
Markov Paging �Anna R. Karlin y Steven J. Phillipsz Prabhakar RaghavanxApril 22, 1997
AbstractThis paper considers the problem of paging under the assumption that thesequence of pages accessed is generated by a Markov chain. We use this model tostudy the fault-rate of paging algorithms. We �rst draw on the theory of Markovdecision processes to characterize the paging algorithm that achieves optimalfault-rate on any Markov chain. Next, we address the problem of devising apaging strategy with low fault-rate for a given Markov chain. We show thata number of intuitive approaches fail. Our main result is a polynomial-timeprocedure that, on any Markov chain, will give a paging algorithm with fault-rate at most a constant times optimal. Our techniques also show that somealgorithms that do poorly in practice fail in the Markov setting, despite known(good) performance guarantees when the requests are generated independentlyfrom a probability distribution.1 IntroductionThis paper considers the problem of paging in a two-level store under the assumptionthat the sequence of pages accessed (henceforth reference string) is generated by aMarkov chain. Each page of virtual memory is represented by a state (or node) ofthe Markov chain M , whose transition probabilities pij specify the probability thatan access to i is immediately followed by an access to j.Sleator and Tarjan [18] initiated the worst-case study of paging, introducing a styleof worst-case analysis that has come to be known as competitive analysis [11]. We wish�A prelimiary version of this paper appeared in the Proceedings of the 33rd IEEE Symposiumon Foundations of Computer Science, 1992.yDepartment of Computer Science and Engineering, University of Washington, Seattle, WA.karlin@cs.washington.eduzAT&T Bell Laboratories, Murray Hill, NJ. Supported by NSF Grant CCR-9010517, and grantsfrom Mitsubishi and OTL. This work was done while at Stanford University and DEC SRC.phillips@research.att.comxIBM Almaden Research Center, Almaden, CA. pragh@almaden.ibm.com1

to address some shortcomings of the traditional adversarial analysis of paging [18].Borodin et al. [2] provided an important step towards bridging the gap betweensuch worst-case analysis and reality by providing a model that captured the essentialaspects of locality of reference in the reference string. Here we follow their lead, andassume that the reference string is generated by a Markov chain (thereby removingthe adversary's role).We refer to on-line paging with the reference string generated by such a Markovchain as Markov paging. We focus on questions such as: given a Markov chain, whatis the best paging algorithm for reference strings generated by it, and how can thisalgorithm be computed? is there a simple algorithm that performs near-optimallyon every Markov chain? can Markov paging explain why some paging algorithmsperform poorly in practice?Some salient features of our work are:� There is recent interest in the systems community in designing paging algo-rithms that adapt to the locality characteristics of a program [5, 14]. Thusinsights derived from theoretical studies may have an impact on implementa-tions.� Markov paging, like the access graph model in [2, 10], o�ers a clean theoreticalabstraction for locality of reference in a program. Unlike the models in [2, 10,11, 18], there is no adversary generating the reference string, much as in a realprogram. Further, certain simple properties of real programs | such as the factthat a data-dependent loop typically gets executed many times before exiting| can be modeled well.� Practitioners study the page-fault rate for a program and paging algorithm,rather than competitiveness. Page-fault rate has little meaning in an adversarialmodel, but is eminently suited to a probabilistic model. In Markov paging, thereis (as we shall see) a precise meaning to the page-fault rate of an algorithm, aswell as the best page-fault rate achievable on the Markov chain. Note that if eachrequest is drawn independently from a probability distribution, the problem ofdevising the paging algorithm with lowest fault-rate has an easy solution [9].� Markov paging enables us to provide a mathematical basis for the poor perfor-mance of certain paging algorithms (such as random replacement and frequencycount). For example, the Frequency Count algorithm can be bad in the Markovpaging setting | whereas one might think that on a probabilistic input thisalgorithm would perform well.� Somewhat surprisingly, we �nd that several plausible approaches to devisingpaging algorithms will fail for Markov paging. For example, all marking algo-rithms, provably best in an adversarial model, su�er from page-fault rates thatare far from optimal in Markov paging. This includes probabilistic versions ofthe FAR algorithm of [2, 10]. We also �nd that natural approximations of theoptimal o�-line paging algorithm MIN are far from optimal in Markov paging.2

� We present an on-line paging algorithm that is computable in polynomial timeand achieves a fault-rate within a constant times the best possible, on everyMarkov chain.While our approach enables us to move away from competitive analysis towardsa performance measure of greater interest to practitioners, two practical limitationsof our work should be noted. Firstly, in practical settings, page reference sequencesmay not be accurately modeled by a Markov chain in which pages are equated withchain states, since each page contains many memory locations. For example, a singlepage may have a number of basic blocks of code, and the next page to be referencedwill depend on which basic block the program is currently in. Secondly, while thealgorithm we present is polynomial-time computable, it requires the estimation andstorage of commute times between pairs of pages of memory. The time and memoryinvolved are considerable, so a simpler algorithm may be more applicable in practice.1.1 ModelWe have n pages that may be either in memory or on disk. Only k pages may be inmemory at any time. An on-line paging algorithm is presented with a sequence of pagerequests. If the page currently requested is in memory, (a hit), no cost is incurred.However, if the page requested is not in memory (a fault), it must be fetched fromthe disk into memory for a unit cost. Furthermore, if there are already k pages inmemory, one of the pages in memory must be evicted to make room for the requestedpage. The decision of which page to evict must be made by the paging algorithmwithout detailed knowledge of future requests.We now augment this basic model with a Markov source of references. Let M bean irreducible Markov chain whose state space is the set of n pages, and let A bean on-line paging algorithm. We de�ne fA(M; k) to be the long-term frequency offaults incurred by A running on page request sequences generated by M and usinga memory that can hold k pages. This is formalized in Section 2. It is also shownin Section 2 that there is an optimal fault-rate for every Markov chain M , which wedenote by f �(M; k).Note that we are not concerned here with the problem of inferring the Markovchain by observation of the page request sequence. We assume that the transitionprobabilities are already known. For example, they could be approximated to arbi-trarily accuracy by sampling a large enough initial pre�x of the reference string.11.2 Related previous workThe underpinnings of competitive paging were laid in [11]. The literature of com-puter performance modeling and analysis contains related work, both theoretical and1For this reason, the results we obtain assuming the Markov chain is known also hold in a limitingsense in the case where the Markov chain is not known.3

