
Lecture 6: Junta degree and a hardness amplification
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 24, 2016

1 Non-negative rank and positivity certificates

Recall the matrixMn : QMLn
+ × {0, 1}n

→ �+ from last lecture, defined byMn( f , x) � f (x). Our
goal is to prove a lower bound on rank+(Mn), and hence on γ̄(CUTn).
If r � rank+(Mn), it means we can write

f (x) �Mn( f , x) �
r∑

i�1

Ai( f )Bi(x) (1.1)

for some functions Ai : QMLn
+ → �+ and Bi : {0, 1}n

→ �+. (Here we are using a factorization
Mn � AB where A f ,i � Ai( f ) and Bx ,i � Bi(x).)
More succinctly, we can write f �

∑r
i�1 Ai( f )Bi . Thus the low-rank factorization gives us a “proof

system” for QMLn
+. Every f ∈ QMLn

+ can be written as a conic combination of the functions
B1 , B2 , . . . , Br , thereby certifying its positivity (since the Bi’s are positive functions).

Let’s think about natural families B � {Bi} of “axioms.” Observe that QMLn
+ is invariant under the

natural action of Sn (the symmetric group on {1, . . . , n}), where a permutation σ : [n]→ [n] acts
by permuting the coordinates:

σ f (x1 , . . . , xn) � f (xσ(1) , . . . , xσ(n)) .
Thus we might expect that our family B should share this invariance. Once we entertain this
expectation, there are natural small families of axioms to consider: The space of non-negative
k-juntas for some k � n. (See Section 1.0.1 for exercises that explain why these are essentially the
only small symmetric families of axioms.)

A k-junta b : {0, 1}n
→ � is a function whose value only depends on k of its input coordinates. For

a subset S ⊆ {1, . . . , n} with |S| � k and an element z ∈ {0, 1}k , let qS,z : {0, 1}n
→ {0, 1} denote

the function given by qS,z(x) � 1 if and only if x |S � z (where we use x |S to denote the ordered
restriction of x to the coordinates in S).

We let Jk � {qS,z : |S| 6 k , z ∈ {0, 1}|S|}. Observe that |Jk | 6 O(nk). Let us also define cone(Jk) as
the set of all non-negative combinations of functions in Jk .

Exericse (0 points) 1.1. Show that cone(Jk) is precisely the set of all non-negative combinations of
non-negative k-juntas.

If it were true that QMLn
+ ⊆ cone(Jk) for some k, we could immediately conclude that rank+(Mn) 6

|Jk | 6 O(nk) by writingMn in the form (1.1) where now {Bi} ranges over the elements of Jk and
{Ai( f )} gives the corresponding non-negative coefficients that follow from f ∈ Jk .

1.0.1 Symmetric families of axioms

Exercise (1 point) 1.2. Consider first the following lemma [Yannakakis 1991].
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Lemma 1.3. Let H be a subgroup of the symmetric group Sn with |H | > |Sn |/�n
d

�
for some d < n/4. Then

there exists a set J ⊆ [n] such that | J | 6 d and such that H contains all the even permutations that fix the
elements of J.

Using this lemma, prove the following. Let Q be a family of functions mapping {0, 1}n to � and
such that Q is invariant under the action of Sn , i.e. for every π ∈ Sn ,

Q � {x 7→ q(πx) : q ∈ Q} ,
where πx permutes the coordinates of x according to π.

Show that if d < n/4 and |Q | < �n
d

�
, then each q ∈ Q can be written

q(x1 , . . . , xn) � q′(xi1 , . . . , xid , x1 + x2 + · · · + xn) (1.2)

for some q′ : {0, 1}d
×�→ �. In other words, every q ∈ Q depends on at most d coordinates and

possibly also the value
∑n

i�1 xi .

Exercise (1 point) 1.4. Use the preceding exercise to show the following. Suppose that QML+

2n ⊆

cone(Q) for some family Q that is invariant under the action of Sn , and such that |Q | < �2n
d

�
for

some d < n/2. Then QMLn
+ ⊆ cone(Jd). This shows that, invariant families of axioms of a given

size, one cannot do much better than Jd .

[Hint: Given q ∈ QML+
n , define f ∈ QML+

2n by f (x , y) � q(x). Now apply Exercise 1.2 to Q to
investigate the structure of f .]

1.1 Junta degree and the dual cone

Clearly QMLn
+ ⊆ cone(Jn). Wewill now see that juntas cannot yield a smaller set of axioms for QMLn

+.
Combined with Exercise 1.4, this shows that if QMLn

+ ⊆ cone(Q) and Q is a family of non-negative
functions that is invariant under the action of Sn (see Exercise 1.2), then |Q | > cn for some c > 1.

Theorem 1.5. Consider the function f : {0, 1}n
→ �+ given by f (x) � (x1 + x2 + · · · + xn − 1)2. Then

f < cone(Jn−1).

Proof. Suppose we write f �
∑N

i�1 qi where each qi is non-negative. Clearly if
∑n

i�1 xi � 1, then
f (x1 , . . . , xn) � 0, hence qi(x1 , . . . , xn) � 0 for every i. But if qi ∈ Jn−1, then there is some
coordinate on which it does not depend. Without loss, suppose it is the first coordinate. Then
0 � qi(1, 0, . . . , 0) � qi(0, 0, . . . , 0). But f (0, 0, . . . , 0) � 1. We conclude that f < Jn−1. �

Let us now prove this in a more roundabout way by introducing a few definitions. First, for
f : {0, 1}n

→ �+, define the junta degree of f to be

degJ( f ) � min{k : f ∈ cone(Jk)} .
Since every f is an n-junta, we have degJ( f ) 6 n.

