Lecture 7: From junta degree to non-negative rank
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: January 28, 2016

1 From junta degree to non-negative rank

Our goal now is to prove the following theorem; in the previous lecture, we saw how this implies
that y(CUT,,) grows faster than any polynomial in 7.

Recall that given g : {0,1}" — Rand a number 1 > 1, we define the matrix Mj, : ("l)x {0,1}" — R
by

M;(S, %) = gs(x),
where gs(x) = g(x|s), and x|s is the (ordered) restriction of x € {0,1}" to the coordinates indexed
by S. Here, ([7':1]) denotes the collection of subsets S C [n] with |S| = m.

Theorem 1.1 (Chan-Lee-Raghavendra-Steurer 2013). For every m > 1and g : {0,1}"™ — R, there is
a constant C = C(g) such that for all n > 2m,

)deg[(g)

rank, (M)) > C( (1.1)

log n

1.1 Proof setup

We will work with the uniform measures on {0, 1}" and ([7':1]), and we will write E, and Egs to denote
expectation with respectto x € {0,1}" or S € ([;11]) chosen uniformly at random.

The proof will be easiest in the density setting (recall the last part of Lecture 4). L2({0,1}") is the
Euclidean space of real-valued functions f : {0,1}" — R equipped with the inner product

{f9) =Elf(x)g(x)].

Let d = deg;(g) — 1. Recall that since deg;(g) > d, there must exist a d-locally positive functional
@ € L2({0,1}") such that
(p,g9)<0. (1.2)

By definition, such a functional satisfies (@, q) > 0 for every d-junta g € L*({0,1}") that is not
identically 0.

Let us normalize this functional so that (¢, 1) = 1, where 1 € L%({0, 1}") is the function that takes
values 1 everywhere (observe that 1 is a O-junta, so it must be that this inner product was positive
before we normalized it). Under this normalization, ¢ is often referred to as a pseudo-density.

Exercise (1 point) 1.2 (Justify the name “pseudo-density.”). Suppose that ¢ : {0,1}" — Ris a
k-locally positive functional satisfying (¢, 1) = 1. Prove that you can associate to every S C [n] with
S| < k an actual density fs : {0,1}° — R, (with respect to the uniform measure on {0, 1}°) such
that for any S-junta g,

(p,q)={fs,qls)-



Here, an S-junta is a function g : {0,1}" — R such that g(x) only depends on the coordinates
{x; 11 € S}. This shows that, restricted to any set of at most k bits, the pseudo-density agrees with
an actual density.

Let r = rank,(M?). By definition, this means that for every S € ([::Z]), we can write
r
gs(x) = Mii(x) = )" Ai(S)Bi(x)
i=1

for some functions A; : ([,’111]) — R, and B; : {0,1}" — R,. (Here we are using a factorization
MZ = AB where As; = Ai(S) and B, ; = Bi(x).) Or, more succinctly:

gs = ZAi(S)Bi- (1.3)
i=1

Without loss of generality, we can assume that EB; = 1 foreachi =1,2,...,r because we can scale
B; by some positive number to achieve this, and correspondingly scale A; to maintain equality in
(1.3).

Define functions ¢s : {0,1}" — R by @s(x) = ¢(x|s) for every S € ([}’;]). We will try to prove that
(1.3) requires r to be large by averaging under ¢s(x) on both sides. To illustrate, let’s assume for the
moment that each B; is actually a d-junta. In that case, we have

EEBgps()gsx)= E  oy)gy) = (¢ g)<0. (1.4)
x ye{0,1}™
On the other hand,

) EEA(S)Bi(x) = ;lgAmsng [ps(x)Bi(x)] > 0 (1.5)

because for each i € [m], it holds that Ex[¢s(x)Bi(x)] = Eycfo,1y» ¢(y) Ex[Bi(x) | x|s = y] > 0, since
@ is d-locally positive and the function y +— E,[B;(x) | x|s = y] is a d-junta.

Combining (1.4) and (1.5) contradicts (1.3) in the case when each B; is a d-junta. To prove that (1.3)
requires r to be large in the general case, we will proceed in three steps:

1. Truncation. Most of the densities {B;} have small relative entropy to the uniform measure.
More precisely, recalling the definition Ent(f) = E[f log f], we will show that most of
contribution to (1.3) comes from B;’s with Ent(B;) < O(logr). This is where we will use the
assumption (for the sake of contradiction) that the rank r is small.

