1 Non-negative rank and positivity certificates

Recall the matrix $\mathcal{M}_{n}: \operatorname{QML}_{+}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$from last lecture, defined by $\mathcal{M}_{n}(f, x)=f(x)$. Our goal is to prove a lower bound on $\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right)$, and hence on $\bar{\gamma}\left(\mathrm{CUT}_{n}\right)$.
If $r=\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right)$, it means we can write

$$
\begin{equation*}
f(x)=\mathcal{M}_{n}(f, x)=\sum_{i=1}^{r} A_{i}(f) B_{i}(x) \tag{1.1}
\end{equation*}
$$

for some functions $A_{i}: \mathrm{QML}_{+}^{n} \rightarrow \mathbb{R}_{+}$and $B_{i}:\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$. (Here we are using a factorization $\mathcal{M}_{n}=A B$ where $A_{f, i}=A_{i}(f)$ and $\left.B_{x, i}=B_{i}(x).\right)$
More succinctly, we can write $f=\sum_{i=1}^{r} A_{i}(f) B_{i}$. Thus the low-rank factorization gives us a "proof system" for QML_{+}^{n}. Every $f \in \mathrm{QML}_{+}^{n}$ can be written as a conic combination of the functions $B_{1}, B_{2}, \ldots, B_{r}$, thereby certifying its positivity (since the B_{i} 's are positive functions).
Let's think about natural families $\mathcal{B}=\left\{B_{i}\right\}$ of "axioms." Observe that QML_{+}^{n} is invariant under the natural action of S_{n} (the symmetric group on $\{1, \ldots, n\}$), where a permutation $\sigma:[n] \rightarrow[n]$ acts by permuting the coordinates:

$$
\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

Thus we might expect that our family \mathcal{B} should share this invariance. Once we entertain this expectation, there are natural small families of axioms to consider: The space of non-negative k-juntas for some $k \ll n$. (See Section 1.0.1 for exercises that explain why these are essentially the only small symmetric families of axioms.)
A k-junta $b:\{0,1\}^{n} \rightarrow \mathbb{R}$ is a function whose value only depends on k of its input coordinates. For a subset $S \subseteq\{1, \ldots, n\}$ with $|S|=k$ and an element $z \in\{0,1\}^{k}$, let $q_{S, z}:\{0,1\}^{n} \rightarrow\{0,1\}$ denote the function given by $q_{S, z}(x)=1$ if and only if $\left.x\right|_{S}=z$ (where we use $\left.x\right|_{S}$ to denote the ordered restriction of x to the coordinates in S).
We let $\mathcal{J}_{k}=\left\{q_{S, z}:|S| \leqslant k, z \in\{0,1\}^{|S|}\right\}$. Observe that $\left|\mathcal{J}_{k}\right| \leqslant O\left(n^{k}\right)$. Let us also define cone $\left(\mathcal{J}_{k}\right)$ as the set of all non-negative combinations of functions in \mathcal{J}_{k}.

Exericse (0 points) 1.1. Show that cone $\left(\mathcal{J}_{k}\right)$ is precisely the set of all non-negative combinations of non-negative k-juntas.

If it were true that $\mathrm{QML}_{+}^{n} \subseteq$ cone $\left(\mathcal{J}_{k}\right)$ for some k, we could immediately conclude that rank $\left(\mathcal{M}_{n}\right) \leqslant$ $\left|\mathcal{J}_{k}\right| \leqslant O\left(n^{k}\right)$ by writing \mathcal{M}_{n} in the form (1.1) where now $\left\{B_{i}\right\}$ ranges over the elements of \mathcal{J}_{k} and $\left\{A_{i}(f)\right\}$ gives the corresponding non-negative coefficients that follow from $f \in \mathcal{J}_{k}$.

1.0.1 Symmetric families of axioms

Exercise (1 point) 1.2. Consider first the following lemma [Yannakakis 1991].

Lemma 1.3. Let H be a subgroup of the symmetric group S_{n} with $|H| \geqslant\left|S_{n}\right| /\binom{n}{d}$ for some $d<n / 4$. Then there exists a set $J \subseteq[n]$ such that $|J| \leqslant d$ and such that H contains all the even permutations that fix the elements of J.

Using this lemma, prove the following. Let Q be a family of functions mapping $\{0,1\}^{n}$ to \mathbb{R} and such that Q is invariant under the action of S_{n}, i.e. for every $\pi \in S_{n}$,

$$
Q=\{x \mapsto q(\pi x): q \in Q\},
$$

where πx permutes the coordinates of x according to π.
Show that if $d<n / 4$ and $|Q|<\binom{n}{d}$, then each $q \in Q$ can be written

$$
\begin{equation*}
q\left(x_{1}, \ldots, x_{n}\right)=q^{\prime}\left(x_{i_{1}}, \ldots, x_{i_{d}}, x_{1}+x_{2}+\cdots+x_{n}\right) \tag{1.2}
\end{equation*}
$$