empirical. Denning [6] (and references therein) developed the working set model ofprogram behavior for capturing locality of reference. Spirn[19] gives a comprehensivesurvey of models for program behavior. Franaszek and Wagner [9] studied a model inwhich every request is drawn independently from the same probability distribution.Shedler and Tung [17] and Lewis and Shedler [13] study paging in a Markov chainwhose states represent LRU stack distances, a model convenient for studying the leastrecently used (LRU) paging algorithm. Denning and Spirn showed empirically thatin order for a �rst-order Markov model to reasonably approximate real program be-havior, it is necessary to separate data and instruction reference streams. Borodin etal. [2] and Irani et al. [10] have studied locality of reference in paging, but with anadversarial model.Irani, Karp, Kearns and Luby (private communication, 1991) have studied otheron-line problems when requests are independently drawn from a probability distribu-tion. Vitter and Krishnan [20] consider the problem of prefetching into a cache whenthe reference string is generated by a Markov source (or mth order Markov source).Under the assumption that there is always su�cient time to prefetch as many pagesas wanted, Vitter and Krishnan show that data compression techniques can be usedto obtain algorithms with optimal limiting page fault rates.1.3 Guided tour of the paperSection 2 draws on the theory of Markov decision processes to characterize pagingalgorithms that achieve optimal fault-rate on any Markov chain. Theorem 1 showsthat there is a memoryless, deterministic optimal on-line algorithm. Theorem 2 showsthat there is a linear program that determines the optimal on-line algorithm, but thisalgorithm may have running time exponential in k. Section 3 shows that a numberof plausible approaches for designing an e�cient and provably good Markov pagingalgorithm will fail. Our main result, in Section 4, gives an e�ciently computablepaging algorithm whose fault-rate is within a constant factor of the best possible onevery Markov chain.2 Markov decision theory and optimal pagingWe begin by studying the relationship between page replacement policies and Markovdecision theory [7].A Markov decision process can be described as follows. Consider a discrete timeMarkov chain, whose state at time t is Yt. After each observation of the system, oneof a set of possible actions is taken. Say that Ki is the set of actions possible when thesystem is in state i. Let At be the action taken at time t. A (possibly randomized)policy R is a set of functions Da(Ht�1; Yt), where a is an action in KYt meaning thatif Ht�1 is the history of states and actions up to time t�1, and Yt is the state at timet, then the probability action a is taken at time t is Da(Ht�1; Yt). The actions can4

be such that they change the state of the system. We de�ne this precisely by sayingthat qij(a) is the probability of the system being in state j at the next instant, giventhat the system is in state i and action a is taken, i.e.Pr(Yt+1 = j jHt�1; Yt = i; At = a) = qij(a):An additional set of parameters associated with a Markov decision process are costs:when the chain is in state i and action a is taken, a known cost wia is incurred.Let SR;T be the expected cost of operating a system up to time T using policy R.(SR;T = P0�t�T PjPa PR(Yt = j; At = a)wja.)A standard cost criterion in Markov decision theory is to minimize the expectedaverage cost per unit time, i.e. to �nd a policy R to minimizelim supT!1SR;TT : (1)We formalize the notion of expected faulted rate fA(M; k) of a paging algorithmA running on request sequences generated by the Markov chain M as follows. Let Sbe the state space of M (remember S is just the set of pages). De�ne the followingaugmented Markov chain whose state space is S 0. A state in S 0 has two components:r and I. Here r is the most recent request, and I is a subset of S of size k representingthe set of pages that are in memory immediately before servicing the request r.When the system is in the state (r; I), and r 62 I, then there are k actions thatcan be taken by the on-line algorithm: for each x 2 I, x can be evicted. The e�ect ofthe actions is described as follows. Suppose that pij are the transition probabilitiesof the underlying Markov chain. For each r0 2 S,Pr(Yt+1 = (r0; I 0) jHt; Yt = (r; I); At = x) = prr0where I 0 = I n fxg [frg.When the system is in state (r; I), and r 2 I, only the trivial action can be taken.The algorithm A is simply a policy for this Markov decision problem.We set w(r;I);a = (1 if r 62 I0 otherwiseand de�ne the expected fault rate fA(M; k) to be the expected average cost perunit time, as de�ned in (1) above.The following two theorems instantiate basic results in Markov decision theory([7], Chapter 3, Theorem 2, and Chapter 6, Lemma 4) to the case of Markov paging.Theorem 1 For a given Markov chain there is an on-line page replacement policythat has minimum fault rate and is memoryless, time-invariant and deterministic.5