2. Junta approximation. Every density f can be approximated by k-juntas with respect to the
tests {¢s}, where k ~ m||p||% Ent(f).

3. Random restriction. Our argument above required each B; to be a d-junta, and we only
achieve k-juntas for some k ~ m log r and certainly m > d. Still, our junta approximators will
be decent (we will still have k much smaller than the trivial bound of 7). The last step will use
our random choice of S € ([7’;]). For a randomly chosen subset S, it will be very likely that only
a few of the k junta coordinates fall into S, so on most subsets we will get a d-junta, allowing
the argument above to go through.



1.2 Truncation

This step doesn’t rely on the specific structure of our problem, so we do it more generally. Consider
finite sets X and Y and a matrix M : X X Y — R,. Suppose that r = rank,(M) and write

M(x,y) = ) Ai(¥)Bi(y),
i=1

where A1,..., A, : X > R,,Bq1,...,B,: Y > R,.

The following discussion and definitions are probably overkill on a first reading, especially because
the proofs themselves are rather simple. So we first state our goal. One might then skip to
Section 1.3.

Lemma 1.3 (Smooth non-negative factorizations). Let r = rank(M). For any 6 > 0, there exists a
matrix M € R such that

E |M(x/y)_M(x/y)|<6/
xeX,yeYy

and M = UV where U € R*,V e R, If {UD} are the columns of U and {V;} are the rows of V, then
the factorization further satisfies

E Viy)=1 i=12,...k
yey

max {|[Villeo, - - -, [[Villeo} < 7l[M]leo,

and

k

; r
2 Ul < SIM]l
i=1

Lower bounds via separating hyperplanes. Recall that our goal is to show that rank, (M) is large.
It would be nice if we could argue that M cannot be too correlated with any map (x, y) = A;(x)Bi(y)
and therefore r must be large. This would avoid having to argue about a subtle relationship between
{A;} and {B;} for different values of i. For instance, we could try to find a functional F : X XY — R
such that E, , F(x, y)M(x, y) < 0 while E, , F(x, y)A;(x)Bi(y) > Oforalli=1,...,r.

In other words, we would like to define a convex set of “low non-negative rank” matrices and show
that M is not in this set (by convex duality, this separation would always be accomplished with
such a linear functional F). Note that matrices of the form (x, y) — A;(x)B;(y) are exactly those of
non-negative rank 1. But the convex hull of {N € RX¥Y : rank,(N) = 1} is precisely the set of all
non-negative matrices (which certainly contains M!).

Instead, let us proceed analytically. For simplicity, let us equip both X and Y with the uniform
measure. Let Q = {b: Y — Ry | ||b|l1 = 1} denote the set of probability densities on Y, where we

define ||b||; = ﬁ Zyey DY)l
Now define

k
a4(N) = min {m[algf 1Bille - D" 1AVl : A € R¥, B € RYY with N = AB, {By, ..., Bk} € Q}
1€
i=1

Here {A)} are the columns of A and {B;} are the rows of B. Note that now k is unconstrained.



Observe that the function a is convex (unlike the non-negative rank!). To see this, consider a pair
N = AB and N’ = A’B’. Define y = max; ||Bi|| and )’ = max; ||B’||, and write

N+N’ , 'B
Tl ()

witnessing the fact that

ar(AN +N)) < yy (LM + iO((NI)) _ o)+ a(NY)

2y 2y Y 2
1.2.1 Relating o, and rank,

We will see now that low non-negative rank matrices are close to matrices with a, small. In
standard communication complexity/discrepancy arguments, this corresponds to discarding
“small rectangles.”

Lemma 1.4. For every non-negative M € R*Y with rank, (M) < r and every & € (0, 1), there is a matrix
M € R®Y such that

IM-M]|i <6
and ) )
- M

Proof. Suppose that M = AB with A € R¥", B € R*Y, and let us interpret this factorization in the
form

M(x,y) = ) Ai(x)Bi(y) (1.6)
i=1

(where {A;} are the columns of A and {B;} are the rows of B). By rescaling the columns of A and
the rows of B, respectively, we may assume that E[B;] = 1 for every i € [r].

