1 Lifts of polytopes

1.1 Polytopes and inequalities

Recall that the convex hull of a subset $X \subseteq \mathbb{R}^{n}$ is defined by

$$
\operatorname{conv}(X)=\left\{\lambda x+(1-\lambda) x^{\prime}: x, x^{\prime} \in X, \lambda \in[0,1]\right\}
$$

A d-dimensional convex polytope $P \subseteq \mathbb{R}^{d}$ is the convex hull of a finite set of points in \mathbb{R}^{d} :

$$
P=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)
$$

for some $x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}$.
Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\}
$$

for some matrix $A \in \mathbb{R}^{m \times d}$.
Let us define a measure of complexity for P : Define $\gamma(P)$ to be the smallest number m such that for some $C \in \mathbb{R}^{s \times d}, y \in \mathbb{R}^{s}, A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}$, we have

$$
P=\left\{x \in \mathbb{R}^{d}: C x=y \text { and } A x \leqslant b\right\} .
$$

In other words, this is the minimum number of inequalities needed to describe P. If P is fulldimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of $P)$.
Thinking of $\gamma(P)$ as a measure of complexity makes sense from the point of view of optimization: Interior point methods can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in $\gamma(P)$.

1.2 Lifts of polytopes

Many simple polytopes require a large number of inequalities to describe. For instance, the cross-polytope

$$
C_{d}=\left\{x \in \mathbb{R}^{d}:\|x\|_{1} \leqslant 1\right\}=\left\{x \in \mathbb{R}^{d}: \pm x_{1} \pm x_{2} \cdots \pm x_{d} \leqslant 1\right\}
$$

has $\gamma\left(C_{d}\right)=2^{d}$. On the other hand, C_{d} is the projection of the polytope

$$
Q_{d}=\left\{(x, y) \in \mathbb{R}^{2 d}: \sum_{i=1}^{n} y_{i}=1, y_{i} \geqslant 0,-y_{i} \leqslant x_{i} \leqslant y_{i} \forall i\right\}
$$

onto the x coordinates, and manifestly, $\gamma\left(Q_{d}\right) \leqslant 3 d$. Thus C_{d} is the (linear) shadow of a much simpler polytope in a higher dimension.

Figure 1: A lift Q of a polytope P. [Source: Fiorini, Rothvoss, and Tiwary]

A polytope Q is called a lift of the polytope P if P is the image of Q under an affine projection, i.e. $P=\pi(Q)$, where $\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ is the composition of a linear map and possibly a translation and $N \geqslant n$. By applying an affine map first, one can assume that the projection is merely coordinate projection to the first n coordinates.
Again, from an optimization stand point, lifts are important: If we can optimize linear functionals over Q, then we can optimize linear functionals over P. For instance, if P is obtained from Q by projecting onto the first n coordinates and $w \in \mathbb{R}^{n}$, then

$$
\max _{x \in P}\langle w, x\rangle=\max _{y \in Q}\langle\bar{w}, y\rangle
$$

where $\bar{w} \in \mathbb{R}^{N}$ is given by $\bar{w}=(w, 0,0, \ldots, 0)$.
This motivates the definition

$$
\bar{\gamma}(P)=\min \{\gamma(Q): Q \text { is a lift of } P\} .
$$

The value $\bar{\gamma}(P)$ is sometimes called the (linear) extension complexity of P.
Exercise (1 point) 1.1. Prove that $\gamma\left(C_{d}\right)=2^{d}$.

1.2.1 The permutahedron

Here is a somewhat more interesting family of examples where lifts reduce complexity. The permutahedron $\Pi_{n} \subseteq \mathbb{R}^{n}$ is the convex hull of the vectors $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ where $\left\{i_{1}, \ldots, i_{n}\right\}=\{1, \ldots, n\}$. It is known that $\gamma\left(\Pi_{n}\right)=2^{n}-2$.

Given a permutation $\pi:[n] \rightarrow[n]$, the corresponding permutation matrix is defined by

$$
P_{\pi}=\left(\begin{array}{c}
e_{\pi(1)} \\
e_{\pi(2)} \\
\vdots \\
e_{\pi(n)}
\end{array}\right)
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis vectors.

