
Lecture 8: Spectrahedral lifts and positive semi-definite rank
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: February 15, 2016

1 PSD rank and sums-of-squares degree

We have previously explored whether the cut polytope can be expressed as the linear projection of
a polytope with a small number of facets (i.e., whether it has a small linear programming extended
formulation).

For many cut problems, semi-definite programs (SDPs) are able to achieve better approximation
ratios than LPs. The most famous example is the Goemans-Williamson 0.878-approximation for
MAX-CUT. The techniques we have seen so far (see [Chan-Lee-Raghavendra-Steurer 2013]) are able
to show that no polynomial-size LP can achieve better than factor 1/2.

The goal now is to give an indication, following [Lee-Raghavendra-Steurer 2015], of how one can
prove similarly that small SDPs cannot capture the cut polytope.

1.1 Spectrahedral lifts

The feasible regions of LPs are polyhedra. Up to linear isomorphism, every polyhedron P can be
represented as P � �n

+ ∩ V where �n
+ is the positive orthant and V ⊆ �n is an affine subspace.

In this context, it makes sense to study other cones that can be optimized over efficiently. A
prominent example is the positive semi-definite cone. Let us define Sn

sym ⊆ �
n2 to be the set of real,

symmetric n× n matrices. By the spectral theorem, every A ∈ Sn
sym can be written A � PT DP where

D is a diagonal matrix containing the eigenvalues of A (which are all real), and P is an orthogonal
matrix. If A has any repeated eigenvalues, this representation will not be unique.

We let Sn
+ ⊆ �

n2 denote the subset of positive semi-definite matrices, i.e. those with all non-negative
eigenvalues. A spectrahedron is the intersection Sn

+ ∩ V with an affine subspace V .

In analogy with the γ parameter we defined for polyhedral lifts, let us define γ̄sdp(P) for a polytope
P to be the minimal dimension of a spectrahedron that linearly projects to P.

Exericse (0.5 points) 1.1. Show that γ̄sdp(P) 6 γ̄(P) for every polytope P. In other words, spectahe-
dral lifts are at least as powerful as polyhedral lifts in this model.

In fact, spectrahedral lifts can be strictly more powerful. Certainly there are many examples of this
in the setting of approximation (like the Goemans-Williamson SDP mentioned earlier), but there
are also recent gaps between γ̄ and γ̄sdp for exact characterizations of polytopes; see the work of
Fawzi, Saunderson, and Parrilo (2015).

Nevertheless, we are now capable of proving strong lower bounds on the dimension of such lifts.
Let us consider the cut polytope CUTn as in previous posts.

Theorem 1.2 (Lee-Raghavendra-Steurer 2015). There is a constant c > 0 such that for every n > 1,
γ̄sdp(CUTn) > e cn2/11 .

Our goal now is to understand how the general framework we have seen for LP lower bounds
extends to the SDP setting.
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1.2 PSD rank and factorizations

Just as in the setting of polyhedra, there is a notion of “factorization through a cone” that characterizes
the parameter γ̄sdp(P). Let M ∈ �m×n

+ be a non-negative matrix. One defines the psd rank of M as
the quantity

rankpsd(M) � min
�
r : Mi j � Tr(AiB j) for some A1 , . . . ,Am , B1 , . . . , Bn ∈ S

r
+

	
.

The following theorem was independently proved by Fiorini-Massar-Pokutta-Tiwari-de Wolf and
Gouveia-Parrilo-Thomas. The proof is a direct analog of Yannakakis’ proof for non-negative rank.

Theorem 1.3. For every polytope P, it holds that γ̄sdp(P) � rankpsd(M) for any slack matrix M of P.

Recall the class QML+
n of non-negative quadratic multi-linear functions that are positive on {0, 1}n

and the matrixMn : QML+
n × {0, 1}n

→ �+ given by

Mn( f , x) � f (x) .
We saw previously thatMn is a submatrix of some slack matrix of CUTn . Thus our goal is to prove
a lower bound on rankpsd(Mn).