Let A = {i : ||Bi|l > T} denote the “bad set” of indices (we will choose T momentarily). Observe

thatif i € A, then
M|
[Ailleo € ——,
T
from the representation (1.6) and the fact that all summands are positive.

Define the matrix M(x, y) = Y;ex Ai(x)Bi(y). It follows that

M~ Ml = lE [IM(x, y) = M(x, y)l] = Z E [4i(x)Bi(y)].
ieA

Each of the latter terms is at most ||A;||co||Bill1 < Mls and |A| < r, thus
T

- M|
M = wtjly < Mo

Next, observe that
E[M(x, y)] = ZAmwm—ZAm

implying that ||Ai||lo < [|M]|e and thus Zi:l ||AZ-||°<, < r||M||oo.
Setting 7 = r||M||/0 yields the statement of the lemma. O



1.3 Approximation by juntas

Let B: {0,1}" — R, be a density and suppose we wish to approximate it by a “simple” density
B with respect to the family of tests {pgs}. This fits exactly into the dual-sparse approximation
framework of Lecture 3. For concreteness, we write down the corresponding minimum relative
entropy optimization; the variables are the values b(x) for x € {0,1}", and ¢ is a constant we will
choose later:

minimize Ent(b) (1.7)
subject to E[b] =1 (1.8)
b(x)>0 Vxe{0,1}" (1.9)
(@s,b) < {@s, by +¢ VS € ([:1]) . (1.10)

From the dual-sparse approximation theorem, we know there exists a density B of the form

exp (Xs csps)
Eexp (Xscsgs)”

#{s € ([:1]) Log # o} < 2”(p”g°Ent(B),

&2

B=

where

and such that {ps, B) < (¢s, B) + ¢ forall S € ([7';]).

Note each ¢; is an m-junta (since it depends only on the coordinates in S), hence the approximator
~ 2

Bisa2m ||q:#Emt(B)—junta.

The troublesome “width” parameter |||l does not play such an important role for us presently,
because it is bounded by some constant depending only on the function g. But to get improved
bounds (or extend these techniques to other settings), the dependence on ||¢||« is important.

1.4 Random restriction: Putting everything together

Recall (1.3) and (1.4). We now do the corresponding analysis for the right-hand side. Our goal is to
prove a lower bound on the quantity

E Ps(x)MI(S, x)

that depends on r. For r small enough, we will contradict (1.4).

First, let us apply Lemma 1.3 with a parameter 0 to obtain a matrix M satisfying M), — M|y <6
and such that

k
NS, x) = ) Ai(x)Bi(y),

i=1

where each B; satisfies E B; = 1 and ||B;||co < 7 and where
& r
2, Mills < SNl - (L11)
i=1

5



Observe that
E @s(0M;(S,%) > =0llglles + E ps(x)My (S, %), (112)

80 now we can focus on the latter term.

Note that
IBillo < ¥ = Ent(B;) = E[B;log B;] < ||log Bi|l = log .

Apply the results of Section 1.3 with a parameter ¢ > 0 to obtain densities {B;} such that B; is an
h-junta for

Il

h <2m =

logr, (1.13)
and <(PS/Bi> <{@s, Bi) + ¢ for all |S| = m.
Then:

E ps()M; (S, x) = ;ISEAZ-(SX@S,B»

r
> Z;HSEAi(S)«QOS,Bi) -¢)
i=
r
> ~ellglh o + lelgAmsan(ps(x)Bi(x),
1=
where in the last line we used

r
Z]EAi(S) = EMI(S,x) > -6+ E My(S,x) = -6+ E gs(x) = =6 + ||gll -
— S S,x S,x S,x

Now for the random restriction. For eachi = 1,. .., k, let J; denote the set of variables on which B;
depends. Recall that |J;| < . We have

E Bi(x)= E E |[B; =
EpsBiv) = B o) B [Bi(x0)xls=y]

Note that the map y = E,co,1}~ [Bi(x) | xX|s = y] isajuntaon J; N S. Thusif |J; N S| < d, then the
contribution from this term is non-negative since ¢ is d-locally positive.

