
Lecture 5: Lifts of polytopes and non-negative rank
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 24, 2016

1 Lifts of polytopes

1.1 Polytopes and inequalities

Recall that the convex hull of a subset X ⊆ �n is defined by

conv(X) � {λx + (1 − λ)x′ : x , x′ ∈ X, λ ∈ [0, 1]} .

A d-dimensional convex polytope P ⊆ �d is the convex hull of a finite set of points in �d :

P � conv ({x1 , . . . , xk})
for some x1 , . . . , xk ∈ �

d .

Every polytope has a dual representation: It is a closed and bounded set defined by a family of
linear inequalities

P � {x ∈ �d : Ax 6 b}
for some matrix A ∈ �m×d .

Let us define a measure of complexity for P: Define γ(P) to be the smallest number m such that for
some C ∈ �s×d , y ∈ �s ,A ∈ �m×d , b ∈ �m , we have

P � {x ∈ �d : Cx � y and Ax 6 b} .
In other words, this is the minimum number of inequalities needed to describe P. If P is full-
dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of
P).

Thinking of γ(P) as a measure of complexity makes sense from the point of view of optimization:
Interior point methods can efficiently optimize linear functions over P (to arbitrary accuracy) in
time that is polynomial in γ(P).

1.2 Lifts of polytopes

Many simple polytopes require a large number of inequalities to describe. For instance, the
cross-polytope

Cd � {x ∈ �d : ‖x‖1 6 1} � {x ∈ �d : ±x1 ± x2 · · · ± xd 6 1}
has γ(Cd) � 2d . On the other hand, Cd is the projection of the polytope

Qd �



(x , y) ∈ �2d :

n∑
i�1

yi � 1, yi > 0, −yi 6 xi 6 yi ∀i



onto the x coordinates, and manifestly, γ(Qd) 6 3d. Thus Cd is the (linear) shadow of a much
simpler polytope in a higher dimension.
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Figure 1: A lift Q of a polytope P. [Source: Fiorini, Rothvoss, and Tiwary]

A polytope Q is called a lift of the polytope P if P is the image of Q under an affine projection, i.e.
P � π(Q), where π : �N

→ �n is the composition of a linear map and possibly a translation and
N > n. By applying an affine map first, one can assume that the projection is merely coordinate
projection to the first n coordinates.

Again, from an optimization stand point, lifts are important: If we can optimize linear functionals
over Q, then we can optimize linear functionals over P. For instance, if P is obtained from Q by
projecting onto the first n coordinates and w ∈ �n , then

max
x∈P

〈w , x〉 � max
y∈Q

〈w̄ , y〉 ,

where w̄ ∈ �N is given by w̄ � (w , 0, 0, . . . , 0).
This motivates the definition

γ̄(P) � min{γ(Q) : Q is a lift of P} .
The value γ̄(P) is sometimes called the (linear) extension complexity of P.

Exercise (1 point) 1.1. Prove that γ(Cd) � 2d .

1.2.1 The permutahedron

Here is a somewhat more interesting family of examples where lifts reduce complexity. The
permutahedronΠn ⊆ �

n is the convexhull of the vectors (i1 , i2 , . . . , in)where {i1 , . . . , in} � {1, . . . , n}.
It is known that γ(Πn) � 2n

− 2.

Given a permutation π : [n]→ [n], the corresponding permutation matrix is defined by

Pπ �

*.....
,

eπ(1)
eπ(2)
...

eπ(n)

+/////
-

,

where e1 , e2 , . . . , en are the standard basis vectors.
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Figure 2: The permutahedron of order 4. [Source: Wikipedia]

Let Bn ⊆ �
n2 denote the convex hull of the n × n permutation matrices. The Birkhoff-von Neumann

theorem tells us that Bn is precisely the set of doubly stochastic matrices:

Bn �




M ∈ �n×n :
∑

i

Mi j �
∑

j

Mi j � 1,Mi j > 0 ∀i , j


,

thus γ(Bn) 6 n2 (corresponding to the non-negativity constraints on each entry).