for some $q^{\prime}:\{0,1\}^{d} \times \mathbb{N} \rightarrow \mathbb{R}$. In other words, every $q \in Q$ depends on at most d coordinates and possibly also the value $\sum_{i=1}^{n} x_{i}$.
Exercise (1 point) 1.4. Use the preceding exercise to show the following. Suppose that $\mathrm{QML}_{2 n}^{+} \subseteq$ cone (Q) for some family Q that is invariant under the action of S_{n}, and such that $|Q|<\binom{2 n}{d}$ for some $d<n / 2$. Then $\mathrm{QML}_{+}^{n} \subseteq \operatorname{cone}\left(\mathcal{J}_{d}\right)$. This shows that, invariant families of axioms of a given size, one cannot do much better than \mathcal{J}_{d}.
[Hint: Given $q \in \mathrm{QML}_{n}^{+}$, define $f \in \mathrm{QML}_{2 n}^{+}$by $f(x, y)=q(x)$. Now apply Exercise 1.2 to Q to investigate the structure of f.]

1.1 Junta degree and the dual cone

Clearly $\mathrm{QML}_{+}^{n} \subseteq$ cone $\left(\mathcal{J}_{n}\right)$. We will now see that juntas cannot yield a smaller set of axioms for QML_{+}^{n}. Combined with Exercise 1.4, this shows that if $\mathrm{QML}_{+}^{n} \subseteq$ cone (Q) and Q is a family of non-negative functions that is invariant under the action of S_{n} (see Exercise 1.2), then $|Q|>c^{n}$ for some $c>1$.
Theorem 1.5. Consider the function $f:\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$given by $f(x)=\left(x_{1}+x_{2}+\cdots+x_{n}-1\right)^{2}$. Then $f \notin \operatorname{cone}\left(\mathcal{J}_{n-1}\right)$.

Proof. Suppose we write $f=\sum_{i=1}^{N} q_{i}$ where each q_{i} is non-negative. Clearly if $\sum_{i=1}^{n} x_{i}=1$, then $f\left(x_{1}, \ldots, x_{n}\right)=0$, hence $q_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ for every i. But if $q_{i} \in \mathcal{J}_{n-1}$, then there is some coordinate on which it does not depend. Without loss, suppose it is the first coordinate. Then $0=q_{i}(1,0, \ldots, 0)=q_{i}(0,0, \ldots, 0)$. But $f(0,0, \ldots, 0)=1$. We conclude that $f \notin \mathcal{J}_{n-1}$.

Let us now prove this in a more roundabout way by introducing a few definitions. First, for $f:\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$, define the junta degree of f to be

$$
\operatorname{deg}_{J}(f)=\min \left\{k: f \in \operatorname{cone}\left(\mathcal{J}_{k}\right)\right\} .
$$

Since every f is an n-junta, we have $\operatorname{deg}_{J}(f) \leqslant n$.
Now because $\left\{f: \operatorname{deg}_{J}(f) \leqslant k\right\}$ is a cone (spanned by \mathcal{J}_{k}), there is a universal way of proving that $\operatorname{deg}_{J}(f)>k$. Say that a functional $\varphi:\{0,1\}^{n} \rightarrow \mathbb{R}$ is k-locally positive if for all $|S| \leqslant k$ and $z \in\{0,1\}^{|S|}$, we have

$$
\sum_{x \in\{0,1\}^{n}} \varphi(x) q_{S, z}(x)>0
$$

These are precisely the linear functionals separating a function f from cone $\left(\mathcal{J}_{k}\right)$: We have $\operatorname{deg}_{J}(f)>k$ if and only if there is a k-locally positive functional φ such that $\sum_{x \in\{0,1\}^{n}} \varphi(x) f(x)<0$. (This follows by the characterization of Exercise 1.1 together with the hyperplane separation theorem of [Lecture 5, Exercise 2.5].) Now we are ready to prove Theorem 1.5 in a different way.

Second proof of Theorem 1.5. We will use an appropriate k-locally positive functional. Define

$$
\varphi(x)= \begin{cases}-1 & |x|=0 \\ 1 & |x|=1 \\ 0 & |x|>1\end{cases}
$$

where $|x|$ denotes the hamming weight of $x \in\{0,1\}^{n}$.
Recall the the function f from the statement of the theorem and observe that by opening up the square, we have

$$
\begin{align*}
\sum_{x \in\{0,1\}^{n}} \varphi(x) f(x) & =\sum_{x \in\{0,1\}^{n}} \varphi(x)\left(1-2 \sum_{i} x_{i}+\sum_{i} x_{i}^{2}+2 \sum_{i \neq j} x_{i} x_{j}\right) \\
& =\sum_{x \in\{0,1\}^{n}} \varphi(x)\left(1-\sum_{i} x_{i}\right)=-1 . \tag{1.3}
\end{align*}
$$

Now consider some $S \subseteq\{1, \ldots, n\}$ with $|S|=k \leqslant n-1$ and $z \in\{0,1\}^{k}$. If $z=\mathbf{0}$, then

$$
\sum_{x \in\{0,1\}^{n}} \varphi(x) q_{S, z}(x)=-1+1 \cdot(n-k) \geqslant 0 .
$$

If $|z|>1$, then the sum is 0 . If $|z|=1$, then the sum is non-negative because in that case $q_{S, z}$ is only supported on non-negative values of φ. We conclude that φ is k-locally positive for $k \leqslant n-1$. Combined with (1.3), this yields the statement of the theorem.

