curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13

James R. Lee **University of Washington**

Joint with Ronen Eldan (Weizmann) and Joseph Lehec (Paris-Dauphine)

Let $\{X_t\}$ be a reversible Markov chain on a finite state space Ω with stationary measure π .

Denote by $\mathcal{L} = I - P$ the (positive semi-definite) Laplacian, and let $H_t = e^{-t\mathcal{L}}$ be the continuous-time heat semigroup.

Dirichlet form: For $f, g \in L^2(\Omega, \pi)$:

$$\mathcal{E}(f,g) = \frac{1}{2} \mathbb{E}_{X_0 \sim \pi} \left[\left(f(X_1) - f(X_0) \right) \left(g(X_1) - g(X_0) \right) \right]$$

Heat equation: If $\{h_t : t \ge 0\}$ is the time-evolution of a density $h_0 : \Omega \to \mathbb{R}_+$, then

$$\frac{d}{dt}h_t = -\mathcal{L}^*h_t$$

Spectral gap:
$$\frac{d}{dt} \operatorname{Var}_{\pi}(h_t) = -2 \mathcal{E}(h_t, h_t)$$

$$\lambda = \inf \left\{ \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)} : f \neq 0 \right\} \quad \operatorname{Var}_{\pi}(h_t) \le e^{-2\lambda t} \operatorname{Var}_{\pi}(h_0)$$

Modified log-Sobolev (MLS):

[Bobkov-Tetali 2006]

$$\operatorname{Ent}_{\pi}(h_{t}) = \sum_{x \in \Omega} \pi(x)h_{t}(x)\log h_{t}(x)$$
$$\frac{d}{dt}\operatorname{Ent}_{\pi}(h_{t}) = -\mathcal{E}(h_{t},\log h_{t})$$
$$\rho_{0} = \inf\left\{\frac{\mathcal{E}(f,\log f)}{\operatorname{Ent}_{\pi}(f)}: f \ge 0\right\} \quad \operatorname{Ent}_{\pi}(h_{t}) \le e^{-\rho_{0}t}\operatorname{Ent}_{\pi}(h_{0})$$

Log-Sobolev constant:
$$\rho = \inf \left\{ \frac{\mathcal{E}(\sqrt{f}, \sqrt{f})}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

Modified log-Sobolev:
$$\rho_0 = \inf \left\{ \frac{\mathcal{E}(f, \log f)}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

For diffusions:
$$\mathcal{E}(f,g) = \int \nabla f \nabla g = \int f \Delta g$$

$$\mathcal{E}\left(\sqrt{f}, \sqrt{f}\right) = \int \left(\nabla\sqrt{f}\right)^2 = \frac{1}{4} \int \frac{|\nabla f|^2}{f}$$
$$= \frac{1}{4} \int \nabla f \nabla \log f = \frac{1}{4} \mathcal{E}(f, \log f)$$

Log-Sobolev constant:
$$\rho = \inf \left\{ \frac{\mathcal{E}(\sqrt{f}, \sqrt{f})}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

Modified log-Sobolev:

$$\rho_0 = \inf \left\{ \frac{\mathcal{E}(f, \log f)}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

$$4\rho \le \rho_0 \le \frac{\lambda}{2}$$

$$\frac{1}{2\rho} \le \ell_2 \text{ mixing time} \le \frac{1}{\rho} \left(1 + \frac{1}{4} \log \log \frac{1}{\pi_{\min}} \right)$$

Log-Sobolev constant:
$$\rho = \inf \left\{ \frac{\mathcal{E}(\sqrt{f}, \sqrt{f})}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

Modified log-Sobolev:

$$\rho_0 = \inf \left\{ \frac{\mathcal{E}(f, \log f)}{\operatorname{Ent}_{\pi}(f)} : f \ge 0 \right\}$$

$$4\rho \le \rho_0 \le \frac{\lambda}{2}$$

$$\frac{1}{2\rho} \le \ell_2 \text{ mixing time} \le \frac{1}{\rho} \left(1 + \frac{1}{4} \log \log \frac{1}{\pi_{\min}} \right)$$