Thus for the optimum algorithm, the decision of which page to evict on a faultdepends only on the current request and the k pages in memory, and is deterministic.Theorem 2 The problem of computing the optimal on-line paging strategy onMarkov chain M can be expressed as a linear programming problem in n�nk� variables.Note that this linear programming formulation gives us an algorithm for comput-ing the optimal paging strategy on M whose running time may be exponential in k.We know of no technique to improve this upper bound, and this leads us to the studyof e�ciently computable strategies that approximate f �(M) well on every M . Notethat when k is close to zero or to n, the linear program gives an e�cient algorithm forcomputing the optimal on-line paging strategy. In fact, it is particularly instructiveto consider the case n = k+ 1, both for its own sake and because it has traditionallygiven good insights in paging [2, 8].Theorem 3 When n = k + 1, for every M , there is an e�ciently computabledeterministic paging strategy that evicts only one of two �xed nodes (k � 1 pages arenever evicted) whose fault-rate is at most 2f �(M; k).Proof: Let G be the complete directed graph on n states, weighted by expectedhitting times in M (the weight of edge (i; j) being Hi;j). For any memoryless, time-invariant and deterministic algorithm, in any execution the \hole" (the page thatisn't in the memory) must eventually get into some cycle in G. Once in a cycle,the expected fault rate is just the reciprocal of the average edge weight around thecycle. Thus the optimal paging algorithm must use a max mean cycle. (See [12] foran algorithm to �nd a max mean cycle.) It follows that there is a cycle of length2 that has page fault rate at most twice optimal: just pick a pair (i; j) of adjacentvertices on a max mean cycle, such that Hi;j is at least the mean. Note that in thecase that the chain is reversible, the mean hitting time round a cycle is independentof direction around the cycle, so there must be a cycle of length 2 with optimal pagefault rate. 2The following theorem compares the optimal online fault rate to the optimal o�-line fault rate.Theorem 4 The expected page fault rate of OPT, the optimal online algorithm,is at most O(logk) times the expected page fault rate of the optimal o�-line algo-rithm (that sees the entire request string output by the Markov chain, then serves itoptimally).This follows from the existence of a O(log k)-competitive randomized paging algo-rithm [8], combined with the von Neumann minimax principle [15]. The bound is thebest possible: when the Markov chain is the random walk on the k+1 node completegraph Kk+1, any on-line algorithm has fault rate
(log k) times that of the optimalo�-line algorithm [15]. 6

3 Negative resultsWe begin this section by establishing that two algorithms that have been proposedand found to fare poorly in practice are far from optimal in Markov paging. Followingthis, we begin our quest for a simple, e�ciently computable paging algorithm thathas page-fault rate within a constant multiple of the best possible, on every Markovchain. We show in this section that a number of intuitively \obvious" algorithms forMarkov paging fail to achieve this goal, and pave the way for our optimal algorithmin Section 4. In all our negative results, n = k + 1; however, this is for simplicity ofpresentation only and can be generalized.Remember that the hitting time hx;y from a state x in a Markov chain to anotherstate y is de�ned to be the expected number of steps taken to �rst reach y startingfrom x, while the commute time Cx;y is the expected number of steps to reach y fromx and then return to x. We mention also that the commute time is related to theresistance [4], and thus the hitting times in most examples used here can be easilycomputed by the electrically literate reader.The Random Replacement (RR) paging algorithm will, on a fault, evict a randompage in memory. Although optimal in the competitive setting against an adaptiveon-line adversary [16], it performs relatively poorly in practice.Theorem 5 There is a constant c such that for every k > 2, there is a Markovchain M for which fRR(M; k) � ckf �(M; k).De�nition 1 For positive integers a; b, the lollipop graph L(a; b) is formed byattaching one end of a path through b nodes to a complete graph Ka on a nodes.Proof of Theorem 5: Let n = k+1, and letM be the Markov chain representingthe simple random walk on L(k � 1; 2). The maximum hitting time is
(k2), saybetween nodes x and y. The algorithm that alternates its hole between x and y (as inTheorem 3) thus has a fault rate of O(1=k2), since the expected fault rate is 1=Cx;y,by a result of renewal theory (see for example [7], page 147). Therefore f �(M; k) isO(1=k2). On the other hand, the expected time between faults incurred by RR is theaverage over all pairs of nodes x; y in the graph of the hitting time from x to y. Thisaverage is O(k).2The Frequency Count (FC) algorithm maintains, for each of the n pages, a countof the number of times that page has been accessed. On a fault, it evicts the thepage in memory that has been accessed least often. When every request is drawnindependently from a probability distribution, FC converges to the optimal algorithm.However, it performs poorly in practice, since it ignores locality of reference. This isreected by the fact that it is far from optimal in Markov paging (Theorem 6).Theorem 6 There is a constant c such that for every k > 2, there is a Markovchain M for which fFC (M; k) � ckf �(M; k).7

