{\sum_{\lambda \in \Lambda} a_{\lambda} \lambda: a_{\lambda} \in\{-1,0,1\}\right\} \tag{1.1}
\end{equation*}
$$

for some $\Lambda \subseteq \hat{G}$ with $|\Lambda| \leqslant d$. When $G=\mathbb{F}_{2}^{n},(1.1)$ is the same as saying that S is contained in the span of Λ (in the vector space \mathbb{F}_{2}^{n}).

1.1 Chang's Lemma

Recall that $\Delta_{G}=\left\{f: G \rightarrow \mathbb{R}_{+}: \mathbb{E}_{\mu} f=1\right\}$ is the set of densities on G (with respect to the uniform measure μ).

Lemma 1.1 (Chang). For any $f \in \Delta_{G}$ and $\delta>0$, the set $\operatorname{Spec}_{\delta}(f)$ is d-covered for

$$
d \leqslant 2 \frac{\operatorname{Ent}_{\mu}(f)}{\delta^{2}}
$$

Proof. We prove this using Theorem 3.1 (the dual-sparse approximation theorem) from Lecture 3. Let $\mathcal{F}=\left\{ \pm u_{\gamma}: \gamma \in \hat{G}\right\}$ and apply the approximation theorem with $\varepsilon=\delta$. Since $\left\|u_{\gamma}\right\|_{\infty}=1$ for all $\gamma \in \hat{G}$, we obtain a density $\tilde{f} \in \Delta_{G}$ such that

$$
\begin{equation*}
\tilde{f}=\frac{\exp \left(\sum_{i=1}^{m} c_{i} u_{\gamma_{i}}\right)}{\mathbb{E}_{\mu} \exp \left(\sum_{i=1}^{m} c_{i} u_{\gamma_{i}}\right)}, \tag{1.2}
\end{equation*}
$$

for some real constants $\left\{c_{i}\right\}$ and $\gamma_{1}, \ldots, \gamma_{m} \in \hat{G}$, and $m \leqslant \frac{2}{\delta^{2}} \operatorname{Ent}_{\mu}(f)$, and furthermore $\operatorname{Spec}_{\delta}(f) \subseteq$

$$
|\hat{\tilde{f}}(\gamma)|=\left|\left\langle u_{\gamma}, \tilde{f}\right\rangle\right| \geqslant\left|\left\langle u_{\gamma} f\right\rangle\right|-\delta>0
$$

Thus we are left to prove that $\operatorname{Spec}_{0}(\tilde{f})$ can be m-covered. To this end, use the Taylor expansion $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ to see that the non-zero Fourier coefficients of \tilde{f} must be products of the form

$$
\prod_{i \in \alpha} u_{\gamma_{i}}=u_{\sum_{i \epsilon \alpha} \gamma_{i}}
$$

for some subset $\alpha \subseteq[m]$. Therefore $\operatorname{Spec}_{0}(\tilde{f}) \subseteq\left\{\sum_{i=1}^{m} a_{i} \gamma_{i}: a_{i} \in\{-1,0,1\}\right\}$, and we conclude that indeed $\operatorname{Spec}_{0}(\tilde{f})$ is m-covered, completing the proof.

Remark 1.2. The essential use of $G=\mathbb{F}_{2}^{n}$ in the preceding argument came in the last step, where we argued that the sum $\sum_{i \in \alpha} \gamma_{i}$ can be written as a linear combination with only $\{-1,0,1\}$ coefficients (indeed, only with $\{0,1\}$ coefficients). This relies on the fact that we are working over \mathbb{F}_{2} so that $2 \gamma=\gamma+\gamma=0$ for all $\gamma \in \mathbb{F}_{2}^{n}$. Doing the same argument over $G=(\mathbb{Z} / p \mathbb{Z})^{n}$ would lose a factor of p in the bound on d. While this might be fine for p small and n large, it becomes uninteresting in the case $n=1$, say.

Exercise 1.1. Prove that the bound in Lemma 1.1 is tight by considering, for n odd, the density $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}_{+}$given by

$$
f(x)= \begin{cases}2 & \sum_{i=1}^{n} x_{i}>n / 2 \\ 0 & \sum_{i=1}^{n} x_{i}<n / 2 .\end{cases}
$$

You may need to consult the O^{\prime} Donnell book to understand the Fourier spectrum of f.

1.2 Bloom's Lemma

In [Bloom, 2014], the following variant of Chang's lemma is proved.
Lemma 1.3 (Bloom). For any $f \in \Delta_{G}$ and $\delta>0$, there is a subset $S \subseteq \operatorname{Spec}_{\delta}(f)$ satisfying $|S| \geqslant$ $\delta\left|\operatorname{Spec}_{\delta}(f)\right|$ and such that S is d-covered for

$$
\begin{equation*}
d \leqslant O(1) \frac{\operatorname{Ent}_{\mu}(f)}{\delta}+O\left(\frac{\log (1 / \delta)}{\log \log (1 / \delta)}\right) . \tag{1.3}
\end{equation*}
$$

Note that the second term in the bound (1.3) is only important when $\operatorname{Ent}_{\mu}(f) \ll 1$ (which is not a particularly interesting regime).
To prove this, we need a variant of the dual-sparse approximation theorem.