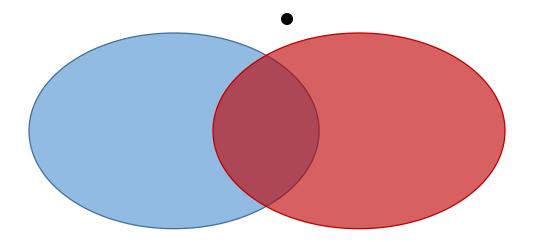
[Diaconis Saloff-Coste 1996]

Bakry-Emery (1985) theory: For Markov diffusions,

Positive curvature \Rightarrow Log-Sob inequality (quantitatively)

Otto-Villani (2000): Proved this (and stronger versions) using Otto's interpretation of diffusion as the gradient flow of the entropy on an appropriate Riemannian manifold of probability measures.

In recent years, a rather large body of work attempting to define these notions / extend these implications to discrete spaces.



Suppose we have a metric d on the state space Ω .

Y. Ollivier (following Bubley-Dyer'97, etc.): The metric chain (Ω, P, d) has **coarse Ricci curvature** $\geq \kappa$ if for every pair $u, v \in \Omega$, there is a pair of random variables (U, V)such that

$$U \sim X_1 \mid X_0 = u \qquad V \sim X_1 \mid X_0 = v$$

and

 $\mathbb{E}[d(U,V)] \le (1-\kappa) d(u,v)$

Suppose we have a metric d on the state space Ω .

Y. Ollivier (following Bubley-Dyer'97, etc.): The metric chain (Ω, P, d) has **coarse Ricci curvature** $\geq \kappa$ if for every pair $u, v \in \Omega$, there is a pair of random variables (U, V)such that

$$U \sim X_1 \mid X_0 = u$$
 $V \sim X_1 \mid X_0 = v$

and

 $\mathbb{E}[d(U,V)] \le (1-\kappa) d(u,v)$

Conjecture:

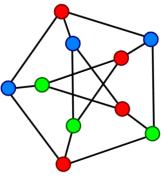
If we metricize the chain so that d(x, y) = 1 when P(x, y) > 1 and then take the induced path metric, the following holds:

Whenever (Ω, P, d) has coarse Ricci curvature $\geq \kappa$, the chain admits a [modified*] log-Sobolev inequality with constant $O(1/\kappa)$.

Challenge / test chain:

For what values of Δ (maximum degree) and k (# colors) does the Glauber dynamics on k-colorings of a graph admit a (uniform) log-Sobolev inequality?

 $k \ge 2\Delta \qquad \text{[Marton 2015]}$ $k \ge \frac{11}{6}\Delta \qquad ???$



The W_p distance between densities f and g on a metric measure space (Ω, π, d) is

$$W_p(f,g) = \min_{\mu} \left\{ \left(\int d(u,v)^p d\mu(u,v) \right)^{\frac{1}{p}} \right\}$$

where the minimum is over all couplings μ of $(f \ d\pi, g \ d\pi)$.

Inequalities relating transportation distances to entropy were studied by Marton (1996) and Talagrand (1996).

[Bobkov-Götze 1999]: If (Ω, P, π) admits a log-Sobolev inequality with constant $1/\alpha$, then it admits a W_1 entropy-transport inequality:

$$W_1(f, \mathbf{1}) \leq \sqrt{2\alpha \operatorname{Ent}_{\pi}(f)}$$

where Ω is equipped with the graph metric introduced earlier.

Conjecture: If we metricize the chain so that d(x, y) = 1 when P(x, y) > 1 and then take the induced path metric, the following holds: Whenever (Ω, P, d) has coarse Ricci curvature $\ge \kappa$, the chain admits a [modified*] log-Sobolev inequality with constant $O(1/\kappa)$.

