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CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 19, 2016

1 Discrete Fourier analysis

In this lecture, we use the dual-sparse approximation theorem from the last lecture to prove some
results in discrete Fourier analysis. For simplicity, we restrict ourselves to the setting of G � �n

2 , but
the theorems hold (when suitably restated) for any finite abelian group G.

Fourier analysis over �n
2 . We use �2 � {0, 1} to denote the field on two elements. Let G � �n

2 be
equipped with the uniform measure µ. We use Ĝ � �n

2 to denote the dual group (though we use
the notations G and Ĝ to distinguish primal and dual objects). We will use the definitions from
Lecture 3 (Section 3).

For every γ ∈ Ĝ, we define the corresponding character uγ : G → � by

uγ(x) � (−1)γ1+···+γn .

The functions {uγ : γ ∈ Ĝ} form an orthornormal basis for L2(G, µ), and thus every f ∈ L2(G, µ)
can be written uniquely as

f �

∑
γ∈Ĝ

f̂ (γ)uγ ,

where f̂ (γ) � 〈 f , uγ〉.
We will be interested in the “large spectrum” of a function f ∈ L2(G, µ): For a parameter δ > 0,
define

Specδ( f ) � {γ ∈ Ĝ : | f̂ (γ)| > δ} .
Say that a subset S ⊆ Ĝ is d-covered if

S ⊆



∑
λ∈Λ

aλλ : aλ ∈ {−1, 0, 1}



(1.1)

for some Λ ⊆ Ĝ with |Λ| 6 d. When G � �n
2 , (1.1) is the same as saying that S is contained in the

span of Λ (in the vector space �n
2 ).

1.1 Chang’s Lemma

Recall that ∆G � { f : G → �+ : �µ f � 1} is the set of densities on G (with respect to the uniform
measure µ).

Lemma 1.1 (Chang). For any f ∈ ∆G and δ > 0, the set Specδ( f ) is d-covered for

d 6 2
Entµ( f )
δ2 .
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Proof. We prove this using Theorem 3.1 (the dual-sparse approximation theorem) from Lecture 3.
Let F � {±uγ : γ ∈ Ĝ} and apply the approximation theorem with ε � δ. Since ‖uγ‖∞ � 1 for all
γ ∈ Ĝ, we obtain a density f̃ ∈ ∆G such that

f̃ �
exp

�∑m
i�1 ci uγi

�

�µ exp
�∑m

i�1 ci uγi

� , (1.2)

for some real constants {ci} and γ1 , . . . , γm ∈ Ĝ, and m 6 2
δ2 Entµ( f ), and furthermore Specδ( f ) ⊆

Spec0( f̃ ) because from the approximation property for every γ ∈ Specδ( f ), we have

| ˆ̃f (γ)| � |〈uγ , f̃ 〉| > |〈uγ f 〉| − δ > 0 .

Thus we are left to prove that Spec0( f̃ ) can be m-covered. To this end, use the Taylor expansion
ex �

∑
∞

k�0
xk

k! to see that the non-zero Fourier coefficients of f̃ must be products of the form∏
i∈α

uγi � u∑
i∈α γi

for some subset α ⊆ [m]. Therefore Spec0( f̃ ) ⊆ �∑m
i�1 aiγi : ai ∈ {−1, 0, 1}	

, and we conclude that
indeed Spec0( f̃ ) is m-covered, completing the proof. �

Remark 1.2. The essential use of G � �n
2 in the preceding argument came in the last step, where we

argued that the sum
∑

i∈α γi can be written as a linear combination with only {−1, 0, 1} coefficients
(indeed, only with {0, 1} coefficients). This relies on the fact that we are working over �2 so that
2γ � γ + γ � 0 for all γ ∈ �n

2 . Doing the same argument over G �
�
�/p�

�n would lose a factor of p
in the bound on d. While this might be fine for p small and n large, it becomes uninteresting in the
case n � 1, say.

Exercise 1.1. Prove that the bound in Lemma 1.1 is tight by considering, for n odd, the density
f : �n

2 → �+ given by

f (x) �



2
∑n

i�1 xi > n/2
0

∑n
i�1 xi < n/2 .

You may need to consult the O’Donnell book to understand the Fourier spectrum of f .

1.2 Bloom’s Lemma

In [Bloom, 2014], the following variant of Chang’s lemma is proved.

Lemma 1.3 (Bloom). For any f ∈ ∆G and δ > 0, there is a subset S ⊆ Specδ( f ) satisfying |S| >
δ|Specδ( f )| and such that S is d-covered for

d 6 O(1)Entµ( f )
δ

+ O
(

log(1/δ)
log log(1/δ)

)
. (1.3)

Note that the second term in the bound (1.3) is only important when Entµ( f ) � 1 (which is not a
particularly interesting regime).

