Lecture 6: Junta degree and a hardness amplification
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1 Non-negative rank and positivity certificates

Recall the matrix M,, : QML} x {0,1}" — R, from last lecture, defined by M,,(f, x) = f(x). Our
goal is to prove a lower bound on rank,; (M), and hence on y(CUT),).

If r = rank; (M,,), it means we can write
F(0) = Mu(f, ) = D Aif)Bi(x) (1.1)
i=1

for some functions A; : QML} — R, and B; : {0,1}" — R.. (Here we are using a factorization
M, = AB where Ay; = Ai(f) and B, ; = Bi(x).)

More succinctly, we can write f = Zle A;(f)Bi. Thus the low-rank factorization gives us a “proof
system” for QMLY. Every f € QML! can be written as a conic combination of the functions
B1, By, ..., B;, thereby certifying its positivity (since the B;’s are positive functions).

Let’s think about natural families 8 = {B;} of “axioms.” Observe that QML is invariant under the
natural action of S,, (the symmetric group on {1, ..., n}), where a permutation o : [n] — [n] acts
by permuting the coordinates:

Gf(xll R x?’l) = f(xo‘(l)l sy xa(n)) .

Thus we might expect that our family 8 should share this invariance. Once we entertain this
expectation, there are natural small families of axioms to consider: The space of non-negative
k-juntas for some k < n. (See Section 1.0.1 for exercises that explain why these are essentially the
only small symmetric families of axioms.)

A k-junta b : {0,1}" — Ris a function whose value only depends on k of its input coordinates. For
asubset S C {1,...,n} with |S| = k and an element z € {0, 1}*, let g5, : {0,1}" — {0, 1} denote
the function given by gs.(x) = 1 if and only if x|s = z (wWhere we use x|s to denote the ordered
restriction of x to the coordinates in S).

We let Gk = {gs : |S| < k,z € {0,1}3!}. Observe that | J;| < O(1¥). Let us also define cone(J;) as
the set of all non-negative combinations of functions in J.

Exericse (0 points) 1.1. Show that cone(x) is precisely the set of all non-negative combinations of
non-negative k-juntas.

If it were true that QML C cone(Jk) for some k, we could immediately conclude that rank, (M,,) <
| Jk| < O(n¥) by writing M,, in the form (1.1) where now {B;} ranges over the elements of . and
{Ai(f)} gives the corresponding non-negative coefficients that follow from f € .

1.0.1 Symmetric families of axioms

Exercise (1 point) 1.2. Consider first the following lemma [Yannakakis 1991].
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Lemma 1.3. Let H be a subgroup of the symmetric group S, with |H| > |S,|/(}) for some d < n/4. Then
there exists a set | C [n] such that |J| < d and such that H contains all the even permutations that fix the
elements of |.

Using this lemma, prove the following. Let Q be a family of functions mapping {0, 1}" to R and
such that Q is invariant under the action of S;, i.e. for every m € S,

Q={xrq(nx):q€Q},
where mx permutes the coordinates of x according to 7.

Show thatif d < n/4 and |Q| < (Z), then each g € Q can be written
qx1, ..., xn) =q" (Xiy, oo, Xiy, X1+ X2+ -+ Xp) (1.2)

for some g’ : {0,1}¥ x N — R. In other words, every g € Q depends on at most d coordinates and
possibly also the value )7 ; x;.

Exercise (1 point) 1.4. Use the preceding exercise to show the following. Suppose that QML;, <
cone(Q) for some family Q that is invariant under the action of S,, and such that |Q| < (2;) for
some d < n/2. Then QML C cone(J;). This shows that, invariant families of axioms of a given
size, one cannot do much better than ;.

[Hint: Given g € QML;, define f € QML; by f(x,y) = g(x). Now apply Exercise 1.2 to Q to
investigate the structure of f.]

1.1 Junta degree and the dual cone

Clearly QML C cone(.7,). We will now see that juntas cannot yield a smaller set of axioms for QML
Combined with Exercise 1.4, this shows that if QML C cone(Q) and Q is a family of non-negative
functions that is invariant under the action of S,, (see Exercise 1.2), then |Q| > ¢" for some ¢ > 1.

Theorem 1.5. Consider the function f : {0,1}" — R, given by f(x) = (x1 + xo + - - + x, — 1)*. Then
f ¢ cone(J-1).