[Bobkov-Götze 1999]: If (Ω, P, π) admits a log-Sobolev inequality with constant $1/\alpha$, then it admits a W_1 entropy-transport inequality:

$$W_1(f, \mathbf{1}) \leq \sqrt{2\alpha \operatorname{Ent}_{\pi}(f)}$$

Theorem [Eldan-L-Lehec 2015]:

Coarse Ricci curvature $\geq \kappa$ implies a W_1 entropy-transport

inequality with constant $\alpha = \kappa^{-1}/(1-\frac{\kappa}{2})$.

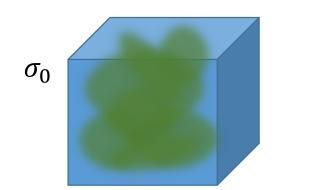
[See also work of Fathi and Shu, 2015]

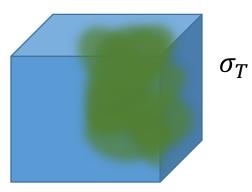
Consider a space \mathcal{P} of paths $\gamma : [0, T] \rightarrow \Omega$ equipped with a background measure μ (e.g., trajectories of continuous-time random walk), and also two measures σ_0 and σ_T on Ω .

Schrödinger problem:

Find the unique measure ν on \mathcal{P} that interpolates between σ_0 and σ_T : If $\gamma \sim \nu$, then $\gamma(0) \sim \sigma_0$ and $\gamma(T) \sim \sigma_T$ and minimizes the relative entropy to the background measure:

minimize $D(\nu \mid \mu) = \int d\nu(\gamma) \log\left(\frac{d\nu(\gamma)}{d\mu(\gamma)}\right)$





Now let $\{X_t : t = 0, 1, ..., T\}$ be discrete-time random walk. Our initial measure will be concentrated on a fixed point $X_0 = x_0$, and the final measure will have density $f\mu_T$ where $f : \Omega \to \mathbb{R}_+$ is given and μ_T is the law of $X_T \mid X_0 = x_0$.

The optimal entropic interpolation is the process $\{Z_t\}$ given by $Z_0 = x_0$ and for $t \le T$,

$$\mathbb{P}(Z_t = y \mid Z_{t-1}) = p(Z_{t-1}, y) \frac{P_{T-t}f(y)}{P_{T-t+1}f(Z_{t-1})}$$

where $P_t f(x) = \mathbb{E}[f(X_t) | X_0 = x]$ is the discrete-time heat semi-group.

The optimal entropic interpolation is the process $\{Z_t\}$ given by $Z_0 = x_0$ and for $t \le T$,

$$\mathbb{P}(Z_t = y \mid Z_{t-1}) = p(Z_{t-1}, y) \frac{P_{T-t}f(y)}{P_{T-t+1}f(Z_{t-1})}$$

where $P_t f(x) = \mathbb{E}[f(X_t) | X_0 = x]$ is the discrete-time heat semi-group.

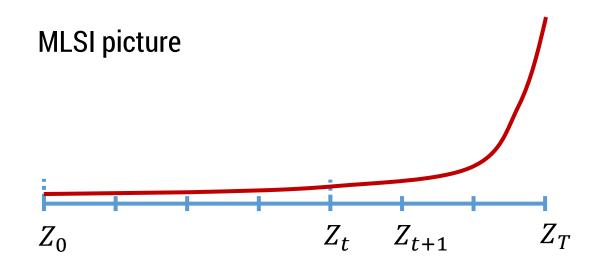
Moreover, one has:

$$D(\{Z_0, ..., Z_T\} \mid \{X_0, ..., X_T\}) = D(Z_T \mid X_T) = \text{Ent}_{\mu_T}(f)$$

