Markov Paging *

Anna R. Karlin ' Steven J. Phillipst Prabhakar Raghavan®

April 22, 1997

Abstract

This paper considers the problem of paging under the assumption that the
sequence of pages accessed is generated by a Markov chain. We use this model to
study the fault-rate of paging algorithms. We first draw on the theory of Markov
decision processes to characterize the paging algorithm that achieves optimal
fault-rate on any Markov chain. Next, we address the problem of devising a
paging strategy with low fault-rate for a given Markov chain. We show that
a number of intuitive approaches fail. Our main result is a polynomial-time
procedure that, on any Markov chain, will give a paging algorithm with fault-
rate at most a constant times optimal. Our techniques also show that some
algorithms that do poorly in practice fail in the Markov setting, despite known
(good) performance guarantees when the requests are generated independently
from a probability distribution.

1 Introduction

This paper considers the problem of paging in a two-level store under the assumption
that the sequence of pages accessed (henceforth reference string) is generated by a
Markov chain. Each page of virtual memory is represented by a state (or node) of
the Markov chain M, whose transition probabilities p;; specify the probability that
an access to ¢ is immediately followed by an access to j.

Sleator and Tarjan [18] initiated the worst-case study of paging, introducing a style
of worst-case analysis that has come to be known as competitive analysis [11]. We wish

*A prelimiary version of this paper appeared in the Proceedings of the 33rd IEEE Symposium
on Foundations of Computer Science, 1992.

"Department of Computer Science and Engineering, University of Washington, Seattle, WA.
karlin@cs.washington.edu

YAT&T Bell Laboratories, Murray Hill, NJ. Supported by NSF Grant CCR-9010517, and grants
from Mitsubishi and OTL. This work was done while at Stanford University and DEC SRC.
phillips@research.att.com

$IBM Almaden Research Center, Almaden, CA. pragh@almaden.ibm.com

to address some shortcomings of the traditional adversarial analysis of paging [18].
Borodin et al. [2] provided an important step towards bridging the gap between
such worst-case analysis and reality by providing a model that captured the essential
aspects of locality of reference in the reference string. Here we follow their lead, and
assume that the reference string is generated by a Markov chain (thereby removing
the adversary’s role).

We refer to on-line paging with the reference string generated by such a Markov
chain as Markov paging. We focus on questions such as: given a Markov chain, what
is the best paging algorithm for reference strings generated by it, and how can this
algorithm be computed? is there a simple algorithm that performs near-optimally
on every Markov chain? can Markov paging explain why some paging algorithms
perform poorly in practice?

Some salient features of our work are:

e There is recent interest in the systems community in designing paging algo-
rithms that adapt to the locality characteristics of a program [5, 14]. Thus
insights derived from theoretical studies may have an impact on implementa-
tions.

e Markov paging, like the access graph model in [2, 10], offers a clean theoretical
abstraction for locality of reference in a program. Unlike the models in [2, 10,
11, 18], there is no adversary generating the reference string, much as in a real
program. Further, certain simple properties of real programs — such as the fact
that a data-dependent loop typically gets executed many times before exiting
— can be modeled well.

e Practitioners study the page-fault rate for a program and paging algorithm,
rather than competitiveness. Page-fault rate has little meaning in an adversarial
model, but is eminently suited to a probabilistic model. In Markov paging, there
is (as we shall see) a precise meaning to the page-fault rate of an algorithm, as
well as the best page-fault rate achievable on the Markov chain. Note that if each
request is drawn independently from a probability distribution, the problem of
devising the paging algorithm with lowest fault-rate has an easy solution [9].

e Markov paging enables us to provide a mathematical basis for the poor perfor-
mance of certain paging algorithms (such as random replacement and frequency
count). For example, the Frequency Count algorithm can be bad in the Markov
paging setting — whereas one might think that on a probabilistic input this
algorithm would perform well.

e Somewhat surprisingly, we find that several plausible approaches to devising
paging algorithms will fail for Markov paging. For example, all marking algo-
rithms, provably best in an adversarial model, suffer from page-fault rates that
are far from optimal in Markov paging. This includes probabilistic versions of
the FAR algorithm of [2, 10]. We also find that natural approximations of the
optimal off-line paging algorithm MIN are far from optimal in Markov paging.

e We present an on-line paging algorithm that is computable in polynomial time
and achieves a fault-rate within a constant times the best possible, on every
Markov chain.

