1 Lifts of polytopes

1.1 Polytopes and inequalities

Recall that the *convex hull* of a subset $X \subseteq \mathbb{R}^n$ is defined by

$$conv(X) = \{\lambda x + (1 - \lambda)x' : x, x' \in X, \lambda \in [0, 1]\}.$$

A *d*-dimensional convex polytope $P \subseteq \mathbb{R}^d$ is the convex hull of a finite set of points in \mathbb{R}^d :

$$P = \operatorname{conv}\left(\{x_1, \ldots, x_k\}\right)$$

for some $x_1, \ldots, x_k \in \mathbb{R}^d$.

Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities

$$P = \{x \in \mathbb{R}^d : Ax \le b\}$$

for some matrix $A \in \mathbb{R}^{m \times d}$.

Let us define a measure of complexity for *P*: Define $\gamma(P)$ to be the smallest number *m* such that for some $C \in \mathbb{R}^{s \times d}$, $y \in \mathbb{R}^s$, $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, we have

$$P = \{x \in \mathbb{R}^d : Cx = y \text{ and } Ax \leq b\}.$$

In other words, this is the minimum number of *inequalities* needed to describe P. If P is fulldimensional, then this is precisely the number of *facets* of P (a facet is a maximal proper face of P).

Thinking of $\gamma(P)$ as a measure of complexity makes sense from the point of view of optimization: Interior point methods can efficiently optimize linear functions over *P* (to arbitrary accuracy) in time that is polynomial in $\gamma(P)$.

1.2 Lifts of polytopes

Many simple polytopes require a large number of inequalities to describe. For instance, the *cross-polytope*

$$C_d = \{ x \in \mathbb{R}^d : ||x||_1 \le 1 \} = \{ x \in \mathbb{R}^d : \pm x_1 \pm x_2 \cdots \pm x_d \le 1 \}$$

has $\gamma(C_d) = 2^d$. On the other hand, C_d is the *projection* of the polytope

$$Q_d = \left\{ (x, y) \in \mathbb{R}^{2d} : \sum_{i=1}^n y_i = 1, \ y_i \ge 0, \ -y_i \le x_i \le y_i \ \forall i \right\}$$

onto the *x* coordinates, and manifestly, $\gamma(Q_d) \leq 3d$. Thus C_d is the (linear) shadow of a much simpler polytope in a higher dimension.

Figure 1: A lift *Q* of a polytope *P*. [Source: Fiorini, Rothvoss, and Tiwary]

A polytope *Q* is called a *lift* of the polytope *P* if *P* is the image of *Q* under an affine projection, i.e. $P = \pi(Q)$, where $\pi : \mathbb{R}^N \to \mathbb{R}^n$ is the composition of a linear map and possibly a translation and $N \ge n$. By applying an affine map first, one can assume that the projection is merely coordinate projection to the first *n* coordinates.

Again, from an optimization stand point, lifts are important: If we can optimize linear functionals over Q, then we can optimize linear functionals over P. For instance, if P is obtained from Q by projecting onto the first n coordinates and $w \in \mathbb{R}^n$, then

$$\max_{x\in P} \left\langle w, x \right\rangle = \max_{y\in Q} \left\langle \bar{w}, y \right\rangle,$$

where $\bar{w} \in \mathbb{R}^N$ is given by $\bar{w} = (w, 0, 0, \dots, 0)$.

This motivates the definition

$$\bar{\gamma}(P) = \min\{\gamma(Q) : Q \text{ is a lift of } P\}.$$

The value $\bar{\gamma}(P)$ is sometimes called the *(linear) extension complexity* of *P*.

Exercise (1 point) 1.1. Prove that $\gamma(C_d) = 2^d$.

1.2.1 The permutahedron

Here is a somewhat more interesting family of examples where lifts reduce complexity. The *permutahedron* $\Pi_n \subseteq \mathbb{R}^n$ is the convex hull of the vectors $(i_1, i_2, ..., i_n)$ where $\{i_1, ..., i_n\} = \{1, ..., n\}$. It is known that $\gamma(\Pi_n) = 2^n - 2$.