Observe that Πn is the linear image of Bn under the map A 7→ (1, 2, . . . , n)A, i.e. we multiply a
matrix A ∈ Bn on the left by the row vector (1, 2, . . . , n). Thus Bn is a lift of Πn , and we conclude
that γ̄(Πn) 6 n2

� γ(Πn).

1.2.2 The cut polytope

If P , NP, there are certain combinatorial polytopes we should not be able to optimize over
efficiently. A central example is the cut polytope: CUTn ⊆ �

(n
2) is the convex hull of all all vectors of

the form
vS
{i , j} � |1S(i) − 1S( j)| {i , j} ∈

([n]
2

)
for some subset S ⊆ {1, . . . , n}. Here, 1S denotes the characteristic function of S.

Note that the MAX-CUT problem on a graph G � (V, E) can be encoded in the following way: Let
Wi j � 1 if {i , j} ∈ E and Wi j � 0 otherwise. Then the value of the maximum cut in G is precisely
the maximum of 〈W,A〉 for A ∈ CUTn . Accordingly, we should expect that γ̄(CUTn) cannot be
bounded by any polynomial in n (lest we violate a basic tenet of complexity theory).

Our goal in this lecture and the next will be to show that the cut polytope does not admit lifts with
nO(1) facets.

1.2.3 Exercises

Exercise (1 point) 1.2. Define the bipartite perfect matching polytope BMn ⊆ �
n2 as the convex hull

of all the indicator vectors of edge sets of perfect matchings in the complete bipartite graph Kn ,n .
Show that γ(BMn) 6 n2.
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Exercise (1 point) 1.3. Define the subtour elimination polytope SEPn ⊆ �
(n

2) as the set of points
x � (xi j) ∈ �(n

2) satisfying the inequalities

xi j > 0 {i , j} ∈
([n]

2

)
n∑

i�1

xi j � 2 j ∈ [n]∑
i∈S

∑
j<S

xi j > 2 S ⊆ [n], 2 6 |S| 6 n − 2 .

Show that γ̄(SEPn) 6 O(n3) by think of the xi j variables as edge capacities, and introducing new
variables to enforce that the capacities support a flow of value 2 between every pair i , j ∈ [n].
Exercise (1 point) 1.4 (Goemans). Show that for any polytope P,

# faces of P 6 2# facets of P .

Recall that a facet of P is a face of largest dimension. (Thus if P ⊆ �n is full-dimensional, then a
facet of P is an (n − 1)-dimensional face.) Use this to conclude that γ̄(Πn) > log(n!) > Ω(n log n).
Exercise (1 point) 1.5 (Martin, 1991). Define the spanning tree polytope STn ⊆ �

(n
2) as the convex hull

of all the indicator vectors of spanning trees in the complete graph Kn . Show that γ̄(STn) 6 O(n3)
by introducing new variables {zuv ,w : u , v , w ∈ {1, 2, . . . , n}} meant to represent whether the edge
{u , v} is in the spanning tree T and w is in the component of v when the edge {u , v} is removed
from T.

2 Non-negative matrix factorization

The key to understanding γ̄(CUTn) comes from Yannakakis’ factorization theorem.

Consider a polytope P ⊆ �d and let us write in two ways: As a convex hull of vertices

P � conv ({x1 , x2 , . . . , xn}) ,
and as an intersection of half-spaces: For some A ∈ �m×d ,

P �

{
x ∈ �d : Ax 6 b

}
.

Given this pair of representations, we can define the corresponding slack matrix of P by

Si j � bi − 〈Ai , x j〉 i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n} .
Here, A1 , . . . ,Am denote the rows of A.

We need one more definition. If we have a non-negative matrix M ∈ �m×n
+ , then a rank-r non-negative

factorization of M is a factorization M � AB where A ∈ �m×r
+ and B ∈ �r×n

+ . We then define
the non-negative rank of M, written rank+(M), to be the smallest r such that M admits a rank-r
non-negative factorization.

Exericse (0.5 points) 2.1. Show that rank+(M) is the smallest r such that M � M1 + · · · + Mr where
each Mi is a non-negative matrix satisfying rank+(Mi) � 1.
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The next result gives a precise connection between non-negative rank and extension complexity.