While our approach enables us to move away from competitive analysis towards
a performance measure of greater interest to practitioners, two practical limitations
of our work should be noted. Firstly, in practical settings, page reference sequences
may not be accurately modeled by a Markov chain in which pages are equated with
chain states, since each page contains many memory locations. For example, a single
page may have a number of basic blocks of code, and the next page to be referenced
will depend on which basic block the program is currently in. Secondly, while the
algorithm we present is polynomial-time computable, it requires the estimation and
storage of commute times between pairs of pages of memory. The time and memory
involved are considerable, so a simpler algorithm may be more applicable in practice.

1.1 Model

We have n pages that may be either in memory or on disk. Only k£ pages may be in
memory at any time. An on-line paging algorithm is presented with a sequence of page
requests. If the page currently requested is in memory, (a hit), no cost is incurred.
However, if the page requested is not in memory (a fault), it must be fetched from
the disk into memory for a unit cost. Furthermore, if there are already k& pages in
memory, one of the pages in memory must be evicted to make room for the requested
page. The decision of which page to evict must be made by the paging algorithm
without detailed knowledge of future requests.

We now augment this basic model with a Markov source of references. Let M be
an irreducible Markov chain whose state space is the set of n pages, and let A be
an on-line paging algorithm. We define f4(M, k) to be the long-term frequency of
faults incurred by A running on page request sequences generated by M and using
a memory that can hold £ pages. This is formalized in Section 2. It is also shown
in Section 2 that there is an optimal fault-rate for every Markov chain M, which we
denote by f*(M, k).

Note that we are not concerned here with the problem of inferring the Markov
chain by observation of the page request sequence. We assume that the transition
probabilities are already known. For example, they could be approximated to arbi-
trarily accuracy by sampling a large enough initial prefix of the reference string.

1.2 Related previous work

The underpinnings of competitive paging were laid in [11]. The literature of com-
puter performance modeling and analysis contains related work, both theoretical and

L For this reason, the results we obtain assuming the Markov chain is known also hold in a limiting
sense in the case where the Markov chain is not known.

empirical. Denning [6] (and references therein) developed the working set model of
program behavior for capturing locality of reference. Spirn[19] gives a comprehensive
survey of models for program behavior. Franaszek and Wagner [9] studied a model in
which every request is drawn independently from the same probability distribution.
Shedler and Tung [17] and Lewis and Shedler [13] study paging in a Markov chain
whose states represent LRU stack distances, a model convenient for studying the least
recently used (LRU) paging algorithm. Denning and Spirn showed empirically that
in order for a first-order Markov model to reasonably approximate real program be-
havior, it is necessary to separate data and instruction reference streams. Borodin et
al. [2] and Irani et al. [10] have studied locality of reference in paging, but with an
adversarial model.

Irani, Karp, Kearns and Luby (private communication, 1991) have studied other
on-line problems when requests are independently drawn from a probability distribu-
tion. Vitter and Krishnan [20] consider the problem of prefetching into a cache when
the reference string is generated by a Markov source (or mth order Markov source).
Under the assumption that there is always sufficient time to prefetch as many pages
as wanted, Vitter and Krishnan show that data compression techniques can be used
to obtain algorithms with optimal limiting page fault rates.