To prove this, we need a variant of the dual-sparse approximation theorem.
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Theorem 1.4. Consider some F ⊆ L2(X, µ). Let f ∈ ∆X and ε > 0 be given. Then there exist non-negative
constants {cϕ : ϕ ∈ F } such that

∑
ϕ∈F

cϕ 6
maxϕ∈F ‖ϕ‖∞

ε
Entµ( f ) ,

and the density

f̃ �

exp
(∑

ϕ∈F cϕϕ
)

�µ exp
(∑

ϕ∈F cϕϕ
) (1.4)

satisfies 〈 f̃ , ϕ〉 > 〈 f , ϕ〉 − ε for all ϕ ∈ F .

There are two ways to prove this. One is to revisit the proof of Theorem 3.1 from Lecture 3. Let
us assume (by scaling) that maxϕ∈F ‖ϕ‖∞ 6 1. Then the number of non-zero coefficients cϕ is
bounded by O(h/ε2) where h � Entµ( f ) because the decrease in the potential function for fixing an
ε-violated constraint is proportional to ε2, and the potential can only change by h over the course of
the algorithm. On the other hand, to achieve this potential decrease, we only “move” (exponentially)
by ε in direction of the violated constraint. So each of the ≈ h/ε2 phases only increases the sum of
coefficients by ε, leading to the bound of ≈ h/ε. A second method of proof simply computes the
dual of a convex program.

Exercise (2 points) 1.1. Let F ⊆ L2(X, µ) be a family satisfying ‖ϕ‖∞ 6 1 for ϕ ∈ F . Let
C(δ) ⊆ L2(X, µ) be the polytope described by the linear inequality constraints:

C(δ) � �
1 ∈ L2(X, µ) : 〈1 , ϕ〉 > 〈 f , ϕ〉 − δ	

.

Given f and ε > 0, consider the optimization:

minimize
1 ,δ

{
Entµ(1) +

Entµ( f )
ε

δ : 1 ∈ C(δ) ∩ ∆X , δ > 0
}

Show that (i) the optimal solution (1∗ , δ∗) is unique, (ii) it satisfies δ∗ 6 ε, and (iii) that

1∗ �
exp

(∑
ϕ∈F cϕϕ

)
�µ exp

(∑
ϕ∈F cϕϕ

)
satisfies

∑
ϕ∈F cϕ 6

Entµ( f )
ε .

[Hint: This can be done by understanding Chapter 5 (Duality) of the Boyd-Vandenberghe book. For
convex programs of this form, the dual can be calculated explicitly.]

Now we prove Bloom’s lemma in the �n
2 case.

Proof of Lemma 1.3. We will apply Theorem 1.4 with F � {±uγ : γ ∈ Ĝ} and ε � δ/3. Let f̃ be the
resulting approximator from (1.4). Observe that from the approximation property (with respect to
the functionals in F ), we have

Specδ( f ) ⊆ Spec2δ/3( f̃ ) . (1.5)
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By scaling the numerator and denominator by the same constant, we can write

f̃ �

exp
(∑

γ∈Ĝ cγ(1 + ϕγ)
)

�µ exp
(∑

γ∈Ĝ cγ(1 + ϕγ)
) ,

where ϕγ ∈ {−uγ , uγ} and
∑
γ∈Ĝ cγ 6

Entµ( f )
ε . In particular, since |ϕγ | 6 1, every term in the sum is

non-negative everywhere.

Note also that 

∑
γ∈Ĝ

cγ(1 + ϕγ)
∞
6 2

Entµ( f )
ε

.

Let pm(x) � ∑m
k�0

xk

k! be the degree-m truncation of the Taylor series for ex . We can use Taylor’s
theorem to write

sup
x∈[0,B]

|ex
− pm(x)|

ex 6
Bm+1

m!
.

In particular, we can choose m 6 3B + O
( log(1/δ)

log log(1/δ)
)
with B � 2 Entµ( f )

ε so that if

1 �

pm
(∑

γ∈Ĝ cγ(1 + ϕγ)
)

�µ pm
(∑

γ∈Ĝ cγ(1 + ϕγ)
) ∈ ∆G ,

then ‖ f̃ − 1‖1 6 δ/3. Observe that for any γ ∈ Ĝ,

| ˆ̃f (γ) − 1̂(γ)| � |〈 f̃ − 1 , uγ〉| 6 ‖ f̃ − 1‖1 · ‖uγ‖∞ 6 δ/3 ,
hence Spec2δ/3( f̃ ) ⊆ Specδ/3(1). Combined with (1.5), this yields Specδ( f ) ⊆ Specδ/3(1). Thus we
now focus on 1.