Given a permutation $\pi : [n] \rightarrow [n]$, the corresponding *permutation matrix* is defined by

$$P_{\pi} = \begin{pmatrix} e_{\pi(1)} \\ e_{\pi(2)} \\ \vdots \\ e_{\pi(n)} \end{pmatrix},$$

where e_1, e_2, \ldots, e_n are the standard basis vectors.

Figure 2: The permutahedron of order 4. [Source: Wikipedia]

Let $B_n \subseteq \mathbb{R}^{n^2}$ denote the convex hull of the $n \times n$ permutation matrices. The Birkhoff-von Neumann theorem tells us that B_n is precisely the set of doubly stochastic matrices:

$$B_n = \left\{ M \in \mathbb{R}^{n \times n} : \sum_i M_{ij} = \sum_j M_{ij} = 1, M_{ij} \ge 0 \quad \forall i, j \right\},\$$

thus $\gamma(B_n) \leq n^2$ (corresponding to the non-negativity constraints on each entry).

Observe that Π_n is the linear image of B_n under the map $A \mapsto (1, 2, ..., n)A$, i.e. we multiply a matrix $A \in B_n$ on the left by the row vector (1, 2, ..., n). Thus B_n is a lift of Π_n , and we conclude that $\bar{\gamma}(\Pi_n) \leq n^2 \ll \gamma(\Pi_n)$.

1.2.2 The cut polytope

If $P \neq NP$, there are certain combinatorial polytopes we should not be able to optimize over efficiently. A central example is the *cut polytope*: $\text{CUT}_n \subseteq \mathbb{R}^{\binom{n}{2}}$ is the convex hull of all all vectors of the form

$$v_{\{i,j\}}^{S} = |\mathbf{1}_{S}(i) - \mathbf{1}_{S}(j)| \qquad \{i,j\} \in \binom{[n]}{2}$$

for some subset $S \subseteq \{1, ..., n\}$. Here, $\mathbf{1}_S$ denotes the characteristic function of S.

Note that the MAX-CUT problem on a graph G = (V, E) can be encoded in the following way: Let $W_{ij} = 1$ if $\{i, j\} \in E$ and $W_{ij} = 0$ otherwise. Then the value of the maximum cut in G is precisely the maximum of $\langle W, A \rangle$ for $A \in \text{CUT}_n$. Accordingly, we should expect that $\bar{\gamma}(\text{CUT}_n)$ cannot be bounded by any polynomial in n (lest we violate a basic tenet of complexity theory).

Our goal in this lecture and the next will be to show that the cut polytope does not admit lifts with $n^{O(1)}$ facets.

1.2.3 Exercises

Exercise (1 point) 1.2. Define the *bipartite perfect matching polytope* $BM_n \subseteq \mathbb{R}^{n^2}$ as the convex hull of all the indicator vectors of edge sets of perfect matchings in the complete bipartite graph $K_{n,n}$. Show that $\gamma(BM_n) \leq n^2$.

Exercise (1 point) 1.3. Define the *subtour elimination polytope* $\text{SEP}_n \subseteq \mathbb{R}^{\binom{n}{2}}$ as the set of points $x = (x_{ij}) \in \mathbb{R}^{\binom{n}{2}}$ satisfying the inequalities

$$\begin{aligned} x_{ij} \ge 0 & \{i, j\} \in \binom{\lfloor n \rfloor}{2} \\ \sum_{i=1}^{n} x_{ij} = 2 & j \in [n] \\ \sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 2 & S \subseteq [n], 2 \le |S| \le n - 2 \end{aligned}$$

Show that $\bar{\gamma}(\text{SEP}_n) \leq O(n^3)$ by think of the x_{ij} variables as edge capacities, and introducing new variables to enforce that the capacities support a flow of value 2 between every pair $i, j \in [n]$.

Exercise (1 point) 1.4 (Goemans). Show that for any polytope *P*,

faces of
$$P \leq 2^{\# \text{ facets of } P}$$
.

Recall that a facet of *P* is a face of largest dimension. (Thus if $P \subseteq \mathbb{R}^n$ is full-dimensional, then a facet of *P* is an (n - 1)-dimensional face.) Use this to conclude that $\overline{\gamma}(\prod_n) \ge \log(n!) \ge \Omega(n \log n)$.