1.3 Guided tour of the paper

Section 2 draws on the theory of Markov decision processes to characterize paging
algorithms that achieve optimal fault-rate on any Markov chain. Theorem 1 shows
that there is a memoryless, deterministic optimal on-line algorithm. Theorem 2 shows
that there is a linear program that determines the optimal on-line algorithm, but this
algorithm may have running time exponential in k. Section 3 shows that a number
of plausible approaches for designing an efficient and provably good Markov paging
algorithm will fail. Our main result, in Section 4, gives an efficiently computable
paging algorithm whose fault-rate is within a constant factor of the best possible on
every Markov chain.

2 Markov decision theory and optimal paging

We begin by studying the relationship between page replacement policies and Markov
decision theory [7].

A Markov decision process can be described as follows. Consider a discrete time
Markov chain, whose state at time ¢ is Y;. After each observation of the system, one
of a set of possible actions is taken. Say that K; is the set of actions possible when the
system is in state i. Let A; be the action taken at time ¢. A (possibly randomized)
policy R is a set of functions D,(H;—1,Y;), where a is an action in Ky, meaning that
if H;_, is the history of states and actions up to time ¢ — 1, and Y} is the state at time
t, then the probability action a is taken at time ¢ is D,(H; 1,Y;). The actions can

be such that they change the state of the system. We define this precisely by saying
that ¢;;(a) is the probability of the system being in state j at the next instant, given
that the system is in state ¢+ and action a is taken, i.e.

Pr(Ye =7 | Hiy, Yy = i, A, = a) = gi;(a).

An additional set of parameters associated with a Markov decision process are costs:
when the chain is in state ¢+ and action a is taken, a known cost w;, is incurred.

Let Srr be the expected cost of operating a system up to time 7" using policy R.
(SR,T = Zogth Zj > PR(Yt =J, Ay = a)wja-)

A standard cost criterion in Markov decision theory is to minimize the expected
average cost per unit time, i.e. to find a policy R to minimize

lim supTHOOE. (1)
T

We formalize the notion of expected faulted rate f4(M, k) of a paging algorithm
A running on request sequences generated by the Markov chain M as follows. Let S
be the state space of M (remember S is just the set of pages). Define the following
augmented Markov chain whose state space is S’. A state in S’ has two components:
r and /. Here r is the most recent request, and [is a subset of S of size k representing
the set of pages that are in memory immediately before servicing the request r.

When the system is in the state (r, 1), and r ¢ I, then there are k actions that
can be taken by the on-line algorithm: for each = € I, x can be evicted. The effect of
the actions is described as follows. Suppose that p;; are the transition probabilities
of the underlying Markov chain. For each 1’ € S,

Pr(Yi, = (", I |H,Y, = (r,I), Ay = x) = Dy

where I' = I\ {z} U {r}.

When the system is in state (r,I), and r € I, only the trivial action can be taken.
The algorithm A is simply a policy for this Markov decision problem.

We set
1 ifr gl
WrD.a =\ 0 otherwise

and define the expected fault rate f4(M, k) to be the expected average cost per
unit time, as defined in (1) above.

The following two theorems instantiate basic results in Markov decision theory
([7], Chapter 3, Theorem 2, and Chapter 6, Lemma 4) to the case of Markov paging.

Theorem 1 For a given Markov chain there is an on-line page replacement policy
that has minimum fault rate and is memoryless, time-invariant and deterministic.

Thus for the optimum algorithm, the decision of which page to evict on a fault
depends only on the current request and the k£ pages in memory, and is deterministic.

Theorem 2 The problem of computing the optimal on-line paging strategy on

Markov chain M can be expressed as a linear programming problem in n(}) variables.

Note that this linear programming formulation gives us an algorithm for comput-
ing the optimal paging strategy on M whose running time may be exponential in k.
We know of no technique to improve this upper bound, and this leads us to the study
of efficiently computable strategies that approximate f*(M) well on every M. Note
that when £ is close to zero or to n, the linear program gives an efficient algorithm for
computing the optimal on-line paging strategy. In fact, it is particularly instructive
to consider the case n = k + 1, both for its own sake and because it has traditionally
given good insights in paging [2, 8|.