Figure 2: The permutahedron of order 4. [Source: Wikipedia]

Let $B_{n} \subseteq \mathbb{R}^{n^{2}}$ denote the convex hull of the $n \times n$ permutation matrices. The Birkhoff-von Neumann theorem tells us that B_{n} is precisely the set of doubly stochastic matrices:

$$
B_{n}=\left\{M \in \mathbb{R}^{n \times n}: \sum_{i} M_{i j}=\sum_{j} M_{i j}=1, M_{i j} \geqslant 0 \quad \forall i, j\right\},
$$

thus $\gamma\left(B_{n}\right) \leqslant n^{2}$ (corresponding to the non-negativity constraints on each entry).
Observe that Π_{n} is the linear image of B_{n} under the map $A \mapsto(1,2, \ldots, n) A$, i.e. we multiply a matrix $A \in B_{n}$ on the left by the row vector $(1,2, \ldots, n)$. Thus B_{n} is a lift of Π_{n}, and we conclude that $\bar{\gamma}\left(\Pi_{n}\right) \leqslant n^{2} \ll \gamma\left(\Pi_{n}\right)$.

1.2.2 The cut polytope

If $P \neq N P$, there are certain combinatorial polytopes we should not be able to optimize over efficiently. A central example is the cut polytope: $\mathrm{CUT}_{n} \subseteq \mathbb{R}^{\binom{n}{2}}$ is the convex hull of all all vectors of the form

$$
v_{\{i, j\}}^{S}=\left|\mathbf{1}_{S}(i)-\mathbf{1}_{S}(j)\right| \quad\{i, j\} \in\binom{[n]}{2}
$$

for some subset $S \subseteq\{1, \ldots, n\}$. Here, $\mathbf{1}_{S}$ denotes the characteristic function of S.
Note that the MAX-CUT problem on a graph $G=(V, E)$ can be encoded in the following way: Let $W_{i j}=1$ if $\{i, j\} \in E$ and $W_{i j}=0$ otherwise. Then the value of the maximum cut in G is precisely the maximum of $\langle W, A\rangle$ for $A \in \mathrm{CUT}_{n}$. Accordingly, we should expect that $\bar{\gamma}\left(\mathrm{CUT}_{n}\right)$ cannot be bounded by any polynomial in n (lest we violate a basic tenet of complexity theory).

Our goal in this lecture and the next will be to show that the cut polytope does not admit lifts with $n^{O(1)}$ facets.

1.2.3 Exercises

Exercise (1 point) 1.2. Define the bipartite perfect matching polytope $\mathrm{BM}_{n} \subseteq \mathbb{R}^{n^{2}}$ as the convex hull of all the indicator vectors of edge sets of perfect matchings in the complete bipartite graph $K_{n, n}$. Show that $\gamma\left(\mathrm{BM}_{n}\right) \leqslant n^{2}$.

Exercise (1 point) 1.3. Define the subtour elimination polytope $\operatorname{SEP}_{n} \subseteq \mathbb{R}^{\binom{n}{2}}$ as the set of points $x=\left(x_{i j}\right) \in \mathbb{R}^{\binom{n}{2}}$ satisfying the inequalities

$$
\begin{aligned}
x_{i j} \geqslant 0 & \{i, j\} \in\binom{[n]}{2} \\
\sum_{i=1}^{n} x_{i j} & =2
\end{aligned} \quad j \in[n] .
$$

Show that $\bar{\gamma}\left(\operatorname{SEP}_{n}\right) \leqslant O\left(n^{3}\right)$ by think of the $x_{i j}$ variables as edge capacities, and introducing new variables to enforce that the capacities support a flow of value 2 between every pair $i, j \in[n]$.

Exercise (1 point) 1.4 (Goemans). Show that for any polytope P,

$$
\# \text { faces of } P \leqslant 2^{\# \text { facets of } P} \text {. }
$$

Recall that a facet of P is a face of largest dimension. (Thus if $P \subseteq \mathbb{R}^{n}$ is full-dimensional, then a facet of P is an $(n-1)$-dimensional face.) Use this to conclude that $\bar{\gamma}\left(\Pi_{n}\right) \geqslant \log (n!) \geqslant \Omega(n \log n)$.

