1 Non-negative rank and positivity certificates

Recall the matrix $\mathcal{M}_n : \mathsf{QML}^n_+ \times \{0,1\}^n \to \mathbb{R}_+$ from last lecture, defined by $\mathcal{M}_n(f, x) = f(x)$. Our goal is to prove a lower bound on rank₊(\mathcal{M}_n), and hence on $\bar{\gamma}(\mathsf{CUT}_n)$.

If $r = \operatorname{rank}_+(\mathcal{M}_n)$, it means we can write

$$f(x) = \mathcal{M}_n(f, x) = \sum_{i=1}^r A_i(f) B_i(x)$$
 (1.1)

for some functions $A_i : QML_+^n \to \mathbb{R}_+$ and $B_i : \{0, 1\}^n \to \mathbb{R}_+$. (Here we are using a factorization $\mathcal{M}_n = AB$ where $A_{f,i} = A_i(f)$ and $B_{x,i} = B_i(x)$.)

More succinctly, we can write $f = \sum_{i=1}^{r} A_i(f)B_i$. Thus the low-rank factorization gives us a "proof system" for QML₊^{*n*}. Every $f \in QML_+^n$ can be written as a conic combination of the functions B_1, B_2, \ldots, B_r , thereby certifying its positivity (since the B_i 's are positive functions).

Let's think about natural families $\mathcal{B} = \{B_i\}$ of "axioms." Observe that QML^n_+ is invariant under the natural action of S_n (the symmetric group on $\{1, ..., n\}$), where a permutation $\sigma : [n] \to [n]$ acts by permuting the coordinates:

$$\sigma f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Thus we might expect that our family \mathcal{B} should share this invariance. Once we entertain this expectation, there are natural small families of axioms to consider: The space of non-negative k-juntas for some $k \ll n$. (See Section 1.0.1 for exercises that explain why these are essentially the only small symmetric families of axioms.)

A *k*-junta $b : \{0,1\}^n \to \mathbb{R}$ is a function whose value only depends on *k* of its input coordinates. For a subset $S \subseteq \{1, ..., n\}$ with |S| = k and an element $z \in \{0,1\}^k$, let $q_{S,z} : \{0,1\}^n \to \{0,1\}$ denote the function given by $q_{S,z}(x) = 1$ if and only if $x|_S = z$ (where we use $x|_S$ to denote the ordered restriction of *x* to the coordinates in *S*).

We let $\mathcal{J}_k = \{q_{S,z} : |S| \le k, z \in \{0,1\}^{|S|}\}$. Observe that $|\mathcal{J}_k| \le O(n^k)$. Let us also define cone (\mathcal{J}_k) as the set of all non-negative combinations of functions in \mathcal{J}_k .

Exercise (0 points) 1.1. Show that $cone(\mathcal{J}_k)$ is precisely the set of all non-negative combinations of non-negative *k*-juntas.

If it were true that $QML_{+}^{n} \subseteq cone(\mathcal{J}_{k})$ for some k, we could immediately conclude that $rank_{+}(\mathcal{M}_{n}) \leq |\mathcal{J}_{k}| \leq O(n^{k})$ by writing \mathcal{M}_{n} in the form (1.1) where now $\{B_{i}\}$ ranges over the elements of \mathcal{J}_{k} and $\{A_{i}(f)\}$ gives the corresponding non-negative coefficients that follow from $f \in \mathcal{J}_{k}$.

1.0.1 Symmetric families of axioms

Exercise (1 point) 1.2. Consider first the following lemma [Yannakakis 1991].

Lemma 1.3. Let *H* be a subgroup of the symmetric group S_n with $|H| \ge |S_n|/{\binom{n}{d}}$ for some d < n/4. Then there exists a set $J \subseteq [n]$ such that $|J| \le d$ and such that *H* contains all the even permutations that fix the elements of *J*.

Using this lemma, prove the following. Let Q be a family of functions mapping $\{0,1\}^n$ to \mathbb{R} and such that Q is invariant under the action of S_n , i.e. for every $\pi \in S_n$,

$$Q = \{x \mapsto q(\pi x) : q \in Q\},\$$

where πx permutes the coordinates of *x* according to π .

Show that if d < n/4 and $|Q| < \binom{n}{d}$, then each $q \in Q$ can be written

$$q(x_1, \dots, x_n) = q'(x_{i_1}, \dots, x_{i_d}, x_1 + x_2 + \dots + x_n)$$
(1.2)

for some $q' : \{0, 1\}^d \times \mathbb{N} \to \mathbb{R}$. In other words, every $q \in Q$ depends on at most d coordinates and possibly also the value $\sum_{i=1}^{n} x_i$.