Theorem 3 When n = k + 1, for every M, there is an efficiently computable
deterministic paging strategy that evicts only one of two fized nodes (k — 1 pages are
never evicted) whose fault-rate is at most 2f*(M, k).

Proof: Let G be the complete directed graph on n states, weighted by expected
hitting times in M (the weight of edge (¢, j) being H; ;). For any memoryless, time-
invariant and deterministic algorithm, in any execution the “hole” (the page that
isn’t in the memory) must eventually get into some cycle in G. Once in a cycle,
the expected fault rate is just the reciprocal of the average edge weight around the
cycle. Thus the optimal paging algorithm must use a maz mean cycle. (See [12] for
an algorithm to find a max mean cycle.) It follows that there is a cycle of length
2 that has page fault rate at most twice optimal: just pick a pair (i,) of adjacent
vertices on a max mean cycle, such that H;; is at least the mean. Note that in the
case that the chain is reversible, the mean hitting time round a cycle is independent
of direction around the cycle, so there must be a cycle of length 2 with optimal page
fault rate. O

The following theorem compares the optimal online fault rate to the optimal off-
line fault rate.

Theorem 4 The expected page fault rate of OPT, the optimal online algorithm,
is at most O(logk) times the expected page fault rate of the optimal off-line algo-
rithm (that sees the entire request string output by the Markov chain, then serves it
optimally).

This follows from the existence of a O(logk)-competitive randomized paging algo-
rithm [8], combined with the von Neumann minimax principle [15]. The bound is the
best possible: when the Markov chain is the random walk on the k£ 41 node complete
graph Ky, any on-line algorithm has fault rate Q(log k) times that of the optimal
off-line algorithm [15].

3 Negative results

We begin this section by establishing that two algorithms that have been proposed
and found to fare poorly in practice are far from optimal in Markov paging. Following
this, we begin our quest for a simple, efficiently computable paging algorithm that
has page-fault rate within a constant multiple of the best possible, on every Markov
chain. We show in this section that a number of intuitively “obvious” algorithms for
Markov paging fail to achieve this goal, and pave the way for our optimal algorithm
in Section 4. In all our negative results, n = k + 1; however, this is for simplicity of
presentation only and can be generalized.

Remember that the hitting time h, , from a state x in a Markov chain to another
state y is defined to be the expected number of steps taken to first reach y starting
from x, while the commute time C, , is the expected number of steps to reach y from
x and then return to x. We mention also that the commute time is related to the
resistance [4], and thus the hitting times in most examples used here can be easily
computed by the electrically literate reader.

The Random Replacement (RR) paging algorithm will, on a fault, evict a random
page in memory. Although optimal in the competitive setting against an adaptive
on-line adversary [16], it performs relatively poorly in practice.

Theorem 5 There is a constant ¢ such that for every k > 2, there is a Markov
chain M for which frr(M, k) > ckf*(M, k).

Definition 1 For positive integers a,b, the lollipop graph L(a,b) is formed by
attaching one end of a path through b nodes to a complete graph K, on a nodes.

Proof of Theorem 5: Let n = k+1, and let M be the Markov chain representing
the simple random walk on L(k — 1,2). The maximum hitting time is Q(k?), say
between nodes = and y. The algorithm that alternates its hole between x and y (as in
Theorem 3) thus has a fault rate of O(1/k?), since the expected fault rate is 1/Cy,,
by a result of renewal theory (see for example [7], page 147). Therefore f*(M,k) is
O(1/k?). On the other hand, the expected time between faults incurred by RR is the
average over all pairs of nodes x,y in the graph of the hitting time from x to y. This
average is O(k).

O

The Frequency Count (FC') algorithm maintains, for each of the n pages, a count
of the number of times that page has been accessed. On a fault, it evicts the the
page in memory that has been accessed least often. When every request is drawn
independently from a probability distribution, F'C' converges to the optimal algorithm.
However, it performs poorly in practice, since it ignores locality of reference. This is
reflected by the fact that it is far from optimal in Markov paging (Theorem 6).