Exercise (1 point) 1.5 (Martin, 1991). Define the spanning tree polytope $\mathrm{ST}_{n} \subseteq \mathbb{R}^{\binom{n}{2}}$ as the convex hull of all the indicator vectors of spanning trees in the complete graph K_{n}. Show that $\bar{\gamma}\left(\mathrm{ST}_{n}\right) \leqslant O\left(n^{3}\right)$ by introducing new variables $\left\{z_{u v, w}: u, v, w \in\{1,2, \ldots, n\}\right\}$ meant to represent whether the edge $\{u, v\}$ is in the spanning tree T and w is in the component of v when the edge $\{u, v\}$ is removed from T.

2 Non-negative matrix factorization

The key to understanding $\bar{\gamma}\left(\mathrm{CUT}_{n}\right)$ comes from Yannakakis' factorization theorem.
Consider a polytope $P \subseteq \mathbb{R}^{d}$ and let us write in two ways: As a convex hull of vertices

$$
P=\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right),
$$

and as an intersection of half-spaces: For some $A \in \mathbb{R}^{m \times d}$,

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\} .
$$

Given this pair of representations, we can define the corresponding slack matrix of P by

$$
S_{i j}=b_{i}-\left\langle A_{i}, x_{j}\right\rangle \quad i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, n\} .
$$

Here, A_{1}, \ldots, A_{m} denote the rows of A.
We need one more definition. If we have a non-negative matrix $M \in \mathbb{R}_{+}^{m \times n}$, then a rank- r non-negative factorization of M is a factorization $M=A B$ where $A \in \mathbb{R}_{+}^{m \times r}$ and $B \in \mathbb{R}_{+}^{r \times n}$. We then define the non-negative rank of M, written $\operatorname{rank}_{+}(M)$, to be the smallest r such that M admits a rank- r non-negative factorization.

Exericse (0.5 points) 2.1. Show that rank $_{+}(M)$ is the smallest r such that $M=M_{1}+\cdots+M_{r}$ where each M_{i} is a non-negative matrix satisfying $\operatorname{rank}_{+}\left(M_{i}\right)=1$.

The next result gives a precise connection between non-negative rank and extension complexity.
Theorem 2.2 (Yannakakis Factorization Theorem). For every polytope P, it holds that $\bar{\gamma}(P)=\operatorname{rank}_{+}(S)$ for any slack matrix S of P.

The key fact underlying this theorem is Farkas' Lemma (see Section Section 2.1 for a proof). Recall that a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is affine if $f(x)=\langle a, x\rangle-b$ for some $a \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$. Given functions $f_{1}, \ldots, f_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, denote their non-negative span by

$$
\text { cone }\left(\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}\right)=\left\{\sum_{i=1}^{k} \lambda_{i} f_{i}: \lambda_{i} \geqslant 0\right\} .
$$

Lemma 2.3 (Farkas Lemma). Consider a polytope $P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\}$ where A has rows $A_{1}, A_{2}, \ldots, A_{m}$. Let $f_{i}(x)=b_{i}-\left\langle A_{i}, x\right\rangle$ for each $i=1, \ldots, m$. If f is any affine function such that $\left.f\right|_{P} \geqslant 0$, then

$$
f \in \operatorname{cone}\left(\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}\right)
$$

The lemma asserts if $P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\}$, then every valid linear inequality over P can be written as a non-negative combination of the defining inequalities $\left\langle A_{i}, x\right\rangle \leqslant b_{i}$.

Exericse (0.5 points) 2.4. Use Farkas' Lemma to prove that if S and S^{\prime} are two different slack matrices for the same polytope P, then $\operatorname{rank}_{+}(S)=\operatorname{rank}_{+}\left(S^{\prime}\right)$.

There is an interesting connection here to proof systems. The theorem says that we can interpret $\bar{\gamma}(P)$ as the minimum number of axioms so that every valid linear inequality for P can be proved using a conic (i.e., non-negative) combination of the axioms.
To conclude this section, let us now prove the Yannakakis Factorization Theorem.
Proof of Theorem 2.2. Let us write $P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\}=\operatorname{conv}(V)$ where $V=\left\{x_{1}, \ldots, x_{N}\right\}$ and $A \in \mathbb{R}^{m \times d}$. Let $M_{i j}=b_{i}-\left\langle A_{i}, x_{j}\right\rangle$ denote the associated slack matrix.
First, let us suppose there is a lift $Q \subseteq \mathbb{R}^{d+d^{\prime}}$ of $P \subseteq \mathbb{R}^{d}$ given by r inequalities. We may assume that