Exercise (1 point) 1.5 (Martin, 1991). Define the *spanning tree polytope* $ST_n \subseteq \mathbb{R}^{\binom{n}{2}}$ as the convex hull of all the indicator vectors of spanning trees in the complete graph K_n . Show that $\bar{\gamma}(ST_n) \leq O(n^3)$ by introducing new variables $\{z_{uv,w} : u, v, w \in \{1, 2, ..., n\}$ meant to represent whether the edge $\{u, v\}$ is in the spanning tree T and w is in the component of v when the edge $\{u, v\}$ is removed from T.

2 Non-negative matrix factorization

The key to understanding $\bar{\gamma}(\text{CUT}_n)$ comes from Yannakakis' factorization theorem. Consider a polytope $P \subseteq \mathbb{R}^d$ and let us write in two ways: As a convex hull of vertices

$$P = \operatorname{conv}\left(\{x_1, x_2, \dots, x_n\}\right),$$

and as an intersection of half-spaces: For some $A \in \mathbb{R}^{m \times d}$,

$$P = \left\{ x \in \mathbb{R}^d : Ax \le b \right\} \,.$$

Given this pair of representations, we can define the corresponding *slack matrix* of *P* by

 $S_{ij} = b_i - \langle A_i, x_j \rangle$ $i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, n\}.$

Here, A_1, \ldots, A_m denote the rows of A.

We need one more definition. If we have a non-negative matrix $M \in \mathbb{R}^{m \times n}_+$, then a *rank-r non-negative factorization of* M is a factorization M = AB where $A \in \mathbb{R}^{m \times r}_+$ and $B \in \mathbb{R}^{r \times n}_+$. We then define the *non-negative rank of* M, written rank₊(M), to be the smallest r such that M admits a rank-r non-negative factorization.

Exercise (0.5 points) 2.1. Show that rank₊(M) is the smallest r such that $M = M_1 + \cdots + M_r$ where each M_i is a non-negative matrix satisfying rank₊(M_i) = 1.

The next result gives a precise connection between non-negative rank and extension complexity.

Theorem 2.2 (Yannakakis Factorization Theorem). *For every polytope* P, *it holds that* $\bar{\gamma}(P) = \operatorname{rank}_+(S)$ *for any slack matrix* S *of* P.

The key fact underlying this theorem is Farkas' Lemma (see Section Section 2.1 for a proof). Recall that a function $f : \mathbb{R}^d \to \mathbb{R}$ is *affine* if $f(x) = \langle a, x \rangle - b$ for some $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given functions $f_1, \ldots, f_k : \mathbb{R}^d \to \mathbb{R}$, denote their non-negative span by

cone
$$(\{f_1, f_2, \ldots, f_k\}) = \left\{\sum_{i=1}^k \lambda_i f_i : \lambda_i \ge 0\right\}$$
.

Lemma 2.3 (Farkas Lemma). Consider a polytope $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ where A has rows A_1, A_2, \ldots, A_m . Let $f_i(x) = b_i - \langle A_i, x \rangle$ for each $i = 1, \ldots, m$. If f is any affine function such that $f|_P \ge 0$, then

$$f \in \operatorname{cone}(\{f_1, f_2, \ldots, f_m\}).$$

The lemma asserts if $P = \{x \in \mathbb{R}^d : Ax \leq b\}$, then every valid linear inequality over *P* can be written as a non-negative combination of the defining inequalities $\langle A_i, x \rangle \leq b_i$.

Exercise (0.5 points) 2.4. Use Farkas' Lemma to prove that if *S* and *S*' are two different slack matrices for the same polytope *P*, then rank₊(*S*) = rank₊(*S*').

There is an interesting connection here to proof systems. The theorem says that we can interpret $\bar{\gamma}(P)$ as the minimum number of axioms so that every valid linear inequality for *P* can be proved using a conic (i.e., non-negative) combination of the axioms.

To conclude this section, let us now prove the Yannakakis Factorization Theorem.