Theorem 1.4. Consider some $\mathcal{F} \subseteq L^{2}(X, \mu)$. Let $f \in \Delta_{X}$ and $\varepsilon>0$ be given. Then there exist non-negative constants $\left\{c_{\varphi}: \varphi \in \mathcal{F}\right\}$ such that

$$
\sum_{\varphi \in \mathcal{F}} c_{\varphi} \leqslant \frac{\max _{\varphi \in \mathcal{F}}\|\varphi\|_{\infty}}{\varepsilon} \operatorname{Ent}_{\mu}(f),
$$

and the density

$$
\begin{equation*}
\tilde{f}=\frac{\exp \left(\sum_{\varphi \in \mathcal{F}} c_{\varphi} \varphi\right)}{\mathbb{E}_{\mu} \exp \left(\sum_{\varphi \in \mathcal{F}} c_{\varphi} \varphi\right)} \tag{1.4}
\end{equation*}
$$

satisfies $\langle\tilde{f}, \varphi\rangle \geqslant\langle f, \varphi\rangle-\varepsilon$ for all $\varphi \in \mathcal{F}$.
There are two ways to prove this. One is to revisit the proof of Theorem 3.1 from Lecture 3. Let us assume (by scaling) that $\max _{\varphi \in \mathcal{F}}\|\varphi\|_{\infty} \leqslant 1$. Then the number of non-zero coefficients c_{φ} is bounded by $O\left(h / \varepsilon^{2}\right)$ where $h=\operatorname{Ent}_{\mu}(f)$ because the decrease in the potential function for fixing an ε-violated constraint is proportional to ε^{2}, and the potential can only change by h over the course of the algorithm. On the other hand, to achieve this potential decrease, we only "move" (exponentially) by ε in direction of the violated constraint. So each of the $\approx h / \varepsilon^{2}$ phases only increases the sum of coefficients by ε, leading to the bound of $\approx h / \varepsilon$. A second method of proof simply computes the dual of a convex program.

Exercise (2 points) 1.1. Let $\mathcal{F} \subseteq L^{2}(X, \mu)$ be a family satisfying $\|\varphi\|_{\infty} \leqslant 1$ for $\varphi \in \mathcal{F}$. Let $\mathcal{C}(\delta) \subseteq L^{2}(X, \mu)$ be the polytope described by the linear inequality constraints:

$$
C(\delta)=\left\{g \in L^{2}(X, \mu):\langle g, \varphi\rangle \geqslant\langle f, \varphi\rangle-\delta\right\} .
$$

Given f and $\varepsilon>0$, consider the optimization:

$$
\underset{g, \delta}{\operatorname{minimize}}\left\{\operatorname{Ent}_{\mu}(g)+\frac{\operatorname{Ent}_{\mu}(f)}{\varepsilon} \delta: g \in C(\delta) \cap \Delta_{X}, \delta \geqslant 0\right\}
$$

Show that (i) the optimal solution $\left(g^{*}, \delta^{*}\right)$ is unique, (ii) it satisfies $\delta^{*} \leqslant \varepsilon$, and (iii) that

$$
g^{*}=\frac{\exp \left(\sum_{\varphi \in \mathcal{F}} c_{\varphi} \varphi\right)}{\mathbb{E}_{\mu} \exp \left(\sum_{\varphi \in \mathcal{F}} c_{\varphi} \varphi\right)}
$$

satisfies $\sum_{\varphi \in \mathcal{F}} c_{\varphi} \leqslant \frac{\operatorname{Ent}_{\mu}(f)}{\varepsilon}$.
[Hint: This can be done by understanding Chapter 5 (Duality) of the Boyd-Vandenberghe book. For convex programs of this form, the dual can be calculated explicitly.]