$$
Q=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}: R x+S y=t, U x+V y \leqslant c\right\}
$$

and P is the projection of Q to the first d coordinates, and where $U \in \mathbb{R}^{r \times d}$ and $V \in \mathbb{R}^{r \times d^{\prime}}$.
Now observe that the inequalities $A x \leqslant b$ are valid for Q simply because if $(x, y) \in Q$ then $x \in P$. For every $x_{j} \in P$, let $y_{j} \in \mathbb{R}^{d^{\prime}}$ be such that $\left(x_{j}, y_{j}\right) \in Q$. Let $Z \in \mathbb{R}^{(r+m) \times N}$ denote the matrix that records the slack of the r inequalities of Q at the points $\left(x_{1}, y_{1}\right), \ldots,\left(y_{N}, x_{N}\right)$, and then in the last m rows the slack of the inequalities $A x \leqslant b$.
Then we have: $\operatorname{rank}_{+}(M) \leqslant \operatorname{rank}_{+}(Z)$ (since M is precisely the last m rows of Z). But Lemma 2.3 tells us that the last m rows of Z are non-negative combinations of the first r rows, hence $\operatorname{rank}_{+}(Z) \leqslant r$, and we conclude that rank $k_{+}(M) \leqslant r$.
Conversely, let us suppose there is a non-negative factorization $M=K L$ where $K \in \mathbb{R}_{+}^{m \times r}$ and $L \in \mathbb{R}_{+}^{r \times N}$. We claim that the x-coordinate projection of

$$
Q=\left\{(x, y) \in \mathbb{R}^{d+r}: A x+K y=b, y \geqslant 0\right\}
$$

is precisely P, which will imply that $\bar{\gamma}(P) \leqslant r$. This is not quite true: One should also verify that Q is a polytope, which means it should be bounded. For that to be true, it should be true that no column of K is identically zero. But this is easy to enforce: If not, we can find a factorization of smaller rank by deleting that column and the corresponding row of L.
Note that $\operatorname{proj}_{x}(Q) \subseteq P$ because $K y \geqslant 0$; this is where we use the fact that K is non-negative. For the other direction $P \subseteq \operatorname{proj}_{x}(Q)$, we need to find for every vertex x_{j} of P a point $y_{j} \in \mathbb{R}^{r}$ such that $\left(x_{j}, y_{j}\right) \in Q$. We simply take y_{j} to be the j th column of L, noting that

$$
A x_{j}+K y_{j}=A x_{j}+\left(b-A x_{j}\right)=b
$$

and also $y_{j} \geqslant 0$ (this is where we use that L is non-negative).

2.1 Proof of Farkas' Lemma

Exercise (2 points) 2.5. Prove Farkas' Lemma by completing each of the following steps. Recall that $P=\left\{x \in \mathbb{R}^{d}: A x \leqslant b\right\}$ is a polytope and $A \in \mathbb{R}^{m \times d}$. Let A_{1}, \ldots, A_{m} denote the rows of A.

1. Let $\mathcal{A}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R} \mid f\right.$ is affine $\}$. Give a natural interpretation of \mathcal{A} as a $(d+1)$-dimensional vector space; addition of functions should have the natural meaning $(f+g)(x)=f(x)+g(x)$.
2. Let $f_{1}, f_{2}, \ldots, f_{m}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the m affine functions given by $f_{i}(x)=b_{i}-\left\langle A_{i}, x\right\rangle$. Show that for $x \in \mathbb{R}^{d}$,

$$
x \in P \Longleftrightarrow f(x) \geqslant 0 \quad \forall f \in \operatorname{cone}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)
$$

3. Consider the following fundamental fact.

Theorem 2.6 (Hyperplane separation theorem). For any $n \geqslant 1$, if $K \subseteq \mathbb{R}^{n}$ is a non-empty, closed convex set and $y \notin K$, then there is a vector $v \in \mathbb{R}^{n}$ and value $b \in \mathbb{R}$ such that $\langle v, z\rangle \geqslant b$ for all $z \in K$, but $\langle v, y\rangle<b$.

