
Lectures 14–15: Log-Sobolev inequalities, hypercontractivity, and random walks
CSE 599S: Entropy optimality, Winter 2016
Instructor: James R. Lee Last updated: March 13, 2016

Our goal in this lecture is to prove something about (anti-)concentration properties of short random
walks in the hypercube. We begin with a brief motivation coming from locality-sensitive hashing
before stating our main objective Lemma 1.2. By diagonalizing the random walk operator, we will
arrive at a spectral formulation of our objective. Finally, we will see that hypercontractivity gives the
spectral information we need, by providing bounds on the eigenvalues of indicator functions of
subsets of the hypercube.

1 Locality-sensitive hashing

Consider the following representative setting for locality-sensitive hashing. Fix the dimension d > 1. A
randommapping H : {−1, 1}d

→ � is called an (r, R, p , q)-LSH family if for any pair x , y ∈ {−1, 1}d ,
it holds that

1. ‖x − y‖1 6 r �⇒ �
�
H(x) � H(y)� > p,

2. ‖x − y‖1 > R �⇒ �
�
H(x) � H(y)� 6 q.

Given an approximation parameter c > 0, we would like to know what quality of (r, cr, p , q)-LSH
families exist. The value

ρ(c) � max
16r6d

inf
{

log(1/p)
log(1/q) : ∃(r, cr, p , q)-LSH

}
is a crucial parameter in determining the time and space complexity of nearest-neighbor search
algorithms based on locality-sensitive hashing.

Exercise (1 point) 1.1. Give an explanation for the appearance of the ratio log(1/p)/ log(1/q) along
the following lines. You may assume that 0 < p < q < 1 are constants independent of n. Suppose
that properties (1) and (2) hold for a random map H. Consider an integer k ∈ �, and the hash
function H⊗k : {−1, 1}d

→ �k given by H⊗k(x) � (H1(x), . . . ,Hk(x))where {Hi} are i.i.d. copies
of H.

If our database D ⊆ {−1, 1}d has |D | � n. How large should we choose k so that H⊗k is an
(r, R, p(k), 1/n)-LSH family for some p(k)? (Here we have extended the notation of an LSH family to
allow for a range that is not�.) What value of p(k) arises? Intuitively, to construct a nearest-neighbor
data structure, we will need to sample at least 1/p(k) times so that two points with distance r end
up in the same bucket with high probability.

Assuming that the values of a single hash function onD can be stored in O(n) space, what is the
total space consumption of our data structure? �

The paper [Motwani-Naor-Panigrahi 2007] shows how fairly tight lower bounds on ρ(c) can be
proved by analyzing random walks. Intuitively, if we consider a random hash bucket H−1(x) for
x ∈ {−1, 1}d chosen uniformly at random, then property (2) suggests this bucket should not be too
large (since most points are “far” from x, and far points hash to different buckets with probability
at least q). On the other hand, if we do a random walk of length r from a random point z ∈ H−1(x),
then property (1) suggests that the walk should often end back in H−1(x)with probability at least p.

1



A question on random walks. For a point x ∈ {−1, 1}d , let Wr(x) be a random variable denoting
the outcome of a random walk from x of length r (one step of the random walk involves choosing a
uniformly random i ∈ {1, 2, . . . , d} and flipping the ith bit).

Lemma 1.2. Let r be an odd integer. For any subset B ⊆ {−1, 1}d , it holds that

�
x∈B

[Wr(x) ∈ B] 6
( |B |

2d

) e2r/d
−1

e2r/d+1
.

The preceding lemma asserts an upper bound on the probability of a random walk starting from a
uniformly random x ∈ B to end back in B. Observe that if r � d log d, then the random walk mixes,
and Wr(x) is close to a uniformly random point of {−1, 1}d , in which case we expect the bound
|B |/2d . Lemma 1.2 gives a non-trivial bound even for much shorter random walks.

For r � εd, with ε � 1, we have

e2r/d
− 1

e2r/d + 1
≈

2ε
2 + 2ε

�
ε

1 + ε
.

Our goal in these lecture is to develop the tools necessary to prove Lemma 1.2.