De�nition 2 For positive integers a; b, the forked lollipop graph FL(a; b) isformed from L(a; b � 1) by connecting two new nodes to the external end-node ofthe (b� 1)-path.Proof of Theorem 6: Let n = k + 1, and let M be the Markov chain representingthe simple random walk on FL(k=2; k=2). The two prongs have lowest stationaryprobability on this chain, so will eventually have the smallest frequency count in anyrequest sequence. Thus FC will eventually alternate the \hole" (the node not inmemory) between these two nodes. The expected time between faults incurred byFC is O(k2) (which is the expected hitting time from one prong to the other), whereasf �(M; k) is O(1=k3) (obtained by alternating the hole between one prong and a nodein the clique). 2Next, we show that many algorithms that intuitively should perform well inMarkov paging will in fact perform poorly on some Markov chains.A class of on-line algorithms that one may expect to perform well are markingalgorithms. Marking algorithms use a notion of phases. A new page is one that wasn'trequested in the previous phase. A new phase begins with a request to a new page.When a page is requested, it is marked. As soon as k distinct pages are marked, thephase ends, and all pages become unmarked. A marking algorithm has the propertythat it never evicts a marked page.It has been shown that there are optimal marking algorithms under competitiveanalysis for paging with locality of reference [2], as well as randomized paging al-gorithms (arbitrary request sequences) [8, 10]. Therefore, one might think that thesame would hold when reference strings are generated from a Markov chain. Thefollowing theorem shows that our search for a good algorithm should exclude mark-ing algorithms. The lower bound in the theorem cannot be improved, since thereis a marking algorithm A which is O(log k)-competitive [8], and therefore there is aconstant c such that fA(M; k) � c(log k)f �(M; k) for any Markov chain M .Theorem 7 There is a constant c such that for any k > 2, there is a Markovchain M for which fA(M; k) � c(log k)f �(M; k) for any marking algorithm A.Proof: Let M be the Markov chain corresponding to a simple random walk onthe lollipop graph L(k=2 + 1; k=2). Let y denote the node at the end of the path. Aphase starts with a request at some vertex of the graph, and ends just before all nodesin the graph have been requested. The last node to be requested starts a new phase.The important property of this Markov chain that defeats any marking algorithmis that once a node in the clique is requested, with high probability all the nodesin the clique will be requested before the node y is requested. Hence on average,almost half the phases will begin on y. By a standard argument, if a phase begins ony, any marking algorithm will incur an expected
(log k) faults in the clique beforethe phase ends. Thus any marking algorithm will incur
(log k) faults per phase onaverage. On the other hand, the on-line algorithm that alternately evicts a node inthe clique and y will incur an average of 1 fault per phase. 28

The optimal o�ine algorithm for any reference string is commonly called MIN.MIN always replaces the page that will be requested furthest in the future. Wenow consider various on-line algorithms that mimic MIN on a Markov chain. Themaximum hitting time (MHT) algorithm replaces, on a fault, that page in memory forwhich the expected time to the next request is the largest. Indeed, when the requestsare drawn independently from a probability distribution, this algorithm performswell [9]; again, the locality of reference captured by Markov paging proves to be theundoing of this algorithm.Theorem 8 For every k > 10, there is a Markov chain M on k + 1 nodes and aconstant c such that fMHT (M; k) � ckf �(M; k).Proof: Consider the forked lollipop G = FL(2k=3; k=3). Suppose that theMarkov chain generating the reference string is the simple random walk on G.If MHT is run on the reference string generated by this Markov chain, eventuallyone of the two prongs at the end of the path will be evicted. From either, themaximum hitting time is 4n2=9, to the other. On the other hand, the maximumhitting time from a prong to any node in the clique is 2n2=9 + O(n). Thus the pagenot in memory (the \hole") will thereafter oscillate forever between the two prongs,so that fMHT (M; k) is
(1=k2). The optimal algorithm will alternately evict a nodein the clique and a prong, with fault-rate O(1=k3). 2Let LAST be the algorithm that on a fault evicts the page that has the highestprobability of being the last of the k pages in memory to be requested. An attractivevariation on LAST is an algorithm we call Max Rank, (MR) de�ned as follows. Sup-pose that at the time of a fault, S is the set of pages in memory. Then there is somepermutation on S that describes the order in which these pages will subsequently beseen. For each page i 2 S, and 1 � j � k, let pi(j) be the probability that page iis the jth page in S that will be seen. De�ne the expected rank of page i, Ri to bePj jpi(j). Then MR evicts the page p 2 S such that Rp is maximum.Theorem 9 There is a constant c such that for any k: (i) there is a Markovchain M such that fLAST (M; k) � ckf �(M; k), (ii) there is a Markov chain M suchthat fMR(M; k) � ckf �(M; k)Proof: (i) Consider the Markov chain corresponding to the standard randomwalk on an undirected k+1 node cycle: all nodes are equally likely to be visited last.The following proof of this fact is credited by Broder [3], without further reference,to Avrim Blum, Ernesto Ramos, and Jim Saxe, independently: Consider a point a onthe cycle. Let its neighbors be b and c. Before visiting a, the walk will visit �rst oneof its neighbors, say b. Given this fact, the probability that a is last, is the probabilitythat the walk will visit c starting from b before it visits a. This is clearly independentof the position of a.Consequently, on a fault, LAST might always evict the neighbor of the faultednode. Therefore, LAST can have expected fault rate O(1=k) (since the expected9

time to hit a neighbor in a cycle is O(k)). On the other hand, the algorithm whichalternates the hole between two antipodal points faults has a expected fault rate ofO(1=k2).(ii) Consider a directed cycle on k nodes, with an extra node z that has edgesto and from two antipodal nodes x and y. Let pxz = pyz = p = 5=k, and letpzx = pzy = 1=2. We show that starting from any node w on the cycle, the node ofmaximum rank is the node w� that precedes w on the cycle. Indeed, the probabilityof avoiding half the cycle before hitting w�, by going through z, is p=2, since thewalk from w must reach z at the �rst chance (probability p), then can stay withinfx; y; zg for a while, and the last time it leaves z before venturing outside fx; y; zg itmust move to whichever of x and y is closer to w� (probability 1=2). The probabilityof avoiding half the cycle before hitting z is just p. Hence Rw� � k � 1 � p2(k2 � 1),while Rz � k � p(k2 � 1), and the former is larger for k > 20.In contrast, the optimal on-line algorithm will evict z whenever there is a fault onthe cycle. In this case, Max Rank incurs
(k) times as many faults as the optimalon-line algorithm. 2Finally, an algorithm which is very close in spirit to our nearly optimal on-linealgorithm of Section 4 is the Maximum Commute Time (MCT) Algorithm. On afault for page v, MCT evicts the page w in memory that maximizes the commutetime between v and w.Theorem 10 For every k, there is a Markov chain M for which fMCT (M; k) �kf �(M; k).Proof: Consider the Markov chain corresponding to a directed cycle k + 1 nodes.Then every pair of nodes in the graph has the same commute time (k+1). Therefore,on a fault at some node v Maximum Commute Time might always evict the successorof v, incurring a fault on every request. Since the optimal on-line algorithm has afault rate of 1=k, the claim is proven. 24 A provably good algorithm4.1 Description of the algorithmThe Commute Algorithm (CA) operates in phases. It keeps a window of the last k+ irequested pages, for some 0 � i � k. (We assume n � 2k. For the case n � 2k, asimpler algorithm in the same spirit can be shown to have page fault rate that is withina constant factor of optimal.) At the beginning of a phase the window is just the kmost recently requested pages; these pages are resident in memory. When a \new"page p (one that hasn't been requested in the current or last phase) is requested, itis added to the window. The phase ends (and the window shrinks back to size k)when the k + 1'st distinct page is requested in the current phase. At that time, CA10