Exercise (1 point) 1.4. Use the preceding exercise to show the following. Suppose that $QML_{2n}^+ \subseteq cone(Q)$ for some family Q that is invariant under the action of S_n , and such that $|Q| < \binom{2n}{d}$ for some d < n/2. Then $QML_+^n \subseteq cone(\mathcal{J}_d)$. This shows that, invariant families of axioms of a given size, one cannot do much better than \mathcal{J}_d .

[Hint: Given $q \in QML_n^+$, define $f \in QML_{2n}^+$ by f(x, y) = q(x). Now apply Exercise 1.2 to Q to investigate the structure of f.]

1.1 Junta degree and the dual cone

Clearly $\mathsf{QML}_+^n \subseteq \operatorname{cone}(\mathcal{J}_n)$. We will now see that juntas cannot yield a smaller set of axioms for QML_+^n . Combined with Exercise 1.4, this shows that if $\mathsf{QML}_+^n \subseteq \operatorname{cone}(Q)$ and Q is a family of non-negative functions that is invariant under the action of S_n (see Exercise 1.2), then $|Q| > c^n$ for some c > 1.

Theorem 1.5. Consider the function $f : \{0, 1\}^n \to \mathbb{R}_+$ given by $f(x) = (x_1 + x_2 + \dots + x_n - 1)^2$. Then $f \notin \operatorname{cone}(\mathcal{J}_{n-1})$.

Proof. Suppose we write $f = \sum_{i=1}^{N} q_i$ where each q_i is non-negative. Clearly if $\sum_{i=1}^{n} x_i = 1$, then $f(x_1, \ldots, x_n) = 0$, hence $q_i(x_1, \ldots, x_n) = 0$ for every *i*. But if $q_i \in \mathcal{J}_{n-1}$, then there is some coordinate on which it does not depend. Without loss, suppose it is the first coordinate. Then $0 = q_i(1, 0, \ldots, 0) = q_i(0, 0, \ldots, 0)$. But $f(0, 0, \ldots, 0) = 1$. We conclude that $f \notin \mathcal{J}_{n-1}$.

Let us now prove this in a more roundabout way by introducing a few definitions. First, for $f : \{0, 1\}^n \to \mathbb{R}_+$, define the *junta degree of f* to be

$$\deg_{I}(f) = \min\{k : f \in \operatorname{cone}(\mathcal{J}_{k})\}.$$

Since every *f* is an *n*-junta, we have $\deg_{I}(f) \leq n$.

Now because $\{f : \deg_J(f) \le k\}$ is a cone (spanned by \mathcal{J}_k), there is a universal way of proving that $\deg_J(f) > k$. Say that a functional $\varphi : \{0, 1\}^n \to \mathbb{R}$ is *k*-locally positive if for all $|S| \le k$ and $z \in \{0, 1\}^{|S|}$, we have

$$\sum_{x\in\{0,1\}^n}\varphi(x)q_{S,z}(x)>0\,.$$

These are precisely the linear functionals separating a function f from cone(\mathcal{J}_k): We have deg_{*J*}(f) > k if and only if there is a k-locally positive functional φ such that $\sum_{x \in \{0,1\}^n} \varphi(x) f(x) < 0$. (This follows by the characterization of Exercise 1.1 together with the hyperplane separation theorem of [Lecture 5, Exercise 2.5].) Now we are ready to prove Theorem 1.5 in a different way.

Second proof of Theorem 1.5. We will use an appropriate k-locally positive functional. Define

$$\varphi(x) = \begin{cases} -1 & |x| = 0\\ 1 & |x| = 1\\ 0 & |x| > 1 \end{cases}$$

where |x| denotes the hamming weight of $x \in \{0, 1\}^n$.

Recall the function f from the statement of the theorem and observe that by opening up the square, we have

$$\sum_{x \in \{0,1\}^n} \varphi(x) f(x) = \sum_{x \in \{0,1\}^n} \varphi(x) \left(1 - 2\sum_i x_i + \sum_i x_i^2 + 2\sum_{i \neq j} x_i x_j \right)$$
$$= \sum_{x \in \{0,1\}^n} \varphi(x) \left(1 - \sum_i x_i \right) = -1.$$
(1.3)

Now consider some $S \subseteq \{1, ..., n\}$ with $|S| = k \le n - 1$ and $z \in \{0, 1\}^k$. If z = 0, then

$$\sum_{x\in\{0,1\}^n}\varphi(x)q_{S,z}(x)=-1+1\cdot(n-k)\ge 0\,.$$

If |z| > 1, then the sum is 0. If |z| = 1, then the sum is non-negative because in that case $q_{S,z}$ is only supported on non-negative values of φ . We conclude that φ is *k*-locally positive for $k \le n - 1$. Combined with (1.3), this yields the statement of the theorem.