Exercise (1 point) 1.6. Consider the knapsack polynomial: For $n \geqslant 1$ odd,

$$
f(x)=\left(x_{1}+x_{2}+\cdots+x_{n}-\frac{n}{2}\right)^{2}-\frac{1}{4} .
$$

It is straightforward to check that $f(x) \geqslant 0$ for all $x \in\{0,1\}^{n}$. Define an appropriate locally positive functional to show that $\operatorname{deg}_{J}(f) \geqslant\left\lfloor\frac{n}{2}\right\rfloor$.

1.2 From juntas to general factorizations

So far we have seen that we cannot achieve a low non-negative rank factorization of \mathcal{M}_{n} using k-juntas for $k \leqslant n-1$.
Remark 1.7. If one translates this into the setting of lift-and-project systems, it says that the k-round Sherali-Adams lift of the polytope

$$
P=\left\{x \in[0,1]^{n^{2}}: x_{i j}=x_{j i}, x_{i j} \leqslant x_{j k}+x_{k i} \quad \forall i, j, k \in\{1, \ldots, n\}\right\}
$$

does not capture CUT $_{n}$ for $k \leqslant n-1$.

In the next lecture, we will show that a non-negative factorization of \mathcal{M}_{n} would lead to a k-junta factorization with k small (which we just saw is impossible). This will yield a lower bound on $\bar{\gamma}\left(\mathrm{CUT}_{n}\right)$.
For now, let us state the theorem we want to prove. We first define a submatrix of \mathcal{M}_{n}. Fix some integer $m \geqslant 1$ and a function $g:\{0,1\}^{m} \rightarrow \mathbb{R}_{+}$. Now define the matrix $M_{n}^{g}:\binom{[n]}{m} \times\{0,1\}^{n} \rightarrow \mathbb{R}_{+}$ given by

$$
M_{n}^{g}(S, x)=g\left(\left.x\right|_{S}\right) .
$$

The matrix is indexed by subsets $S \subseteq[n]$ with $|S|=m$ and elements $x \in\{0,1\}^{n}$. Here, $\left.x\right|_{S}$ represents the (ordered) restriction of x to the coordinates in S.

Theorem 1.8 (Chan-Lee-Raghavendra-Steurer 2013). For every $m \geqslant 1$ and $g:\{0,1\}^{m} \rightarrow \mathbb{R}_{+}$, there is a constant $C=C(g)$ such that for all $n \geqslant 2 m$,

$$
\operatorname{rank}_{+}\left(M_{n}^{g}\right) \geqslant C\left(\frac{n}{\log n}\right)^{\operatorname{deg}_{J}(g)}
$$

Note that if $g \in \mathrm{QML}_{m}^{+}$then M_{n}^{g} is a submatrix of \mathcal{M}_{n}. Since Theorem 1.5 furnishes a sequence of quadratic multi-linear functions $\left\{g_{j}\right\}$ with $\operatorname{deg}_{J}\left(g_{j}\right) \rightarrow \infty$, the preceding theorem tells us that $\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right)$ cannot be bounded by any polynomial in n.
In fact, the groundbreaking work of [Fiorini, Massar, Pokutta, Tiwari, de Wolf 2012] showed earlier that $\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right) \geqslant c^{n}$ for some constant $c>1$. The advantage of Theorem 1.8 lies in its generality (allowing it to be extended to the setting of approximate lifts and semi-definite extended formulations).

Applying Theorem 1.8. We know that for every $g \in \mathrm{QML}_{+}^{m}$, we have $\bar{\gamma}\left(\mathrm{CUT}_{n+1}\right)=\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right)$. Also fom Theorem 1.5, for every $m \geqslant 1$, we can find a function $g \in \mathrm{QML}_{+}^{m}$ such that $\operatorname{deg}_{J}(g)=m$.
Plugging this into Theorem 1.8 shows that for every fixed m,

$$
\operatorname{rank}_{+}\left(\mathcal{M}_{n}\right) \geqslant \operatorname{rank}_{+}\left(M_{n}^{g}\right) \geqslant C(m)\left(\frac{n}{\log n}\right)^{m} .
$$

In particular, we conclude that $\gamma\left(\mathrm{CUT}_{n}\right)$ cannot be bounded by any polynomial in n. One cannot obtain stronger bounds directly from Theorem 1.8 because the implicit constant C depends on the function g. Using a more delicate quantitative analysis, one can use the functions of Theorem 1.5 to achieve $\gamma\left(\mathrm{CUT}_{n}\right) \geqslant 2^{c n^{1 / 3}}$ for some constant $c>0$. See [Lee-Raghavendra-Steurer 2015].