performs the minimum number of swaps necessary to ensure that the k most recentlyrequested pages are again resident in memory, and the window again becomes the kmost recently requested pages.When the window contains k + i pages, CA maintains a partial matching of idisjoint pairs of pages f(u1; v1) : : : (ui; vi)g. The commute algorithm maintains thefollowing invariant:For each j, 1 � j � i, exactly one of uj and vj is in memory.On a fault at uj the page vj is evicted, and vice versa. (Observe that CA is not amarking algorithm.) When a new page p is added to the window, it is paired witha page q that is in the window, but not in the matching, such that the commutetime Cp;q is maximized. The new pair is added to the partial matching, and may beinvolved in a single \switch", described below.To describe the notion of a switch, we need some notation. For states a; b; u; v,we de�ne the relative distance of the pair (a; b) to u to bed[(a; b); u] = minfCa;u; Cb;ugCa;b :De�ne also the relative distance of (a; b) to (u; v) to bed[(a; b); (u; v)] = minfd[(a; b); u]; d[(a; b); v]g = minfCa;u; Cb;u; Ca;v; Cb;vgCa;b :Intuitively, if d[(a; b); u] is large, then both a and b are much further (in the commutetime metric) from u than they are from each other. Similarly, if d[(a; b); (u; v)] islarge, then both a and b are much further from both u and v than they are from eachother.When a new pair (p; q) is added to the matching, CA does the following:Case 1: If d[(p; q); (uj; vj)] � cs for all j, then there is no switch: we service thefault at p by evicting q. Here cs, the \constant for switching", is a suitably chosenconstant; the reader can verify during the proof below that by choosing cs = 2, allinequalities involving cs hold.Case 2 (Switch): Otherwise, choose j so that d[(p; q); (uj; vj)] is maximized, andreplace the matched pairs (p; q) and (uj; vj) by (uj; p) and (q; vj). Service the fault atp by evicting whichever of uj or vj is in memory. This restores the invariant mentionedabove.In the upcoming proofs, we will be distinguishing one node in each pair, andtherefore we may need to reverse the roles of u` and v` for some pairs, whether or nota switch has been done. The analysis below shows how this should be done.As for the running time of CA, the complexity of computing the commute times ina Markov chain is polynomial in n. Therefore, with an initial preprocessing step thatconstructs the matrix of commute times, the complexity of running the algorithm CAis O(k) per fault. 11

4.2 Analysis of the algorithmTheorem 11 There is a constant c such that for any Markov chain M and anyk, fCA(M; k) � cf �(M; k):We prove the theorem by establishing a strict relationship between the pairs ofCA's matching.Consider one phase of the algorithm: let the r'th subphase be the time when thewindow size is k + r. Let Mr and Wr be the matching and the set of pages in thewindow, respectively, during the r'th subphase. Lastly, let VMr be the pages involvedin Mr. Notice that W1 � W2 � � � � � Wk and VM1 � VM2 � � � � � VMk . We will referto one node in each pair (ui; vi) in Mr as distinguished. Without loss of generalitythe distinguished node will always be ui.We say that Mr is a good matching if:1. For all pairs (ui; vi) and (uj; vj) 2 Mr, i 6= j, d[(ui; vi); uj] � cd. Here cd isthe maximum allowable distance to distinguished nodes. The fact that uj isinvolved in this condition, rather than vj, is what makes uj distinguished.2. For each pair (ui; vi) 2 Mr and a 2 Wr n VMr , d[(ui; vi); a] � cu: Here cu is themaximum allowable distance to unmatched nodes.The reader can verify during the proof that by choosing cu = 1 and cd = 6, allinequalities involving these constants hold.We will be using the following facts about commute times.Lemma 12 1. Commute times satisfy the triangle inequality.2. d[(a; b); c] � Ca;cCa;b and d[(a; b); c] � Cb;cCa;b .3. Ca;cCa;b � d[(a; b); c] + 1 and Cb;cCa;b � d[(a; b); c] + 1:4. d[(a; b); c] � d[(a; b); d] + Cc;dCa;b :5. If d[(x; y); z] � k0, d[(a; b); x] � k1 and d[(a; b); z] � k2, thenCx;y � (k1 + k2 + 1)k0 Ca;b:Proof: Parts 1 and 2 follow immediately from the de�nition of commute timeand relative distance. For part 3,Ca;cCa;b � min(Ca;c; Ca;c � Ca;b) + Ca;bCa;b � min(Ca;c; Cb;c)Ca;b + 1 � d[(a; b); c] + 1;12