Exercise (1 point) 1.6. Consider the *knapsack polynomial:* For $n \ge 1$ odd,

$$f(x) = \left(x_1 + x_2 + \dots + x_n - \frac{n}{2}\right)^2 - \frac{1}{4}.$$

It is straightforward to check that $f(x) \ge 0$ for all $x \in \{0, 1\}^n$. Define an appropriate locally positive functional to show that $\deg_I(f) \ge \lfloor \frac{n}{2} \rfloor$.

1.2 From juntas to general factorizations

So far we have seen that we cannot achieve a low non-negative rank factorization of M_n using k-juntas for $k \leq n - 1$.

Remark 1.7. If one translates this into the setting of lift-and-project systems, it says that the *k*-round Sherali-Adams lift of the polytope

$$P = \left\{ x \in [0,1]^{n^2} : x_{ij} = x_{ji}, \, x_{ij} \le x_{jk} + x_{ki} \quad \forall i, j, k \in \{1, \dots, n\} \right\}$$

does not capture CUT_n for $k \leq n - 1$.

In the next lecture, we will show that a non-negative factorization of \mathcal{M}_n would lead to a *k*-junta factorization with *k* small (which we just saw is impossible). This will yield a lower bound on $\bar{\gamma}(\text{CUT}_n)$.

For now, let us state the theorem we want to prove. We first define a submatrix of \mathcal{M}_n . Fix some integer $m \ge 1$ and a function $g : \{0,1\}^m \to \mathbb{R}_+$. Now define the matrix $M_n^g : \binom{[n]}{m} \times \{0,1\}^n \to \mathbb{R}_+$ given by

$$M_n^g(S, x) = g(x|_S).$$

The matrix is indexed by subsets $S \subseteq [n]$ with |S| = m and elements $x \in \{0, 1\}^n$. Here, $x|_S$ represents the (ordered) restriction of x to the coordinates in S.

Theorem 1.8 (Chan-Lee-Raghavendra-Steurer 2013). For every $m \ge 1$ and $g : \{0,1\}^m \to \mathbb{R}_+$, there is a constant C = C(g) such that for all $n \ge 2m$,

$$\operatorname{rank}_{+}(M_{n}^{g}) \ge C\left(\frac{n}{\log n}\right)^{\deg_{J}(g)}$$

Note that if $g \in QML_m^+$ then M_n^g is a submatrix of \mathcal{M}_n . Since Theorem 1.5 furnishes a sequence of quadratic multi-linear functions $\{g_j\}$ with $\deg_J(g_j) \to \infty$, the preceding theorem tells us that rank₊(\mathcal{M}_n) cannot be bounded by any polynomial in n.

In fact, the groundbreaking work of [Fiorini, Massar, Pokutta, Tiwari, de Wolf 2012] showed earlier that rank₊(\mathcal{M}_n) $\geq c^n$ for some constant c > 1. The advantage of Theorem 1.8 lies in its generality (allowing it to be extended to the setting of approximate lifts and semi-definite extended formulations).

Applying Theorem 1.8. We know that for every $g \in QML_+^m$, we have $\bar{\gamma}(CUT_{n+1}) = \operatorname{rank}_+(\mathcal{M}_n)$. Also fom Theorem 1.5, for every $m \ge 1$, we can find a function $g \in QML_+^m$ such that $\deg_I(g) = m$.

Plugging this into Theorem 1.8 shows that for every fixed m,

$$\operatorname{rank}_{+}(\mathcal{M}_{n}) \ge \operatorname{rank}_{+}(\mathcal{M}_{n}^{g}) \ge C(m) \left(\frac{n}{\log n}\right)^{m}.$$

In particular, we conclude that $\gamma(\text{CUT}_n)$ cannot be bounded by any polynomial in n. One cannot obtain stronger bounds directly from Theorem 1.8 because the implicit constant C depends on the function g. Using a more delicate quantitative analysis, one can use the functions of Theorem 1.5 to achieve $\gamma(\text{CUT}_n) \ge 2^{cn^{1/3}}$ for some constant c > 0. See [Lee-Raghavendra-Steurer 2015].