1.3 Sum-of-squares certificates

Just as in the setting of non-negativematrix factorization, we can think of a lowpsd rank factorization
ofMn as a small set of “axioms” that can prove the non-negativity of every function in QML+

n . But
now our proof system is considerably more powerful.

For a subspace of functionsU ⊆ L2({0, 1}n), let us define the cone
sos(U) � cone

�
q2 : q ∈ U

�
.

This is the cone of squares of functions inU . We will think ofU as a set of axioms of size dim(U)
that is able to assert non-negativity of every f ∈ sos(U) by writing

f �

k∑
i�1

q2
i

for some q1 , . . . , qk ∈ sos(U).
Fix a subspaceU and let r � dim(U). Fix also a basis q1 , . . . , qr : {0, 1}n

→ � forU .

Define B : {0, 1}n
→ S

r
+ by setting B(x)i j � qi(x)q j(x). Note that B(x) is PSD for every x because

B(x) � ~q(x)~q(x)T where ~q(x) � (q1(x), . . . , qr(x)).
We can write every p ∈ U as p �

∑r
i�1 λi qi . Defining Λ(p2) ∈ Sr

+ by Λ(p2)i j � λiλ j , we see that

Tr(Λ(p2)Q(x)) �
∑
i , j

λiλ j qi(x)q j(x) � p(x)2 .

Now every f ∈ sos(U) can be written as
∑k

i�1 ci p2
i for some k > 0 and {ci > 0}. Therefore if we

define Λ( f ) � ∑k
i�1 ciΛ(p2

i ), we arrive at the representation

f (x) � Tr(Λ( f )Q(x)) .
In conclusion, if QMLn

+ ⊆ sos(U), then rankpsd(Mn) 6 dim(sos(U)).
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Exercise (1 point) 1.4. First, show that an approximate converse holds: dim(sos(U)) 6
rankpsd(Mn)2.
Now let us describe how to get an exact characterization of the same form. Let L2({0, 1}n ; `2)
denote the Hilbert space of functions f : {0, 1}n

→ `2, where `2 denotes the usual space of infinite

sequences (xi) of real numbers equipped with the norm ‖(xi)‖2 �

√∑
∞

i�1 x2
i .

For a subspaceU ⊆ L2({0, 1}n , `2), define
sos(U) � cone

(‖q‖2
L2 : q ∈ U

)
,

where we use the norm given by

‖q‖2
L2 � �x∈{0,1}n ‖q(x)‖2

2 .

Prove that
rankpsd(Mn) � min {dim(sos(U)) : QMLn

+ ⊆ sos(U)} .

1.4 The canonical axioms

And just as d-juntas were the canonical axioms for our “non-negative matrix factorization” proof
system, there is a similar canonical family in the SDP setting: Let Qd be the subspace of all degree-d
multi-linear polynomials on �n . We have

dim(Qd) 6
d∑

k�0

(
n
k

)
6 1 + nd . (1.1)

For a function f : {0, 1}n
→ �+, one defines

degsos( f ) � min{d : f ∈ sos(Qd)} .
(One could debate whether the definition of sum-of-squares degree should have d/2 or d.)

On the other hand, our choice has the following nice property.

Lemma 1.5. For every f : {0, 1}n
→ �, we have degsos( f ) 6 degJ( f ).

Proof. If q is a non-negative d-junta, then √q is also a non-negative d-junta. It is elementary to see
that every d-junta on {0, 1}n has a multi-linear polynomial representation of degree at most d, thus
q is the square of a multi-linear polynomial of degree at most d. �

1.5 The dual cone

As with junta-degree, there is a simple characterization of sos-degree in terms of separating
functionals. Say that a functional ϕ : {0, 1}n

→ � is degree-d pseudo-positive if

〈ϕ, q2〉 � �
x∈{0,1}n

ϕ(x)q(x)2 > 0

whenever q : {0, 1}n
→ � satisfies deg(q) 6 d (and by deg here, we mean degree as a multi-linear

polynomial on {0, 1}n).