Now because { f : degJ( f ) 6 k} is a cone (spanned by Jk), there is a universal way of proving
that degJ( f ) > k. Say that a functional ϕ : {0, 1}n

→ � is k-locally positive if for all |S| 6 k and
z ∈ {0, 1}|S|, we have ∑

x∈{0,1}n

ϕ(x)qS,z(x) > 0 .
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These are precisely the linear functionals separating a function f fromcone(Jk): WehavedegJ( f ) > k
if and only if there is a k-locally positive functional ϕ such that

∑
x∈{0,1}n ϕ(x) f (x) < 0. (This follows

by the characterization of Exercise 1.1 together with the hyperplane separation theorem of [Lecture
5, Exercise 2.5].) Now we are ready to prove Theorem 1.5 in a different way.

Second proof of Theorem 1.5. We will use an appropriate k-locally positive functional. Define

ϕ(x) �



−1 |x | � 0
1 |x | � 1
0 |x | > 1 ,

where |x | denotes the hamming weight of x ∈ {0, 1}n .

Recall the the function f from the statement of the theorem and observe that by opening up the
square, we have

∑
x∈{0,1}n

ϕ(x) f (x) �
∑

x∈{0,1}n

ϕ(x) *.
,
1 − 2

∑
i

xi +
∑

i

x2
i + 2

∑
i, j

xi x j
+/
-

�

∑
x∈{0,1}n

ϕ(x) *
,
1 −

∑
i

xi+
-
� −1 . (1.3)

Now consider some S ⊆ {1, . . . , n} with |S| � k 6 n − 1 and z ∈ {0, 1}k . If z � 0, then∑
x∈{0,1}n

ϕ(x)qS,z(x) � −1 + 1 · (n − k) > 0 .

If |z | > 1, then the sum is 0. If |z | � 1, then the sum is non-negative because in that case qS,z is
only supported on non-negative values of ϕ. We conclude that ϕ is k-locally positive for k 6 n − 1.
Combined with (1.3), this yields the statement of the theorem. �

Exercise (1 point) 1.6. Consider the knapsack polynomial: For n > 1 odd,

f (x) �
(
x1 + x2 + · · · + xn −

n
2

)2
−

1
4
.

It is straightforward to check that f (x) > 0 for all x ∈ {0, 1}n . Define an appropriate locally positive
functional to show that degJ( f ) > b n

2 c.

1.2 From juntas to general factorizations

So far we have seen that we cannot achieve a low non-negative rank factorization ofMn using
k-juntas for k 6 n − 1.

Remark 1.7. If one translates this into the setting of lift-and-project systems, it says that the k-round
Sherali-Adams lift of the polytope

P �

{
x ∈ [0, 1]n2

: xi j � x ji , xi j 6 x jk + xki ∀i , j, k ∈ {1, . . . , n}}

does not capture CUTn for k 6 n − 1.
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In the next lecture, we will show that a non-negative factorization ofMn would lead to a k-junta
factorization with k small (which we just saw is impossible). This will yield a lower bound on
γ̄(CUTn).
For now, let us state the theorem we want to prove. We first define a submatrix ofMn . Fix some
integer m > 1 and a function 1 : {0, 1}m

→ �+. Now define the matrix M1

n :
�[n]

m

�
× {0, 1}n

→ �+

given by
M1

n(S, x) � 1(x |S) .
Thematrix is indexed by subsets S ⊆ [n]with |S| � m and elements x ∈ {0, 1}n . Here, x |S represents
the (ordered) restriction of x to the coordinates in S.

Theorem 1.8 (Chan-Lee-Raghavendra-Steurer 2013). For every m > 1 and 1 : {0, 1}m
→ �+, there is

a constant C � C(1) such that for all n > 2m,

rank+(M1

n) > C
(

n
log n

)degJ (1)
.

Note that if 1 ∈ QML+
m then M1

n is a submatrix ofMn . Since Theorem 1.5 furnishes a sequence
of quadratic multi-linear functions {1 j} with degJ(1 j) → ∞, the preceding theorem tells us that
rank+(Mn) cannot be bounded by any polynomial in n.

In fact, the groundbreaking work of [Fiorini, Massar, Pokutta, Tiwari, de Wolf 2012] showed
earlier that rank+(Mn) > cn for some constant c > 1. The advantage of Theorem 1.8 lies in its
generality (allowing it to be extended to the setting of approximate lifts and semi-definite extended
formulations).

Applying Theorem 1.8. We know that for every 1 ∈ QMLm
+ , we have γ̄(CUTn+1) � rank+(Mn).

Also fom Theorem 1.5, for every m > 1, we can find a function 1 ∈ QMLm
+ such that degJ(1) � m.

Plugging this into Theorem 1.8 shows that for every fixed m,

rank+(Mn) > rank+(M1

n) > C(m)
(

n
log n

)m

.

In particular, we conclude that γ(CUTn) cannot be bounded by any polynomial in n. One cannot
obtain stronger bounds directly from Theorem 1.8 because the implicit constant C depends on the
function 1. Using a more delicate quantitative analysis, one can use the functions of Theorem 1.5 to
achieve γ(CUTn) > 2cn1/3 for some constant c > 0. See [Lee-Raghavendra-Steurer 2015].
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