But if we think of |S| = m as fixed and n as growing, thus |J; N S| > d is quite rare. Formally,

- hd+1(2m)d+1
E [ps(0)A(S)Bi(x)] > ~l|Ailleo Ps[[J: 0 S| > d] > ~[|AilJeo—— i —
S,x n
In the last estimate, we have used a simple union bound and n > 2m.
Now if we recall (1.11), this yields
k
5 r hd+1 2m d+1
D E 5B > ~Fllgl o —
i=1

Note that by choosing n only moderately large, we will make this error term very small.



To choose parameters correctly, let’s unwind our whole sequence of inequalities to obtain:

hd+1(27n)d+1

pree (1.14)

.
(p,9)= ;Est(x)MZ(S,x) > =5(1+ l@lleo) — €llglh — gllglli

Recall that we are seeking to obtain a contradiction to (1.4). Let B = [{(¢, g)| and observe that
B, ll@llso, 19111, |9 ]lo, m are all quantities that depend only on g. Since we are thinking of g as fixed,
the bound (1.13) yields & = O(log ).

By taking ¢, 6 sufficiently small (dependning only on g), we conclude that

d+1
rzc -
~ " \2mlogr

nd+1

for some ¢ = c(g) sufficiently large . Now either r >
and we have prove the bound of Theorem 1.1.

and we are done, or else m log r = O(log n),

2 Exercises

2.1 Stronger lower bounds

So far, we only saw how to prove a lower bound of 7(CUT,,) > n®("). To obtain stronger quantitative
lower bounds, one has to analyze carefully the parts of the argument that read “some constant
depending only on g.” To do this properly, it turns out that one needs an appropriate definition of
“approximate” junta degree. Basically, the “proof” that a function has large junta degree (the locally
positive functional) has to be robust.

For a function f : {0,1}" — R, and ¢ > 0, define
degj(f) = min {d : ¥ d-locally positive functionals ¢ : {0,1}" = R, E@p(x)f(x) > —¢||¢|lw ]Ef(x)} .
X X

Exercise (1 point) 2.1. Give an equivalent characterization of deg in terms of approximating f by
a non-negative sum of juntas, where the approximation is in the L!-norm.

One can prove the following (see [Lee-Raghavendra-Steurer 2015]).

Theorem 2.2. Forany g : {0,1}" — Ry and € > 0, the following holds. For all n > 2m,

rank, (M) > cen

7

2 deg$(9)
m?(mlogn + IOg(IIgllm/llglll)))

where ¢ > 0 is a universal constant.

The point of this result is that there is no hidden constant. This allows one to prove much stronger
bounds.

Exercise (1 point) 2.3. In the definition of approximate junta degree, one notices the appearance of
the uniform measure. More generally, Theorem 2.2 holds under the p-biased product measure p,
for p € [0, 1]. Define:

degj’p (f) = min {d .V d-locally positive functionals ¢ : {0,1}" — R,

7



E, p(0f(x) > ~ellglls E, f(x)} .

Prove that there is a constant ¢ > 0 such that for all # > 3, we have

where f(x) = (x1+ -+ +x, — 1)%. Combined with Theorem 2.2, what lower bound does this yield
for y(CUT,) ?

2.2 Approximation

We have been concerned so far with exact characterization of polytopes (and, mainly, CUT},,). But in
this model, one can also talk about approximate lifts. For instance, consider the MAX-CUT problem:
Given a non-negative weight w : ([g]) — R, on the edges of the (undirected) complete graph, the
goal is to compute the maximum-cut value

def w,z
opt(w) = max {w, >.
zeCUT, ||w]h

The objective is the (normalized) weight of edges cut. (Strictly speaking, MAX-CUT involves finding
the optimizer, not just its value.)

Fix the number of vertices n. For some constants 1 > ¢ > s > 0, let us consider the matrix

(zw)

M (w,z) =c
' llwlh *

where w ranges over all weighted graphs w with opt(w) < s and z ranges over all cuts (the extreme
points of CUT),,).

Exercise (1 point) 2.4. Argue that if rank,(M®) > r, then the following holds. For any polytope P
defined by at most r inequalities, if P linearly projects to a polytope P C R() such that P 2 CUT,,
then there exists a weighted graph w such that opt(w) < s, but

Z,W
maxu >
zep ”wlll

In other words, P does a poor job of capturing even approximate MAX-CUT optimization over
CUT,.
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