Theorem 6 There is a constant ¢ such that for every k > 2, there is a Markov
chain M for which frc(M,k) > ckf*(M, k).

7

Definition 2 For positive integers a,b, the forked lollipop graph FL(a,b) is
formed from L(a,b — 1) by connecting two new nodes to the external end-node of

the (b — 1)-path.

Proof of Theorem 6: Let n = k + 1, and let M be the Markov chain representing
the simple random walk on F'L(k/2,k/2). The two prongs have lowest stationary
probability on this chain, so will eventually have the smallest frequency count in any
request sequence. Thus FC will eventually alternate the “hole” (the node not in
memory) between these two nodes. The expected time between faults incurred by
FC is O(k?*) (which is the expected hitting time from one prong to the other), whereas
f*(M, k) is O(1/k?) (obtained by alternating the hole between one prong and a node
in the clique). O

Next, we show that many algorithms that intuitively should perform well in
Markov paging will in fact perform poorly on some Markov chains.

A class of on-line algorithms that one may expect to perform well are marking
algorithms. Marking algorithms use a notion of phases. A new page is one that wasn’t
requested in the previous phase. A new phase begins with a request to a new page.
When a page is requested, it is marked. As soon as k distinct pages are marked, the
phase ends, and all pages become unmarked. A marking algorithm has the property
that it never evicts a marked page.

It has been shown that there are optimal marking algorithms under competitive
analysis for paging with locality of reference [2], as well as randomized paging al-
gorithms (arbitrary request sequences) [8, 10]. Therefore, one might think that the
same would hold when reference strings are generated from a Markov chain. The
following theorem shows that our search for a good algorithm should exclude mark-
ing algorithms. The lower bound in the theorem cannot be improved, since there
is a marking algorithm A which is O(log k)-competitive [8], and therefore there is a
constant ¢ such that f4(M, k) < c(logk)f*(M, k) for any Markov chain M.

Theorem 7 There is a constant ¢ such that for any k > 2, there is a Markov
chain M for which f4(M, k) > c(logk)f*(M,k) for any marking algorithm A.

Proof: Let M be the Markov chain corresponding to a simple random walk on
the lollipop graph L(k/2 + 1,k/2). Let y denote the node at the end of the path. A
phase starts with a request at some vertex of the graph, and ends just before all nodes
in the graph have been requested. The last node to be requested starts a new phase.
The important property of this Markov chain that defeats any marking algorithm
is that once a node in the clique is requested, with high probability all the nodes
in the clique will be requested before the node y is requested. Hence on average,
almost half the phases will begin on y. By a standard argument, if a phase begins on
y, any marking algorithm will incur an expected Q(logk) faults in the clique before
the phase ends. Thus any marking algorithm will incur 2(log k) faults per phase on
average. On the other hand, the on-line algorithm that alternately evicts a node in
the clique and y will incur an average of 1 fault per phase. 0O

8

The optimal offline algorithm for any reference string is commonly called MIN.
MIN always replaces the page that will be requested furthest in the future. We
now consider various on-line algorithms that mimic MIN on a Markov chain. The
mazximum hitting time (MHT') algorithm replaces, on a fault, that page in memory for
which the ezpected time to the next request is the largest. Indeed, when the requests
are drawn independently from a probability distribution, this algorithm performs
well [9]; again, the locality of reference captured by Markov paging proves to be the
undoing of this algorithm.

Theorem 8 For every k > 10, there is a Markov chain M on k + 1 nodes and a
constant ¢ such that fyyr(M, k) > ckf*(M, k).

Proof: Consider the forked lollipop G = FL(2k/3,k/3). Suppose that the
Markov chain generating the reference string is the simple random walk on G.