Theorem 2.2 (Yannakakis Factorization Theorem). For every polytope P, it holds that γ̄(P) � rank+(S)
for any slack matrix S of P.

The key fact underlying this theorem is Farkas’ Lemma (see Section Section 2.1 for a proof). Recall
that a function f : �d

→ � is affine if f (x) � 〈a , x〉 − b for some a ∈ �d and b ∈ �. Given functions
f1 , . . . , fk : �d

→ �, denote their non-negative span by

cone
�{ f1 , f2 , . . . , fk}�

�




k∑
i�1

λi fi : λi > 0


.

Lemma 2.3 (Farkas Lemma). Consider a polytope P � {x ∈ �d : Ax 6 b} where A has rows
A1 ,A2 , . . . ,Am . Let fi(x) � bi − 〈Ai , x〉 for each i � 1, . . . ,m. If f is any affine function such that f |P > 0,
then

f ∈ cone({ f1 , f2 , . . . , fm}) .

The lemma asserts if P � {x ∈ �d : Ax 6 b}, then every valid linear inequality over P can be written
as a non-negative combination of the defining inequalities 〈Ai , x〉 6 bi .

Exericse (0.5 points) 2.4. Use Farkas’ Lemma to prove that if S and S′ are two different slack
matrices for the same polytope P, then rank+(S) � rank+(S′).

There is an interesting connection here to proof systems. The theorem says that we can interpret
γ̄(P) as the minimum number of axioms so that every valid linear inequality for P can be proved
using a conic (i.e., non-negative) combination of the axioms.

To conclude this section, let us now prove the Yannakakis Factorization Theorem.

Proof of Theorem 2.2. Let us write P � {x ∈ �d : Ax 6 b} � conv(V) where V � {x1 , . . . , xN} and
A ∈ �m×d . Let Mi j � bi − 〈Ai , x j〉 denote the associated slack matrix.

First, let us suppose there is a lift Q ⊆ �d+d′ of P ⊆ �d given by r inequalities. We may assume that

Q �

{(x , y) ∈ �d
×�d′ : Rx + Sy � t ,Ux + V y 6 c

}
,

and P is the projection of Q to the first d coordinates, and where U ∈ �r×d and V ∈ �r×d′.

Now observe that the inequalities Ax 6 b are valid for Q simply because if (x , y) ∈ Q then x ∈ P.
For every x j ∈ P, let y j ∈ �

d′ be such that (x j , y j) ∈ Q. Let Z ∈ �(r+m)×N denote the matrix that
records the slack of the r inequalities of Q at the points (x1 , y1), . . . , (yN , xN), and then in the last m
rows the slack of the inequalities Ax 6 b.

Then we have: rank+(M) 6 rank+(Z) (since M is precisely the last m rows of Z). But Lemma 2.3 tells
us that the last m rows of Z are non-negative combinations of the first r rows, hence rank+(Z) 6 r,
and we conclude that rank+(M) 6 r.

Conversely, let us suppose there is a non-negative factorization M � KL where K ∈ �m×r
+ and

L ∈ �r×N
+ . We claim that the x-coordinate projection of

Q � {(x , y) ∈ �d+r : Ax + K y � b , y > 0}
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is precisely P, which will imply that γ̄(P) 6 r. This is not quite true: One should also verify that
Q is a polytope, which means it should be bounded. For that to be true, it should be true that no
column of K is identically zero. But this is easy to enforce: If not, we can find a factorization of
smaller rank by deleting that column and the corresponding row of L.

Note that projx(Q) ⊆ P because K y > 0; this is where we use the fact that K is non-negative. For
the other direction P ⊆ projx(Q), we need to find for every vertex x j of P a point y j ∈ �

r such that
(x j , y j) ∈ Q. We simply take y j to be the jth column of L, noting that

Ax j + K y j � Ax j + (b − Ax j) � b

and also y j > 0 (this is where we use that L is non-negative). �

2.1 Proof of Farkas’ Lemma

Exercise (2 points) 2.5. Prove Farkas’ Lemma by completing each of the following steps. Recall
that P � {x ∈ �d : Ax 6 b} is a polytope and A ∈ �m×d . Let A1 , . . . ,Am denote the rows of A.