where the second inequality follows from part 1. The other case is similar. For part4, d[(a; b); c] = min(Ca;c; Cb;c)Ca;b � min(Ca;d; Cb;d) + Cd;cCa;b = d[(a; b); d] + Cd;cCa;b :Finally, part 5 follows from the application of part 2, part 1 and part 3 to giveCx;y � Cx;zk0 � (min(Cx;a; Cx;b) + max(Ca;z; Cb;z))k0 � (d[(a; b); x] + d[(a; b); z] + 1)k0 Ca;b:Finally, use the fact that d[(a; b); x] � k1 and d[(a; b); z] � k2. 2Lemma 13 The Commute Algorithm's matching is always good.Proof: The proof is by induction. Consider �rst the matching M1 at the startof a phase: there is a single matched pair (p; q), consisting of a page p whose requeststarted the phase, and a page q that was chosen (out of the shrunk window of the kmost recently requested pages) to maximize Cp;q. In this base case, the distinguishednode can be chosen arbitrarily. Clearly, for a 2 Wr n VM1, we have d[(p; q); a] � 1:Now suppose thatMr is a good matching: we will show thatMr+1 is also good. Wetake q to be the distinguished node in the new pair. By the choice of q (maximizingCp;q) and the assumption on Mr, Mr+1 satis�es the following goodness conditions:1. d[(p; q); a] � cu for any a 2 Wr+1 n VMr+1.2. For any pairs (ui; vi); (uj; vj) 2Mr, d[(ui; vi); uj] � cd:, and for any (ui; vi) 2Mrand a 62 VMr+1, d[(ui; vi); a] � cu.3. For each pair (ui; vi) 2Mr, d[(ui; vi); q] � cu since q was in the window but notin the matching.There are two cases to consider:Case 1: We did not switch. (d[(p; q); (uj; vj)] � cs, 8j.)Remember that d[(p; q); (ui; vi)] = min (d[(p; q); ui]; d[(p; q); vi]). It might bethat d[(p; q); ui] > cd. But in this case, d[(p; q); vi] � cs, otherwise we wouldhave switched. We show that for all pairs (uj; vj) in Mr, d[(uj; vj); vi] � cd, sovi can play the former distinguished role of ui.Let (uj; vj) 2Mr, j 6= i. We have:d[(uj; vj); vi] � d[(uj; vj); q] + Cq;viCuj ;vj � cu + (cs + 1)Cp;qCuj ;vj ;
13

where both inequalities follow from Lemma 12, the �rst from part 4 and thesecond from part 3. However, from part 5 of Lemma 12, since d[(p; q); ui] � cd,d[(uj; vj); q] � cu, and d[(uj; vj); ui] � cd, it follows thatCp;q � cu + cd + 1cd Cuj ;vj :Substituting into the previous equation givesd[(uj; vj); vi] < cu + (cs + 1)(cu + cd + 1)cd � cd:Case 2: We did switch:Consider the new edges (p; uj) and (q; vj) (chosen so that d[(p; q); (uj; vj)] ismaximized). We show that p and q become distinguished vertices, and thatfor some other pairs (uk; vk), vk must become the distinguished vertex. Thedetailed proof that Mr+1 is good follows:We will need to use the following three inequalities� Since d[(p; q); (uj; vj)] > csCp;q < minnCp;uj ; Cp;vj ; Cq;uj ; Cq;vjocs : (2)� From Lemma 12, part 5, since d[(p; q); uj] > cs (because we switched),d[(uk; vk); q] � cu, and d[(uk; vk); uj] � cd (both because Mr was good), itfollows that for any pair (uk; vk) 2Mr, k 6= j,Cp;q < Cuk;vk cu + cd + 1cs (3)� Lastly, d[(p; q); (uk; vk)] � d[(p; q); (uj; vj)]: (4)Many of the goodness conditions follow immediately from the goodness of Mr.The ones that require proof are described below, each with a derivation.1. d[(p; uj); q] � cd, and d[(q; vj); p] � cd. This follows from (2).2. d[(p; uj); a] � cu and d[(q; vj); a] � cu for any unmatched a 2 Wr+1. Forthe �rst inequality, applying Lemma 12 part 2, the fact that Cp;q � Cp;afor all unmatched a, and equation (2) gives:d[(p; uj); a] � Cp;aCp;uj � Cp;qCp;uj � 1cs :Similarly, for the second inequality:d[(q; vj); a] � Cq;aCq;vj � Cq;p + Cp;aCq;vj � 2cs :14

3. For each pair (uk; vk) 2 Mr, k 6= j, d[(uk; vk); q] � cd and d[(uk; vk); p] �cd. The �rst inequality follows from the fact that Mr was good, sod[(uk; vk); q] � cu. As for the second inequality:d[(uk; vk); p] � d[(uk; vk); q] + Cp;qCuk;vk by Lemma 12, part 4� cu + Cp;qCuk;vk since d[(uk; vk); q] � cu� cu + cu + cd + 1cs by equation (3)� cd:4. For each pair (uk; vk) 2 Mr, either both d[(p; uj); uk] � cd andd[(q; vj); uk] � cd, or vk can become distinguished.To prove this, assume that d[(p; uj); uk] > cd. By assumptionCp;uk > cdCp;uj ; (5)and from (2) above, Cp;q < Cp;uj=cs: (6)Combining these two facts with lemma 12, part 3, we obtaind[(p; q); uk] � Cp;ukCp;q � Cp;qCp;q> cdCp;ujCp;q � Cp;ujcsCp;q> (cd � 1=cs)Cp;ujCp;q ;and so d[(p; q); uk] > d[(p; q); uj]: (7)Therefore, by the choice of j,d[(p; q); vk] < d[(p; q); (uj; vj)]: (8)ThereforeCp;vk � Cp;q(1 + d[(p; q); vk]) by Lemma 12, part 4� Cp;q(1 + d[(p; q); uj]) by (8)� Cp;q + Cp;uj� Cp;uj(1 + 1=c2) by (2)15