If MHT is run on the reference string generated by this Markov chain, eventually
one of the two prongs at the end of the path will be evicted. From either, the
maximum hitting time is 4n?/9, to the other. On the other hand, the maximum
hitting time from a prong to any node in the clique is 2n?/9 + O(n). Thus the page
not in memory (the “hole”) will thereafter oscillate forever between the two prongs,
so that fagr(M, k) is Q(1/k*). The optimal algorithm will alternately evict a node
in the clique and a prong, with fault-rate O(1/k%). O

Let LAST be the algorithm that on a fault evicts the page that has the highest
probability of being the last of the k pages in memory to be requested. An attractive
variation on LAST is an algorithm we call Max Rank, (MR) defined as follows. Sup-
pose that at the time of a fault, S is the set of pages in memory. Then there is some
permutation on S that describes the order in which these pages will subsequently be
seen. For each page i € S, and 1 < j < k, let p;(j) be the probability that page i
is the jth page in S that will be seen. Define the expected rank of page i, R; to be
>;pi(j). Then MR evicts the page p € S such that R, is maximum.

Theorem 9 There is a constant ¢ such that for any k: (i) there is a Markov
chain M such that frasr(M, k) > ckf*(M, k), (ii) there is a Markov chain M such
that fur(M, k) > ckf*(M, k)

Proof: (i) Consider the Markov chain corresponding to the standard random
walk on an undirected k + 1 node cycle: all nodes are equally likely to be visited last.
The following proof of this fact is credited by Broder [3], without further reference,
to Avrim Blum, Ernesto Ramos, and Jim Saxe, independently: Consider a point a on
the cycle. Let its neighbors be b and c. Before visiting a, the walk will visit first one
of its neighbors, say b. Given this fact, the probability that a is last, is the probability
that the walk will visit ¢ starting from b before it visits a. This is clearly independent
of the position of a.

Consequently, on a fault, LAST might always evict the neighbor of the faulted
node. Therefore, LAST can have expected fault rate O(1/k) (since the expected

9

time to hit a neighbor in a cycle is O(k)). On the other hand, the algorithm which
alternates the hole between two antipodal points faults has a expected fault rate of

O(1/k?).

(ii) Consider a directed cycle on k nodes, with an extra node z that has edges
to and from two antipodal nodes z and y. Let p,, = p,, = p = 5/k, and let
P2z = P2y = 1/2. We show that starting from any node w on the cycle, the node of
maximum rank is the node w™ that precedes w on the cycle. Indeed, the probability
of avoiding half the cycle before hitting w™, by going through z, is p/2, since the
walk from w must reach z at the first chance (probability p), then can stay within
{z,y, z} for a while, and the last time it leaves z before venturing outside {z,y, z} it
must move to whichever of = and y is closer to w™ (probability 1/2). The probability
of avoiding half the cycle before hitting = is just p. Hence R, >k —1 — 2(% —1),
while R, < k — p(g — 1), and the former is larger for £ > 20.

In contrast, the optimal on-line algorithm will evict z whenever there is a fault on
the cycle. In this case, Max Rank incurs (k) times as many faults as the optimal
on-line algorithm. 0O

Finally, an algorithm which is very close in spirit to our nearly optimal on-line
algorithm of Section 4 is the Maximum Commute Time (MCT) Algorithm. On a
fault for page v, MCT evicts the page w in memory that maximizes the commute
time between v and w.