Proof. Suppose we write f = Zf\i 1 i where each g; is non-negative. Clearly if },7' ; x; = 1, then
f(x1,...,x,) = 0, hence gi(x1,...,x,) = 0 for every i. But if g; € J,-1, then there is some
coordinate on which it does not depend. Without loss, suppose it is the first coordinate. Then
0=4:1,0,...,0)=4i0,0,...,0). But f(0,0,...,0) = 1. We conclude that f ¢ J,-1. O

Let us now prove this in a more roundabout way by introducing a few definitions. First, for
f:4{0,1}"* —» R, define the junta degree of f to be

deg;(f) = min{k : f € cone(Ji)} .
Since every f is an n-junta, we have deg;(f) < n.
Now because {f : deg;(f) < k} is a cone (spanned by Ji), there is a universal way of proving
that deg;(f) > k. Say that a functional ¢ : {0,1}" — Ris k-locally positive if for all |S| < k and

z € {0,1}%!, we have

> p()gs:(x) > 0.

x€{0,1}"



These are precisely the linear functionals separating a function f from cone(Jx): We have deg i (f)>k
if and only if there is a k-locally positive functional ¢ such that }’,c9 1y @(x) f(x) < 0. (This follows
by the characterization of Exercise 1.1 together with the hyperplane separation theorem of [Lecture
5, Exercise 2.5].) Now we are ready to prove Theorem 1.5 in a different way.

Second proof of Theorem 1.5. We will use an appropriate k-locally positive functional. Define

-1 |x|=0
px)=41  [|x]=1
0 |x|>1,
where |x| denotes the hamming weight of x € {0, 1}".

Recall the the function f from the statement of the theorem and observe that by opening up the
square, we have

Z px)f(x) = Z (p(x)(l—Zin+Zx?+Zinxj)

xe{0,1}" xe{0,1}" i#j

- <p<x)<1_zxi)=-1. (13)

xe{0,1}7 i
Now consider some S C {1,...,n} with |S|=k <n—-1andz € {0,1}F. If z = 0, then
D p0gsa(0) = -1+1-(n—k) > 0.
xe{0,1}"

If |z| > 1, then the sum is 0. If |z| = 1, then the sum is non-negative because in that case gs is
only supported on non-negative values of ¢. We conclude that ¢ is k-locally positive for k < n —1.
Combined with (1.3), this yields the statement of the theorem. O

Exercise (1 point) 1.6. Consider the knapsack polynomial: For n > 1 odd,

n)z 1
1

f(x)z(x1+xz+~~-+xn—§

It is straightforward to check that f(x) > 0 for all x € {0, 1}". Define an appropriate locally positive
functional to show that deg,(f) > [ 7].

1.2 From juntas to general factorizations

So far we have seen that we cannot achieve a low non-negative rank factorization of M,, using
k-juntas for k < n —1.

Remark 1.7. If one translates this into the setting of lift-and-project systems, it says that the k-round
Sherali-Adams lift of the polytope

P = {x € [0,1]”2 D Xij = Xji, Xij < Xjk + Xk Vi, j k€ {1,...,11}}

does not capture CUT,, for k < n —1.



In the next lecture, we will show that a non-negative factorization of M,, would lead to a k-junta
factorization with k small (which we just saw is impossible). This will yield a lower bound on
(CUT,).
For now, let us state the theorem we want to prove. We first define a submatrix of M,,. Fix some
integer m > 1 and a function g : {0,1}" — R,. Now define the matrix Mj : (") x {0,1}" — R
given by

M;(S, x) = g(xls).

The matrix is indexed by subsets S C [n] with |S| = m and elements x € {0, 1}". Here, x|s represents
the (ordered) restriction of x to the coordinates in S.

Theorem 1.8 (Chan-Lee-Raghavendra-Steurer 2013). For every m > 1and g : {0,1}"™ — R, there is
a constant C = C(g) such that for all n > 2m,

n
logn

deg;(9)
rank, (M7) > C( )

Note that if g € QML}, then M} is a submatrix of M,,. Since Theorem 1.5 furnishes a sequence
of quadratic multi-linear functions {g;} with deg;(g;) — oo, the preceding theorem tells us that
rank, (M) cannot be bounded by any polynomial in 7.

In fact, the groundbreaking work of [Fiorini, Massar, Pokutta, Tiwari, de Wolf 2012] showed
earlier that rank,(M,) > c”" for some constant ¢ > 1. The advantage of Theorem 1.8 lies in its
generality (allowing it to be extended to the setting of approximate lifts and semi-definite extended
formulations).

Applying Theorem 1.8. We know that for every g € QMLY, we have y(CUT,+1) = rank,(M,).
Also fom Theorem 1.5, for every m > 1, we can find a function g € QMLY' such that deg,;(¢g) = m.

Plugging this into Theorem 1.8 shows that for every fixed m,

m
n
rank;(M,,) > rank, (M) > C(m) (logn) .
In particular, we conclude that y(CUT,) cannot be bounded by any polynomial in #. One cannot
obtain stronger bounds directly from Theorem 1.8 because the implicit constant C depends on the
function g. Using a more delicate quantitative analysis, one can use the functions of Theorem 1.5 to
achieve y(CUT,) > 2¢1"” for some constant ¢ > 0. See [Lee-Raghavendra-Steurer 2015].
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