By expanding out pm , we can write

1 �

m∑
k�0

∑
α∈Ĝk

cα
k∏

i�1

(1 + ϕαi )

for some non-negative constants {cα}. Let us write 1 �
∑
α cαRα (and recall that every summand

involves a vector α with at most m coordinates).

Define a probability distribution on terms in this sum (indexed by α):

pα � cα �
µ

Rα .

The fact that
∑
α pα � 1 follows from �µ 1 � 1. So we have 1 �

∑
α pαR̄α where R̄α � Rα/�µ(Rα).

Observe that for any ψ ∈ L2(X, µ), we have∑
α

pα |〈ψ, R̄α〉| > |〈ψ, 1〉| (1.6)

Consider ψ � uγ for some γ ∈ Specδ/3(1). If we choose α randomly according to the distribution
{pα}, then (1.6) yields �[|〈uγ , R̄α〉|] > δ/3. On the other hand, |〈uγ , R̄α〉| 6 1 holds with probability
one, hence

�[γ ∈ Spec0(R̄α)] > δ/3 .
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In particular, there must exist some α such that |Spec0(R̄α)∩ Specδ( f )| > δ
3 |Specδ( f )|, recalling that

Specδ( f ) ⊆ Specδ/3(1).
Finally, observe that since |α| 6 m, it follows that Spec0(R̄α) is m-covered since the non-zero Fourier
coefficients of Rα correspond to those generated by sums of the characters α1 , . . . , αm (and hence
by {0, 1} sums of such characters). As in the proof of Lemma 1.1 (see Remark 1.2), this latter fact is
only true over �n

2 . �

2 Some open problems

These exercises are a bit open-ended.

Exercise (3+ points) 2.1. The proof of Lemma 1.3 proceeds by expanding the truncated power
series for ex and then sampling its terms at random. This is a bit mysterious. It seems plausible that
one could prove it instead using a stochastic variant of the online mirror descent algorithm (see,
e.g., [Bubeck, 2014]) or perhaps simply by writing the correct convex program as in Exercise 1.1.

Exercise (3+ points) 2.2. Here is a sparse approximation problem in auction design (that I learned
fromMatt Weinberg). There is one seller who is selling n items to one bidder. It’s only one example
of an array of similar questions.

Let V1 ,V2 , . . . ,Vn be independent random variables taking values in [0, 1]. The value of a set of
items S ⊆ [n] to the bidder is

∑
i∈S Vi . The seller’s goal is to maximize the (expected) revenue. It is

known that, without loss, we can assume that a bidder acting in their own self interest is truthful
(i.e., always reports their true valuation). Thus our goal is to design a revenue-maximizing truthful
auction.

Denote byV � V1 × · · · × Vn ⊆ [0, 1]n the space of possible value vectors. For every v ∈ V, the
linear program has variables {xi(v) : i � 1, 2, . . . , n} representing the probability that the bidder
receives item i in the auction, and p(v1 , . . . , vn) representing the price the bidder is charged (and
thus pays).

For i � 1, 2, . . . , n our input consists of the probability mass functions πi :Vi → [0, 1] for each Vi .
Let us denote π(v) � π1(v1)π2(v2) · · · πn(vn).
Now the goal is to maximize (expected) revenue:

maximize
∑
v∈V

π(v)p(v)

subject to the basic constraints:

xi(v) ∈ [0, 1] i ∈ {1, 2, . . . , n}, v ∈ V
p(v) > 0 v ∈ V .

There is also a set of truthfulness constraints:
n∑

i�1

vi xi(v) − p(v) >
n∑

i�1

vi xi(w) − p(w) for all v , w ∈ V . (2.1)

Let us assume that (0, 0, . . . , 0) ∈ V. Otherwise, we should add the rationally constraints:

p(v) 6
n∑

i�1

vi xi(v) for all v ∈ V .
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The solution to this (infinite) linear program provides an optimal mechanism; the question is about
whether there is a near-optimal mechanism with much smaller “menu complexity.” In other words,
we would like an auction that achieves expected revenue R∗ − εn where R∗ is the maximal expected
revenue, but where the description of the auctioneer is simple. Can one construct a “simple” auction
here using a dual-sparse approximation?

Note: It is acceptable to also relax the constraints (2.1) by subtracting −
√
εn from the right-hand

side. (There are ways to convert such an auction to a truthful one losing only ≈ −εn in the revenue.)
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