Again, since sos(Qd) is a closed convex cone, these separating functionals are the only way of
exhibiting non-membership.
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Exercise (1 point) 1.6. For every f : {0, 1}n
→ �+, it holds that degsos( f ) > d if and only if there is

a degree-d pseudo-positive functional ϕ : {0, 1}n
→ � such that 〈ϕ, f 〉 < 0.

1.6 The connection to psd rank

Following the analogy with non-negative rank, we have two objectives left: (1) to exhibit a function
f ∈ QML+

n with degsos( f ) large, and (ii) to give a connection between the sum-of-squares degree of
f and the psd rank of an associated matrix.

Notice that the function 1(x) � (1 −∑m
i�1 xi)2 we used for junta-degree has degsos(1) � 1, making

it a poor candidate. In fact, this implies that rankpsd(M1

n) 6 O(n), while we have seen that
rank+(M1

n) > Ω((n/ log n)m) as n →∞.

Fortunately, Grigoriev has shown that the knapsack polynomial has large sos-degree.

Theorem 1.7. For every odd m > 1, the function

f (x) � *
,

m
2
−

m∑
i�1

xi+
-

2

−
1
4

has degsos( f ) > bm/2c.
Observe that this f is non-negative over {0, 1}m (because m is odd), but it is manifestly not
non-negative on �m .

Finally, we recall the submatrices ofMn defined as follows. Fix some integer m > 1 and a function
1 : {0, 1}m

→ �+. Then M1

n :
�[n]

m

�
× {0, 1}n

→ �+ is given by

M1

n(S, x) � 1(x |S) .

Our goal in the coming lecture is to sketch the following analog of Theorem ??.

Theorem 1.8 (Lee-Raghavendra-Steurer 2015). For every m > 1 and 1 : {0, 1}m
→ �+, there exists a

constant C(1) such that the following holds. For every n > 2m,

rankpsd(M1

n) > C
(

n
log n

)d/2

,

where d � degsos(1).

1.7 Exercise (2 points): Proving a lower bound on degsos

[This exercise follows an elegant argument of J. Kaniewski, T. Lee, and R. de Wolf (2014).]

You will prove a lower bound on the sum-of-squares degree of the function f : {0, 1}n
→ �+ given

by
f (x) � (|x | − 1)(|x | − 2) , (1.2)

where we use |x | � ∑n
i�1 xi for the hamming weight of x ∈ {0, 1}n .

Suppose that we can write

f (x) �
N∑

i�1

pi(x)2 ,
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where deg(pi) 6 d for every i ∈ [N]. Define the function qi : [n]→ � by

qi(k) � �
x∈{0,1}n :|x |�k

�
pi(x)� .

The first step can be accomplished using the Fourier representation of functions on {0, 1}n , or using
an appropriate averaging procedure.

(a) Show that there is a function q̃i : �→ � that agrees with qi on [n] and such that deg(q̃i) 6 d.

Now let us define Q(t) � ∑N
i�1 q̃i(t)2, which is a polynomial of degree at most 2d. We also have

Q(1) � Q(2) � 0 since f (x) � 0 for |x | ∈ {1, 2}. The zeroes of a non-negative real polynomial must
have multiplicity at least 2, thus we can write

Q(t) � (t − 1)2(t − 2)2q(t)
for some polynomial q with deg(q) 6 2d − 4.

(b) Your goal now is to prove a lower bound deg(q) > Ω(√n), implying that degsos( f ) > Ω(√n).
[Note that plugging this into Theorem 1.8 is enough to show that γ̄sdp(CUTn)must grow faster than
any polynomial.]

You should be able to do this using the following oft-employed lemma of A. A. Markov.

Lemma 1.9. If q : �→ � is a polynomial, then for every T > 0,

deg(q) >
√

T
2

maxx∈[0,T] |q′(x)|
maxx∈[0,T] |q(x)| .
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