so d[(p; uj); vk] � cd. The previous four lines of equations also establishthat d[(q; vj); vk] � cd, by substituting q for p and vj for uj.Now let (ul; vl) 2 Mr. From (5) and (6) we haveCq;uk � Cp;uk � Cpq> (cd � 1=cs)Cp;uj> (cd � cs=2)Cp;uj :But, Cq;uk � Cul;vl(1 + d[(ul; vl); q] + d[(ul; vl); uk])� Cul;vl(1 + cu + cd)and so Cp;uj � 1 + cu + cdcd � cs=2 Cul;vl: (9)We have d[(ul; vl); vk] � d[(ul; vl); q] + Cp;q(1 + d[(p; q); vk])Cul;vl� cu + Cp;q(1 + d[(p; q); uj])Cul;vl (by 8)� cu + 3Cp;uj2Cul;vl (by 2)� cd (by 9):2The following lemma shows why we are interested in relative distances:Lemma 14 Let M be a Markov chain. Let u; v; h be three states in M , and let = Pr(h visited during an (u; v) commute): ThenCuvCuh � � CuvCuv + CuhProof:We use the following well-known proposition from renewal theory (see for exam-ple [7], page 147): Consider a Markov chain started in state i. Let 0 < S < 1 be astopping time such that XS = i. Let j be an arbitrary state. ThenEi(number of visits to j before time S) = �jEi(S);16

where �j is the stationary probability of state j, and Ei(X) is the expected value ofrandom variable X when the chain is started in state i.Let u; v; h be three states in M . Using the proposition, we obtain thatEu(# of visits to h during a (u; v) commute) = �h(Eu(Tv) +Ev(Tu)) = �hCuv: (10)Consider a random walk starting at u. Let p1 be the probability that h is visitedbefore v and let p2 be the probability that h is �rst visited after v, but before a (u; v)commute has completed. Clearly = p1 + p2. Furthermore,Eu(# of visits to h during a (u; v) commute) =p1Eh(# of visits to h during the time it takes to go from h to v to u back to h)+p2Eh(# of visits to h during the time it takes to go from h to u and back to h.)Once again using the proposition, we obtainEu(# of visits to h during a (u; v) commute) =p1�h(Eh(Tv) + Ev(Tu) + Eu(Th)) + p2�h(Eh(Tu) + Eu(Th)):Combining this with equation 10, we obtainCuv = p1(Eh(Tv) + Ev(Tu) + Eu(Th)) + p2Cuh:Since (Eh(Tv) + Ev(Tu) + Eu(Th)) � Cuh, we obtain � CuvCuh :On the other hand, (Eh(Tv) + Ev(Tu) + Eu(Th)) � Cuv + Cuh, and so � CuvCuv + Cuh ;completing the proof of the theorem.2We are ready to prove the main theorem.Proof of Theorem 11: We show that CA incurs an expected number of faultswhich is at most a constant times the expected number incurred by the optimal on-linealgorithm OPT .Let a hole of OPT be any page in Wr that OPT does not have in memory. Wemaintain a 1:1 mapping from pairs in the matching to holes of OPT , satisfying thefollowing two properties:� If hi is the OPT hole associated to pair (ui; vi) for some i, then d[(ui; vi); hi] =O(1). 17

� The mapping of pairs to holes is changed only when there is either an OPT -fault, or a new pair is added to the matching. In both cases, the associationchanges for O(1) pairs.Say that a (x; y) commute begins at time t if (x; y) is a pair in the matching attime t (i.e. (x; y) = (ui; vi) or (x; y) = (vi; ui) for some i), CA had a fault on the mostrecent request, and the most recent request was at x. Let T (x; y) be the set of timest such that a (x; y) commute begins at time t. De�ne a new node to be a node thatis visited in the current phase, but wasn't one of the nodes visited in the previousphase, and let G be the total number of new nodes seen in all phases in the requestsequence.The number of faults incurred by CA during a page request sequence, denotedC(CA), satis�es C(CA) = 0@X(x;y) Xt2T (x;y) 11A+O(G);where the last term comes from ensuring that the last k requests are in memory atthe end of each phase.Let h(x; y; t) be the OPT hole associated to pair (x; y) at time t, for t 2 T (x; y).Let Xx;y;t be the indicator random variable that is 1 if t 2 T (x; y) and h(x; y; t) isrequested during the (x; y) commute beginning at time t.For t 2 T (x; y), let t 2 Q(x; y) if either h(x; y; t) gets swapped to another pair orthe phase containing t ends before the (x; y)-commute starting at time t completes.Otherwise let t 2 R(x; y). Let C(OPT) be the number of faults incurred by OPT .For any page request sequence, we haveX(x;y) Xt2R(x;y)Xx;y;t � 2C(OPT);since each OPT fault can be accounted for at most twice, namely by a (x; y) commuteand a (y; x) commute, for some pair (ui; vi).The mapping of pairs to holes only changes if OPT incurs a fault or if a newpair is added to the matching, and then only O(1) pairs are a�ected. A new pair isadded to the matching only when a new node is visited. At most 2g commutes arein progress at the end of a phase, where g is the number of new nodes visited duringthe phase. Thus we haveX(x;y) Xt2Q(x;y)Xx;y;t = O(C(OPT) +G):(Note that in fact P(x;y)Pt2Q(x;y) 1 = O(C(OPT) +G):) Therefore,X(x;y) Xt2T (x;y)Xx;y;t = O(C(OPT) +G)18