1.1 Diagonalizing the random walk operator

Let us denote by P the transition matrix of the random walk on {−1, 1}d , so that Px y �
1
d if x and y

differ in exactly one coordinate, and Px y � 0 otherwise. Recall the space L2({−1, 1}d) of functions
f : {−1, 1}d

→ � equipped with the inner product 〈 f , 1〉 � �x∈{−1,1}d f (x)1(x).
Exercise (1 point) 1.3. Prove the formula

�
x∈B

[Wr(x) ∈ B] � 2d

|B | 〈1B , Pr1B〉 , (1.1)

where 1B denotes the characteristic function of B.

Given the representation (1.1), it makes sense to diagonalize P. For S ⊆ {1, . . . , d}, let uS ∈

L2({−1, 1}d) denote the function uS(x) � ∏
i∈S xi .

Exercise (1 point) 1.4. Prove that the functions {uS : S ⊆ {1, . . . , d}} form a complete orthonormal
basis of eigenfunctions for P, and

PuS �

(
1 −

2|S|
d

)
uS .

Recall that given a function f ∈ L2({−1, 1}d), we denote its Fourier coefficients by f̂ (S) � 〈 f , uS〉.
We can use the preceding exercise to give a spectral expression for (1.1):

〈1B , Pr1B〉 �
∑

S⊆[d]
1̂B(S)2

(
1 −

2|S|
d

) r

6
∑

|S|6d/2

1̂B(S)2
(
1 −

2|S|
d

) r

6
∑

S⊆[d]
1̂B(S)2e−2r |S|/d , (1.2)

where in the first inequality we have used the fact that r is odd to drop the negative terms, and in
the final inequality we have used 1 − x 6 e−x .
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1.2 The noise operator

In order to understand the final expression, let’s consider more generally an expression of the form∑
S⊆[d]

1̂B(S)2ε2|S|

for some ε ∈ [0, 1]. For the next exercise, recall the definition of the Lp({−1, 1}d) norm:

‖ f ‖p �

(
�

x∈{−1,1}d
| f (x)|p

)1/p

.

Exercise (1 point) 1.5. Consider the operator Tε : L2({−1, 1}d)→ L2({−1, 1}d) defined as follows:

Tε f (x1 , . . . , xd) � �[ f (Xε
1 , . . . ,X

ε
d)] ,

where {Xε
i } are independent random variables satisfying Xε

i � Xi with probability 1
2 (1 + ε), and

Xε
i � −Xi with probability 1

2 (1 − ε). Prove that for any function f ∈ L2({−1, 1}d), we have

‖Tε f ‖2
2 �

∑
S⊆[d]

f̂ (S)2ε2|S| . (1.3)

Combining the preceding exercise with (1.2) gives us

〈1B , Pr1B〉 6 ‖Tε1B‖2
2 (1.4)

with ε � e−r/d .

In fact, we have not done much yet. We simply replaced our discrete-time random walk Pr with a
continuous time random walk Tε. For reasons we have already seen, the continuous-time random
walk will be somewhat easier to work with, but as the preceding arguments show, they are closely
related from a spectral viewpoint.

2 Hypercontractivity

To finish the proof of Lemma 1.2, we need to study the quantity ‖Tε1B‖2
2 . Of course from (1.3), we

know this is “simply” a matter of understanding the Fourier spectrum {1̂B(S) : S ⊆ [d]}. But we
need to use the fact that 1B is the indicator of a small subset.

The problem is that being a {0, 1}-valued function with small support is not such an easy property
to exploit from an analytic standpoint. Instead, it makes sense to look at an analytic property that
such functions have. For instance, suppose that |B | � ε2d and we consider the Lp norms of the
normalized indicator 1B/ε: 





1B

ε





p
� ε

1−p
p .

As p → ∞, we have ‖1B/ε‖p → ‖1B/ε‖∞ � 1/ε. Of course when p � 1, we have ‖1B/ε‖1 � 1, but
notice that the size of the set is also captured near p � 1 if we calculate

d
dp

���p�1
ε

1−p
p � log 1

ε .
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This provides some motivation for trying to compare ‖Tε1B‖2
2 to ‖1B‖p for some other values of p,

Since Tε is an averaging operator and norms are convex, we always have ‖Tε f ‖p 6 ‖ f ‖p for any
f ∈ Lp({−1, 1}d). If we can achieve a stronger bound of the form ‖Tε f ‖q 6 ‖ f ‖p for q > p, this
phenomenon is referred to as hypercontractivity.