In particular, one can examine the "information burn" at each time:

$$\operatorname{Ent}_{\mu_{T}}(f) = \sum_{t=1}^{T} \mathbb{E}\left[\log \frac{P_{T-t}(Z_{t})}{P_{T-t+1}(Z_{t-1})}\right] = \sum_{t=1}^{T} \mathbb{E}[D(\mathbb{P}_{Z}(Z_{t-1}, \cdot) \mid p(Z_{t-1}, \cdot))]$$

entropic interpolation



Moreover, one has:

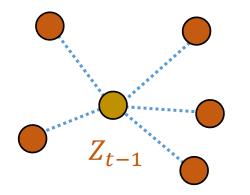
 $D(\{Z_0, ..., Z_T\} \mid \{X_0, ..., X_T\}) = D(Z_T \mid X_T) = \text{Ent}_{\mu_T}(f)$

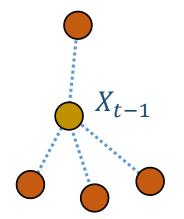
In particular, one can examine the "information burn" at each time:

$$\operatorname{Ent}_{\mu_{T}}(f) = \sum_{t=1}^{T} \mathbb{E}\left[\log \frac{P_{T-t}(Z_{t})}{P_{T-t+1}(Z_{t-1})}\right] = \sum_{t=1}^{T} \mathbb{E}[D(\mathbb{P}_{Z}(Z_{t-1}, \cdot) \mid p(Z_{t-1}, \cdot))]$$

interpolated random walk

the coupling and contraction



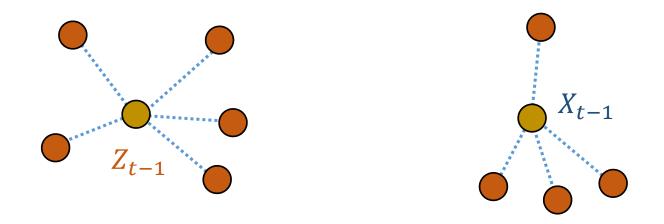


TV-optimal coupling of Z_t and $X_1 \mid (X_0 = Z_{t-1})$ W_1 -optimal coupling of X_t and $X_1 \mid (X_0 = Z_{t-1})$

Competing factors:

- (i) separation decays at rate (1κ) because of the contraction (spend information at the end)
- (ii) Pinsker's inequality $d_{TV}(\mu, \nu) \le \sqrt{D(\mu \mid \nu)}$ (spend information slowly)

the coupling and contraction

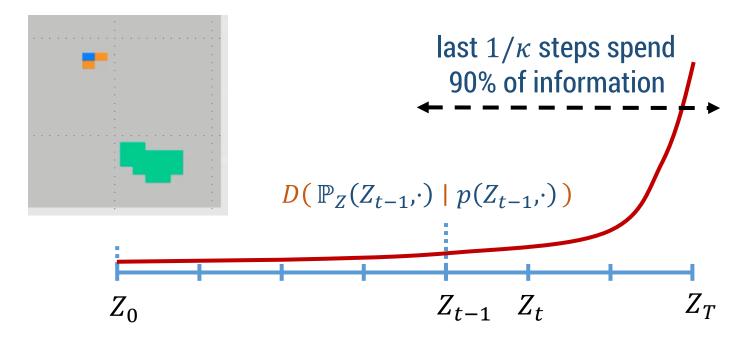


Cauchy-Schwarz of (i) and (ii): $W_1(f, \mathbf{1}) \leq \sqrt{2\kappa^{-1} \operatorname{Ent}_{\pi}(f)}$

Competing factors:

- (i) separation decays at rate (1κ) because of the contraction (spend information at the end)
- (ii) Pinsker's inequality $d_{\text{TV}}(\mu, \nu) \le \sqrt{D(\mu \mid \nu)}$ (spend information slowly)

back to (modified) log-Sobolev



Question:

Is this curve monotone in time (on average, $Z_0 \sim \pi$), $T \rightarrow \infty$? (open even for diffusion on a compact manifold)

Strategy for modified log-Sobolev:

Duality formula for relative entropy [following Borell 2000, Eldan-L 2015]

questions?