= O(C(OPT) + k);where k is the number of pages that can be held in memory, since it is known [8] thatany paging algorithm incurs
(G� k) faults.Lastly, since d[(x; y); h(x; y; t)] = O(1)), by Lemma 14 there is a constant p > 0such that for all u; v; t such that t 2 T (u; v),E[Xx;y;t] � p:Putting all this together, we obtain by linearity of expectations thatE[C(CA)] = O(E[C(OPT)] + k);so the fault rate of CA is at most a constant factor greater than that of OPT .It remains only to describe the mapping of pairs to holes.At the beginning of a phase, the single matched pair is associated with any OPT -hole in the window | note that there is at least one. In general, if hj is the holeassociated with (uj; vj), we maintain the following invariant:hj is unmatched, or is uj or vj, or fhj; hkg = fuk; vkg for some k 6= j.Notice that the invariant remains unchanged when the distinguished node in a pairchanges. (In the case where fhj; hkg = fuk; vkg for some k 6= j, and the designatednode for pair fuk; vkg changes, swapping hj and hk ensures that the invariant remainstrue.) The following procedure ensures that at any time hj is changed, it is set toan unmatched node, or uj or vj, or uk for some k 6= j, so d[(uj; vj); hj] = O(1), asrequired.The �rst case to consider is when no switch was performed, and the pair (p; q)needs to �nd a hole h(p; q). We have the following cases.1. If p = hj for some j and q = hk for some k, then p becomes h(p; q), hk remainsq and we continue with (uj; vj) in place of (p; q).2. If only one of p or q is associated with a pair, say q = h(uk; vk), then q becomesh(p; q), and we continue with (uk; vk).3. At this point, there must be an OPT -hole that is unmatched because there areat least i holes total and only i�1 pairs are associated with a hole. We considerthree cases depending on what this unassociated OPT -hole is.(a) If the OPT -hole is unmatched, is p or is q, set h(p; q) to this OPT -hole.(b) If the OPT -hole is uk or vk such that hk 2 fuk; vkg, set h(p; q) to uk andhk to vk.(c) If the OPT -hole is uk or vk such that hk 62 fuk; vkg, set h(p; q) to hk andhk to the unassociated OPT -hole .19

The second case is when a switch was performed, producing pairs (p; uj) and(q; vj). In this case, we �rst unmatch hj from (uj; vj), and then apply two stepsaccording to the directions in the no-switch case above: �rst for (uj; p) and then for(q; vj).When OPT incurs a fault at a hole hj, the page is loaded into memory, so is nolonger a hole. The pair (uj; vj) then �nds an unassociated OPT -hole as in the no-switch case above. This scheme satis�es the two required properties of the mappingfrom pairs to holes.25 AcknowledgementsWe would like to thank the reviewers for extensive comments and excellent sugges-tions.References[1] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the powerof randomization in on-line algorithms. In Proc. 22nd Annual ACM Symposium onTheory of Computing, pages 379{388, 1990.[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with localityof reference. In Proc. 23rd Annual ACM Symposium on Theory of Computing, pages249{259, 1991.[3] A.Z. Broder. Generating random spanning trees. In Proc. 30th Annual IEEE Sympo-sium on Foundations of Computer Science, pages 442{447, 1989.[4] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R.Smolensky, and P. Tiwari. The electricalresistance of a graph captures its commute and cover times. In Proc. 21st Annual ACMSymposium on Theory of Computing, pages 574{586, 1989.[5] D. Cheriton and K. Harty. Application-controlled physical memory using externalpage-cache management. Technical report, Department of Computer Science, StanfordUniversity, 1991.[6] P.J. Denning. Working Sets Past and Present. In IEEE Trans. Software Eng. SE-6:64-84, 1980.[7] C. Derman. Finite State Markov Decision Processes. Academic Press, New York, 1970.[8] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. On competitivealgorithms for paging problems. To appear in Journal of Algorithms, 1990.[9] P.A. Franaszek and T.J. Wagner. Some distribution-free aspects of paging performance.Journal of the ACM, 21:31{39, 1974. 20

[10] S.S. Irani, A.R. Karlin, and S.J. Phillips. Strongly competitive algorithms for pag-ing with locality of reference. In Third Annual ACM-SIAM Symposium on DiscreteAlgorithms, 1992.[11] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopycaching. Algorithmica, 3(1):70{119, 1988.[12] R.M. Karp. A characterization of the minimum cycle mean in a digraph. DiscreteMathematics, 23:309{311, 1978.[13] P.A.W. Lewis and G.S. Shedler. Empirically derived models for sequences of pageexceptions. IBM J. Res. and Develop., 17:86{100, 1973.[14] D. McNamee and K. Armstrong. Extending the mach external pager interface to accom-modate user-level page replacement policies. Technical Report 90-09-05, Departmentof Computer Science and Engineering, University of Washington, 1990.[15] P. Raghavan. Lecture Notes on Randomized Algorithms. Technical Report RC 15340,IBM Research, 1990.[16] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In16th International Colloquium on Automata, Languages, and Programming, volume372 of Lecture Notes in Computer Science, pages 687{703. Springer-Verlag, July 1989.Revised version available as IBM Research Report RC15840, June 1990.[17] G.S. Shedler and C. Tung. Locality in page reference strings. SIAM Journal onComputing, 1:218{241, 1972.[18] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules.Communications of the ACM, 28:202{208, February 1985.[19] J.R. Spirn. Program Behavior: Models and Measurements Elsevier Computer ScienceLibrary. Elsevier, Amsterdam. 1977.[20] J.S. Vitter and P. Krishnan. Optimal Prefetching via Data Compression In Thirty-Second Annual IEEE Symposium on Foundations of Computer Science, 1991.

21