Now we prove Bloom's lemma in the \mathbb{F}_{2}^{n} case.
Proof of Lemma 1.3. We will apply Theorem 1.4 with $\mathcal{F}=\left\{ \pm u_{\gamma}: \gamma \in \hat{G}\right\}$ and $\varepsilon=\delta / 3$. Let \tilde{f} be the resulting approximator from (1.4). Observe that from the approximation property (with respect to the functionals in \mathcal{F}), we have

$$
\begin{equation*}
\operatorname{Spec}_{\delta}(f) \subseteq \operatorname{Spec}_{2 \delta / 3}(\tilde{f}) . \tag{1.5}
\end{equation*}
$$

By scaling the numerator and denominator by the same constant, we can write

$$
\tilde{f}=\frac{\exp \left(\sum_{\gamma \in \hat{G}} c_{\gamma}\left(1+\varphi_{\gamma}\right)\right)}{\mathbb{E}_{\mu} \exp \left(\sum_{\gamma \in \hat{G}} c_{\gamma}\left(1+\varphi_{\gamma}\right)\right)},
$$

where $\varphi_{\gamma} \in\left\{-u_{\gamma}, u_{\gamma}\right\}$ and $\sum_{\gamma \in \hat{G}} c_{\gamma} \leqslant \frac{\operatorname{Ent}_{\mu}(f)}{\varepsilon}$. In particular, since $\left|\varphi_{\gamma}\right| \leqslant 1$, every term in the sum is non-negative everywhere.
Note also that

$$
\left\|\sum_{\gamma \in \hat{G}} c_{\gamma}\left(1+\varphi_{\gamma}\right)\right\|_{\infty} \leqslant 2 \frac{\operatorname{Ent}_{\mu}(f)}{\varepsilon}
$$

Let $p_{m}(x)=\sum_{k=0}^{m} \frac{x^{k}}{k!}$ be the degree- m truncation of the Taylor series for e^{x}. We can use Taylor's theorem to write

$$
\sup _{x \in[0, B]} \frac{\left|e^{x}-p_{m}(x)\right|}{e^{x}} \leqslant \frac{B^{m+1}}{m!} .
$$

In particular, we can choose $m \leqslant 3 B+O\left(\frac{\log (1 / \delta)}{\log \log (1 / \delta)}\right)$ with $B=2 \frac{\operatorname{Ent}_{\mu}(f)}{\varepsilon}$ so that if

$$
g=\frac{p_{m}\left(\sum_{\gamma \in \hat{G}} c_{\gamma}\left(1+\varphi_{\gamma}\right)\right)}{\mathbb{E}_{\mu} p_{m}\left(\sum_{\gamma \in \hat{G}} c_{\gamma}\left(1+\varphi_{\gamma}\right)\right)} \in \Delta_{G},
$$

then $\|\tilde{f}-g\|_{1} \leqslant \delta / 3$. Observe that for any $\gamma \in \hat{G}$,

$$
|\hat{\tilde{f}}(\gamma)-\hat{g}(\gamma)|=\left|\left\langle\tilde{f}-g, u_{\gamma}\right\rangle\right| \leqslant\|\tilde{f}-g\|_{1} \cdot\left\|u_{\gamma}\right\|_{\infty} \leqslant \delta / 3,
$$

hence $\operatorname{Spec}_{2 \delta / 3}(\tilde{f}) \subseteq \operatorname{Spec}_{\delta / 3}(g)$. Combined with (1.5), this yields $\operatorname{Spec}_{\delta}(f) \subseteq \operatorname{Spec}_{\delta / 3}(g)$. Thus we now focus on g.

By expanding out p_{m}, we can write

$$
g=\sum_{k=0}^{m} \sum_{\alpha \in \hat{G}^{k}} c_{\alpha} \prod_{i=1}^{k}\left(1+\varphi_{\alpha_{i}}\right)
$$

for some non-negative constants $\left\{c_{\alpha}\right\}$. Let us write $g=\sum_{\alpha} c_{\alpha} R_{\alpha}$ (and recall that every summand involves a vector α with at most m coordinates).

Define a probability distribution on terms in this sum (indexed by α):

$$
p_{\alpha}=c_{\alpha} \underset{\mu}{\mathbb{E}} R_{\alpha} .
$$

The fact that $\sum_{\alpha} p_{\alpha}=1$ follows from $\mathbb{E}_{\mu} g=1$. So we have $g=\sum_{\alpha} p_{\alpha} \bar{R}_{\alpha}$ where $\bar{R}_{\alpha}=R_{\alpha} / \mathbb{E}_{\mu}\left(R_{\alpha}\right)$. Observe that for any $\psi \in L^{2}(X, \mu)$, we have

$$
\begin{equation*}
\sum_{\alpha} p_{\alpha}\left|\left\langle\psi, \bar{R}_{\alpha}\right\rangle\right| \geqslant|\langle\psi, g\rangle| \tag{1.6}
\end{equation*}
$$

Consider $\psi=u_{\gamma}$ for some $\gamma \in \operatorname{Spec}_{\delta / 3}(g)$. If we choose α randomly according to the distribution $\left\{p_{\alpha}\right\}$, then (1.6) yields $\mathbb{E}\left[\left|\left\langle u_{\gamma}, \bar{R}_{\alpha}\right\rangle\right|\right] \geqslant \delta / 3$. On the other hand, $\left|\left\langle u_{\gamma}, \bar{R}_{\alpha}\right\rangle\right| \leqslant 1$ holds with probability one, hence

$$
\mathbb{P}\left[\gamma \in \operatorname{Spec}_{0}\left(\bar{R}_{\alpha}\right)\right] \geqslant \delta / 3
$$