The following result is due independently to Bonami and Gross (see O’Donnell’s book).

Theorem 2.1. For every f ∈ L2({−1, 1}d) and q > p > 1, it holds that

‖Tε f ‖q 6 ‖ f ‖p whenever ε 6

√
q − 1
p − 1

.

In particular, for every ε ∈ [0, 1],
‖Tε f ‖2 6 ‖ f ‖1+ε2 .

First let us observe how this theorem can be used to finish the proof of Lemma 1.2. We calculate

‖Tε1B‖2
2 6 ‖1B‖2

1+ε2 �

( |B |
2d

) 2
1+ε2

Plugging in ε � e−r/d and recalling (1.1) and (1.4) yields

�
x∈B

[Wr(x) ∈ B] 6 2d

|B |
( |B |

2d

) 2
1+e−2r/d

�

( |B |
2d

) e2r/d
−1

e2r/d+1

Exercise (1 point) 2.2. Recall that when r � γd and γ � 1, the exponent is approximately γ
1+γ . For

every η < 1, give an example of a subset B ⊆ {−1, 1}d with |B | ≈ 2(1−η)d and such that

log�x∈B [Wr(x) ∈ B]
log

�
2−d |B |� ≈ γ ,

showing that the linear dependence on γ is tight.

2.1 Log-Sobolev inequalities

As we have seen in Lecture 13 (refer to Chapters 1 and 4 of the Montenegro-Tetali book), by work of
Gross we know that Theorem 2.1 is equivalent to the log-Sobolev inequality:

Ent( f ) 6 2n · E
(√

f ,
√

f
)

for all f : {−1, 1}d
→ �+ , (2.1)

where

Ent( f ) � �
[

f log
f
� f

]

E

(√
f ,

√
f
)
�

1
2n

n∑
i�1

�
x∈{−1,1}d

(√
f (x) −

√
f (x ⊕ ei)

)2
.
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Let us prove (2.1). We may assume that � f � 1. Let X � (X1 , . . . ,Xd) ∈ {−1, 1}d be a random
vector with density f , and let B � (B1 , . . . , Bd) ∈ {−1, 1}d be a uniformly random point. Then by
the chain rule for relative entropy:

Ent( f ) � D (X1 , . . . ,Xn ‖ B1 , . . . , Bn) �
d∑

i�1

� [D(Xi ‖ Bi | X1 , . . . ,Xi−1)] ,

where we have additional used the fact that the coordinates of B are independent.

Denote X−i � (X1 , . . . ,Xi−1 ,Xi+1 , . . . ,Xd). By convexity of the relative entropy, we have

� [D(Xi ‖ Bi | X1 , . . . ,Xi−1)] 6 � [D(Xi ‖ Bi | X−i)] .
To complete the proof, we are left to show that

� [D(Xi ‖ Bi | X−i)] 6 �
[(√

f (B) −
√

f (B ⊕ ei)
)2]

(2.2)

Let use use ( 1
2 ,

1
2 ) to denote the law of Bi . Then since f is the density of X, we have

�[D(Xi ‖ Bi | X−i)] � �[ f (B) · D(Xi ‖ ( 1
2 ,

1
2 ) | X−i � B−i)]

� �

[
f (B) + f (B ⊕ ei)

2
· D(Xi ‖ ( 1

2 ,
1
2 ) | X−i � B−i)

]
.

If we condition on B and set a � f (B) and b � f (B ⊕ ei), we can write the expression in brackets as

a + b
2

(
a

a + b
log

2a
a + b

+
b

a + b
log

2b
a + b

)
�

a
2

log
(
1 +

a − b
a + b

)
+

b
2

log
(
1 +

b − a
a + b

)
6

a
2
·

a − b
a + b

+
b
2
·

b − a
a + b

�
1
2
(a − b)2

a + b
,

where the inequality employed was simply log(1 + x) 6 x for x > −1.

The last observation is that
1
2
(a − b)2

a + b
6 (√a −

√

b)2 ,
yielding (2.2).
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