Use this theorem in conjunction with (i) and (ii) to prove that if $f \notin$ cone $\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)$ then there is a point $x \in P$ such that $f(x)<0$. [Hint: This will be the tricky part. One needs to use the fact that P is bounded.] Conclude that Lemma 2.3 is true.
4. We are left to prove Theorem 2.6. Without loss of generality, we can assume that $y=0$. Argue that the optimization $\min _{z \in K}\|z\|^{2}$ has a unique solution. Let z^{*} be the optimizer, and show that one can take $v=z^{*}$ to prove the theorem.

2.2 Slack matrices and the correlation polytope

Thus to prove a lower bound on $\bar{\gamma}\left(\mathrm{CUT}_{n}\right)$, it suffices to find a valid set of linear inequalities for CUT_{n} and prove a lower bound on the non-negative rank of the corresponding slack matrix.
Toward this end, consider the correlation polytope $\operatorname{CORR}_{n} \subseteq \mathbb{R}^{n^{2}}$ given by

$$
\operatorname{CORR}_{n}=\operatorname{conv}\left(\left\{x x^{T}: x \in\{0,1\}^{n}\right\}\right) .
$$

Exericse (0.5 points) 2.7. Show that for every $n \geqslant 1, \mathrm{CUT}_{n+1}$ and CORR_{n} are linearly isomorphic.

Now we identify a slack matrix for CORR_{n}. Denote by

$$
\mathbb{R}_{2}\left[x_{1}, \ldots, x_{n}\right]=\left\{a_{0}+\sum_{i} a_{i} x_{i}+\sum_{i, j} a_{i j} x_{i} x_{j}\right\} .
$$

the set of quadratic polynomials on \mathbb{R}^{n}. Let

$$
\operatorname{QML}^{n}=\left\{f:\{0,1\}^{n} \rightarrow \mathbb{R}: f=\left.g\right|_{\{0,1\}^{n}} \text { for some } g \in \mathbb{R}_{2}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

be the functions given by restricting quadratic polynomials to the discrete cube.
Observe that every $f \in$ QML n can be written as a multi-linear function

$$
f(x)=a_{0}+\sum_{i} a_{i} x_{i}+\sum_{i \neq j} a_{i j} x_{i} x_{j}
$$

since $x_{i}^{2}=x_{i}$ for $x_{i} \in\{0,1\}$. Finally, define the set of non-negative quadratic multi-linear functions

$$
\mathrm{QML}_{+}^{n}=\left\{f \in \mathrm{QML}^{n}: f(x) \geqslant 0 \quad \forall x \in\{0,1\}^{n}\right\} .
$$

Lemma 2.8. Define the (infinite) matrix $\mathcal{M}_{n}: \mathrm{QML}_{+}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$by

$$
\mathcal{M}_{n}(f, x)=f(x)
$$

Then \mathcal{M}_{n} is a slack matrix for CORR_{n}.
Proof. Consider $f \in \mathrm{QML}_{+}^{n}$. Recalling that $x_{i}=x_{i}^{2}$, we can write

$$
f(x)=b-\sum_{i} A_{i i} x_{i}^{2}-\sum_{i \neq j} A_{i j} x_{i} x_{j}
$$

for some symmetric matrix $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$.
Define the Frobenius inner product on matrices $A, B \in \mathbb{R}^{n \times n}$ by

$$
\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)=\sum_{i, j} A_{i j} B_{i j},
$$

and observe that

$$
f(x)=b-\left\langle A, x x^{T}\right\rangle .
$$

Since $f(x) \geqslant 0$ for all $x \in\{0,1\}^{n}$, we have $b-\left\langle A, x x^{T}\right\rangle \geqslant 0$ for all $x \in\{0,1\}^{n}$, hence by convexity $\langle A, Y\rangle \leqslant b$ holds for all $Y \in \operatorname{CORR}_{n}$. The quantity $f(x)$ is precisely the slack of this inequality at the vertex x.

Exericse (0.5 points) 2.9. Complete the preceding proof by showing that the family of linear inequalities underlying \mathcal{M}_{n} characterize CORR_{n}.

Combining Exercise 2.7 and Lemma 2.8 yields the following.
Theorem 2.10. For all $n \geqslant 1$, it holds that $\bar{\gamma}\left(\mathrm{CUT}_{n+1}\right) \geqslant \operatorname{rank}_{+}\left(\mathcal{M}_{n}\right)$.