1. LetA � { f : �d
→ � | f is affine}. Give a natural interpretation ofA as a (d+1)-dimensional

vector space; addition of functions should have the natural meaning ( f + 1)(x) � f (x) + 1(x).
2. Let f1 , f2 , . . . , fm : �d

→ � be the m affine functions given by fi(x) � bi − 〈Ai , x〉. Show that
for x ∈ �d ,

x ∈ P ⇐⇒ f (x) > 0 ∀ f ∈ cone({ f1 , . . . , fm}) .
3. Consider the following fundamental fact.

Theorem 2.6 (Hyperplane separation theorem). For any n > 1, if K ⊆ �n is a non-empty, closed
convex set and y < K, then there is a vector v ∈ �n and value b ∈ � such that 〈v , z〉 > b for all z ∈ K,
but 〈v , y〉 < b.

Use this theorem in conjunction with (i) and (ii) to prove that if f < cone({ f1 , . . . , fm}) then
there is a point x ∈ P such that f (x) < 0. [Hint: This will be the tricky part. One needs to use
the fact that P is bounded.] Conclude that Lemma 2.3 is true.

4. We are left to prove Theorem 2.6. Without loss of generality, we can assume that y � 0. Argue
that the optimization minz∈K ‖z‖2 has a unique solution. Let z∗ be the optimizer, and show
that one can take v � z∗ to prove the theorem.

2.2 Slack matrices and the correlation polytope

Thus to prove a lower bound on γ̄(CUTn), it suffices to find a valid set of linear inequalities for
CUTn and prove a lower bound on the non-negative rank of the corresponding slack matrix.

Toward this end, consider the correlation polytope CORRn ⊆ �
n2 given by

CORRn � conv
��

xxT : x ∈ {0, 1}n	�
.

Exericse (0.5 points) 2.7. Show that for every n > 1, CUTn+1 and CORRn are linearly isomorphic.
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Now we identify a slack matrix for CORRn . Denote by

�2[x1 , . . . , xn] �



a0 +
∑

i

ai xi +
∑
i , j

ai j xi x j



.

the set of quadratic polynomials on �n . Let

QMLn
�

�
f : {0, 1}n

→ � : f � 1 |{0,1}n for some 1 ∈ �2[x1 , . . . , xn]	

be the functions given by restricting quadratic polynomials to the discrete cube.

Observe that every f ∈ QMLn can be written as a multi-linear function

f (x) � a0 +
∑

i

ai xi +
∑
i, j

ai j xi x j

since x2
i � xi for xi ∈ {0, 1}. Finally, define the set of non-negative quadratic multi-linear functions

QMLn
+ � { f ∈ QMLn : f (x) > 0 ∀x ∈ {0, 1}n} .

Lemma 2.8. Define the (infinite) matrixMn : QMLn
+ × {0, 1}n

→ �+ by

Mn( f , x) � f (x) .
ThenMn is a slack matrix for CORRn .

Proof. Consider f ∈ QMLn
+. Recalling that xi � x2

i , we can write

f (x) � b −
∑

i

Aii x2
i −

∑
i, j

Ai j xi x j

for some symmetric matrix A ∈ �n×n and b ∈ �.

Define the Frobenius inner product on matrices A, B ∈ �n×n by

〈A, B〉 � Tr(AT B) �
∑
i , j

Ai jBi j ,

and observe that
f (x) � b − 〈A, xxT〉 .

Since f (x) > 0 for all x ∈ {0, 1}n , we have b − 〈A, xxT〉 > 0 for all x ∈ {0, 1}n , hence by convexity
〈A,Y〉 6 b holds for all Y ∈ CORRn . The quantity f (x) is precisely the slack of this inequality at the
vertex x. �

Exericse (0.5 points) 2.9. Complete the preceding proof by showing that the family of linear
inequalities underlyingMn characterize CORRn .

Combining Exercise 2.7 and Lemma 2.8 yields the following.

Theorem 2.10. For all n > 1, it holds that γ̄(CUTn+1) > rank+(Mn).
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