Proof of Theorem 2.2. Let us write $P = \{x \in \mathbb{R}^d : Ax \leq b\} = \operatorname{conv}(V)$ where $V = \{x_1, \ldots, x_N\}$ and $A \in \mathbb{R}^{m \times d}$. Let $M_{ij} = b_i - \langle A_i, x_j \rangle$ denote the associated slack matrix.

First, let us suppose there is a lift $Q \subseteq \mathbb{R}^{d+d'}$ of $P \subseteq \mathbb{R}^d$ given by *r* inequalities. We may assume that

$$Q = \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d' : Rx + Sy = t, Ux + Vy \leq c \right\},\$$

and *P* is the projection of *Q* to the first *d* coordinates, and where $U \in \mathbb{R}^{r \times d}$ and $V \in \mathbb{R}^{r \times d'}$.

Now observe that the inequalities $Ax \leq b$ are valid for Q simply because if $(x, y) \in Q$ then $x \in P$. For every $x_j \in P$, let $y_j \in \mathbb{R}^{d'}$ be such that $(x_j, y_j) \in Q$. Let $Z \in \mathbb{R}^{(r+m) \times N}$ denote the matrix that records the slack of the r inequalities of Q at the points $(x_1, y_1), \ldots, (y_N, x_N)$, and then in the last m rows the slack of the inequalities $Ax \leq b$.

Then we have: $\operatorname{rank}_+(M) \leq \operatorname{rank}_+(Z)$ (since *M* is precisely the last *m* rows of *Z*). But Lemma 2.3 tells us that the last *m* rows of *Z* are non-negative combinations of the first *r* rows, hence $\operatorname{rank}_+(Z) \leq r$, and we conclude that $\operatorname{rank}_+(M) \leq r$.

Conversely, let us suppose there is a non-negative factorization M = KL where $K \in \mathbb{R}^{m \times r}_+$ and $L \in \mathbb{R}^{r \times N}_+$. We claim that the *x*-coordinate projection of

$$Q = \{(x, y) \in \mathbb{R}^{d+r} : Ax + Ky = b, y \ge 0\}$$

is precisely *P*, which will imply that $\bar{\gamma}(P) \leq r$. This is not quite true: One should also verify that *Q* is a polytope, which means it should be bounded. For that to be true, it should be true that no column of *K* is identically zero. But this is easy to enforce: If not, we can find a factorization of smaller rank by deleting that column and the corresponding row of *L*.

Note that $\operatorname{proj}_x(Q) \subseteq P$ because $Ky \ge 0$; this is where we use the fact that K is non-negative. For the other direction $P \subseteq \operatorname{proj}_x(Q)$, we need to find for every vertex x_j of P a point $y_j \in \mathbb{R}^r$ such that $(x_j, y_j) \in Q$. We simply take y_j to be the *j*th column of L, noting that

$$Ax_{i} + Ky_{i} = Ax_{i} + (b - Ax_{i}) = b$$

and also $y_i \ge 0$ (this is where we use that *L* is non-negative).

2.1 Proof of Farkas' Lemma

Exercise (2 points) 2.5. Prove Farkas' Lemma by completing each of the following steps. Recall that $P = \{x \in \mathbb{R}^d : Ax \leq b\}$ is a polytope and $A \in \mathbb{R}^{m \times d}$. Let A_1, \ldots, A_m denote the rows of A.

- 1. Let $\mathcal{A} = \{f : \mathbb{R}^d \to \mathbb{R} \mid f \text{ is affine}\}$. Give a natural interpretation of \mathcal{A} as a (d+1)-dimensional vector space; addition of functions should have the natural meaning (f + g)(x) = f(x) + g(x).
- 2. Let $f_1, f_2, \ldots, f_m : \mathbb{R}^d \to \mathbb{R}$ be the *m* affine functions given by $f_i(x) = b_i \langle A_i, x \rangle$. Show that for $x \in \mathbb{R}^d$,

$$x \in P \iff f(x) \ge 0 \quad \forall f \in \operatorname{cone}(\{f_1, \dots, f_m\}).$$

3. Consider the following fundamental fact.

Theorem 2.6 (Hyperplane separation theorem). For any $n \ge 1$, if $K \subseteq \mathbb{R}^n$ is a non-empty, closed convex set and $y \notin K$, then there is a vector $v \in \mathbb{R}^n$ and value $b \in \mathbb{R}$ such that $\langle v, z \rangle \ge b$ for all $z \in K$, but $\langle v, y \rangle < b$.