In particular, there must exist some α such that $\left|\operatorname{Spec}_{0}\left(\bar{R}_{\alpha}\right) \cap \operatorname{Spec}_{\delta}(f)\right| \geqslant \frac{\delta}{3}\left|\operatorname{Spec}_{\delta}(f)\right|$, recalling that $\operatorname{Spec}_{\delta}(f) \subseteq \operatorname{Spec}_{\delta / 3}(g)$.
Finally, observe that since $|\alpha| \leqslant m$, it follows that $\operatorname{Spec}_{0}\left(\bar{R}_{\alpha}\right)$ is m-covered since the non-zero Fourier coefficients of R_{α} correspond to those generated by sums of the characters $\alpha_{1}, \ldots, \alpha_{m}$ (and hence by $\{0,1\}$ sums of such characters). As in the proof of Lemma 1.1 (see Remark 1.2), this latter fact is only true over \mathbb{F}_{2}^{n}.

2 Some open problems

These exercises are a bit open-ended.
Exercise (3+ points) 2.1. The proof of Lemma 1.3 proceeds by expanding the truncated power series for e^{x} and then sampling its terms at random. This is a bit mysterious. It seems plausible that one could prove it instead using a stochastic variant of the online mirror descent algorithm (see, e.g., [Bubeck, 2014]) or perhaps simply by writing the correct convex program as in Exercise 1.1.

Exercise (3+ points) 2.2. Here is a sparse approximation problem in auction design (that I learned from Matt Weinberg). There is one seller who is selling n items to one bidder. It's only one example of an array of similar questions.
Let $V_{1}, V_{2}, \ldots, V_{n}$ be independent random variables taking values in [0,1]. The value of a set of items $S \subseteq[n]$ to the bidder is $\sum_{i \in S} V_{i}$. The seller's goal is to maximize the (expected) revenue. It is known that, without loss, we can assume that a bidder acting in their own self interest is truthful (i.e., always reports their true valuation). Thus our goal is to design a revenue-maximizing truthful auction.

Denote by $\mathcal{V}=\mathcal{V}_{1} \times \cdots \times \mathcal{V}_{n} \subseteq[0,1]^{n}$ the space of possible value vectors. For every $v \in \mathcal{V}$, the linear program has variables $\left\{x_{i}(v): i=1,2, \ldots, n\right\}$ representing the probability that the bidder receives item i in the auction, and $p\left(v_{1}, \ldots, v_{n}\right)$ representing the price the bidder is charged (and thus pays).
For $i=1,2, \ldots, n$ our input consists of the probability mass functions $\pi_{i}: \mathcal{V}_{i} \rightarrow[0,1]$ for each V_{i}. Let us denote $\pi(v)=\pi_{1}\left(v_{1}\right) \pi_{2}\left(v_{2}\right) \cdots \pi_{n}\left(v_{n}\right)$.

Now the goal is to maximize (expected) revenue:

$$
\text { maximize } \quad \sum_{v \in \mathcal{V}} \pi(v) p(v)
$$

subject to the basic constraints:

$$
\begin{array}{rl}
x_{i}(v) \in[0,1] & i \in\{1,2, \ldots, n\}, v \in \mathcal{V} \\
p(v) \geqslant 0 & v \in \mathcal{V} .
\end{array}
$$

There is also a set of truthfulness constraints:

$$
\begin{equation*}
\sum_{i=1}^{n} v_{i} x_{i}(v)-p(v) \geqslant \sum_{i=1}^{n} v_{i} x_{i}(w)-p(w) \quad \text { for all } v, w \in \mathcal{V} \tag{2.1}
\end{equation*}
$$

Let us assume that $(0,0, \ldots, 0) \in \mathcal{V}$. Otherwise, we should add the rationally constraints:

$$
p(v) \leqslant \sum_{i=1}^{n} v_{i} x_{i}(v) \quad \text { for all } v \in \mathcal{V} .
$$

The solution to this (infinite) linear program provides an optimal mechanism; the question is about whether there is a near-optimal mechanism with much smaller "menu complexity." In other words, we would like an auction that achieves expected revenue $R^{*}-\varepsilon n$ where R^{*} is the maximal expected revenue, but where the description of the auctioneer is simple. Can one construct a "simple" auction here using a dual-sparse approximation?

Note: It is acceptable to also relax the constraints (2.1) by subtracting $-\sqrt{\varepsilon} n$ from the right-hand side. (There are ways to convert such an auction to a truthful one losing only $\approx-\varepsilon n$ in the revenue.)