Use this theorem in conjunction with (i) and (ii) to prove that if $f \notin \text{cone}(\{f_1, \ldots, f_m\})$ then there is a point $x \in P$ such that f(x) < 0. [Hint: This will be the tricky part. One needs to use the fact that P is bounded.] Conclude that Lemma 2.3 is true.

4. We are left to prove Theorem 2.6. Without loss of generality, we can assume that y = 0. Argue that the optimization $\min_{z \in K} ||z||^2$ has a unique solution. Let z^* be the optimizer, and show that one can take $v = z^*$ to prove the theorem.

2.2 Slack matrices and the correlation polytope

Thus to prove a lower bound on $\bar{\gamma}(\text{CUT}_n)$, it suffices to find a valid set of linear inequalities for CUT_n and prove a lower bound on the non-negative rank of the corresponding slack matrix.

Toward this end, consider the correlation polytope $\text{CORR}_n \subseteq \mathbb{R}^{n^2}$ given by

$$\text{CORR}_n = \text{conv}(\{xx^T : x \in \{0, 1\}^n\}).$$

Exercise (0.5 points) 2.7. Show that for every $n \ge 1$, CUT_{n+1} and $CORR_n$ are linearly isomorphic.

Now we identify a slack matrix for $CORR_n$. Denote by

$$\mathbb{R}_2[x_1,\ldots,x_n] = \left\{a_0 + \sum_i a_i x_i + \sum_{i,j} a_{ij} x_i x_j\right\}.$$

the set of quadratic polynomials on \mathbb{R}^n . Let

$$QML^n = \{ f : \{0,1\}^n \to \mathbb{R} : f = g|_{\{0,1\}^n} \text{ for some } g \in \mathbb{R}_2[x_1, \dots, x_n] \}$$

be the functions given by restricting quadratic polynomials to the discrete cube.

Observe that every $f \in QML^n$ can be written as a multi-linear function

$$f(x) = a_0 + \sum_i a_i x_i + \sum_{i \neq j} a_{ij} x_i x_j$$

since $x_i^2 = x_i$ for $x_i \in \{0, 1\}$. Finally, define the set of non-negative quadratic multi-linear functions

$$\mathsf{QML}^n_+ = \{ f \in \mathsf{QML}^n : f(x) \ge 0 \quad \forall x \in \{0,1\}^n \}$$

Lemma 2.8. Define the (infinite) matrix $\mathcal{M}_n : \mathsf{QML}^n_+ \times \{0, 1\}^n \to \mathbb{R}_+$ by

$$\mathcal{M}_n(f,x)=f(x)\,.$$

Then \mathcal{M}_n *is a slack matrix for* CORR_n *.*

Proof. Consider $f \in QML_+^n$. Recalling that $x_i = x_i^2$, we can write

$$f(x) = b - \sum_{i} A_{ii} x_i^2 - \sum_{i \neq j} A_{ij} x_i x_j$$

for some symmetric matrix $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$.

Define the Frobenius inner product on matrices $A, B \in \mathbb{R}^{n \times n}$ by

$$\langle A, B \rangle = \operatorname{Tr}(A^T B) = \sum_{i,j} A_{ij} B_{ij},$$

and observe that

$$f(x) = b - \langle A, xx^T \rangle.$$

Since $f(x) \ge 0$ for all $x \in \{0, 1\}^n$, we have $b - \langle A, xx^T \rangle \ge 0$ for all $x \in \{0, 1\}^n$, hence by convexity $\langle A, Y \rangle \le b$ holds for all $Y \in CORR_n$. The quantity f(x) is precisely the slack of this inequality at the vertex x.

Exericse (0.5 points) 2.9. Complete the preceding proof by showing that the family of linear inequalities underlying M_n characterize CORR_n.

Combining Exercise 2.7 and Lemma 2.8 yields the following.

Theorem 2.10. For all $n \ge 1$, it holds that $\bar{\gamma}(\text{CUT}_{n+1}) \ge \text{rank}_+(\mathcal{M}_n)$.