Theorem 10 For every k, there is a Markov chain M for which fycr(M,k) >

Proof: Consider the Markov chain corresponding to a directed cycle k 4+ 1 nodes.
Then every pair of nodes in the graph has the same commute time (k+1). Therefore,
on a fault at some node v Maximum Commute Time might always evict the successor
of v, incurring a fault on every request. Since the optimal on-line algorithm has a
fault rate of 1/k, the claim is proven. O

4 A provably good algorithm

4.1 Description of the algorithm

The Commute Algorithm (CA) operates in phases. It keeps a window of the last &+
requested pages, for some 0 < i < k. (We assume n > 2k. For the case n < 2k, a
simpler algorithm in the same spirit can be shown to have page fault rate that is within
a constant factor of optimal.) At the beginning of a phase the window is just the k
most recently requested pages; these pages are resident in memory. When a “new”
page p (one that hasn’t been requested in the current or last phase) is requested, it
is added to the window. The phase ends (and the window shrinks back to size k)
when the k£ + 1’st distinct page is requested in the current phase. At that time, CA

10

performs the minimum number of swaps necessary to ensure that the k£ most recently
requested pages are again resident in memory, and the window again becomes the k
most recently requested pages.

When the window contains k + ¢ pages, CA maintains a partial matching of ¢
disjoint pairs of pages {(uy,v1)...(us;v;)}. The commute algorithm maintains the
following invariant:

For each j, 1 < j <14, exactly one of u; and v; is in memory.

On a fault at u; the page v; is evicted, and vice versa. (Observe that CA is not a
marking algorithm.) When a new page p is added to the window, it is paired with
a page ¢ that is in the window, but not in the matching, such that the commute
time C) 4 is maximized. The new pair is added to the partial matching, and may be
involved in a single “switch”, described below.

To describe the notion of a switch, we need some notation. For states a, b, u, v,
we define the relative distance of the pair (a,b) to u to be
min{C,, Cpu}
C&ﬁ

d[(a,b),u] =

Define also the relative distance of (a,b) to (u,v) to be

Hﬂn{Cbm,C%m,Chm,C%w}
Chﬁ

Intuitively, if d[(a, b), u] is large, then both a and b are much further (in the commute
time metric) from u than they are from each other. Similarly, if d[(a,b), (u,v)] is
large, then both a and b are much further from both u and v than they are from each
other.

d[(a,b), (u,v)] = min{d|(a, b), u|, d[(a,b),v]} =

When a new pair (p, q) is added to the matching, CA does the following:

Case 1: If d[(p, q), (uj,vj)] < ¢s for all j, then there is no switch: we service the
fault at p by evicting q. Here ¢,, the “constant for switching”, is a suitably chosen
constant; the reader can verify during the proof below that by choosing ¢, = 2, all
inequalities involving ¢, hold.

Case 2 (Switch): Otherwise, choose j so that d[(p,q), (u;,v;)] is maximized, and
replace the matched pairs (p, ¢) and (uj,v;) by (u;,p) and (g, v;). Service the fault at
p by evicting whichever of u; or v; is in memory. This restores the invariant mentioned
above.

In the upcoming proofs, we will be distinguishing one node in each pair, and
therefore we may need to reverse the roles of u, and v, for some pairs, whether or not
a switch has been done. The analysis below shows how this should be done.

As for the running time of C'A, the complexity of computing the commute times in
a Markov chain is polynomial in n. Therefore, with an initial preprocessing step that
constructs the matrix of commute times, the complexity of running the algorithm CA
is O(k) per fault.

11

4.2 Analysis of the algorithm

Theorem 11 There is a constant ¢ such that for any Markov chain M and any
k,
foa(M, k) < cf*(M, k).

We prove the theorem by establishing a strict relationship between the pairs of
CA’s matching.

Consider one phase of the algorithm: let the r’th subphase be the time when the
window size is k + r. Let M, and W, be the matching and the set of pages in the
window, respectively, during the ’th subphase. Lastly, let V), be the pages involved
in M,. Notice that W, C Wy, C --- C Wy and Vi, C Vi, C --- C Viy,. We will refer
to one node in each pair (u;,v;) in M, as distinguished. Without loss of generality
the distinguished node will always be w;.

We say that M, is a good matching if:

1. For all pairs (u;,v;) and (uj,v;) € M, i # j, d[(u;,v;), 4] < cg. Here ¢4 is
the maximum allowable distance to distinguished nodes. The fact that u; is
involved in this condition, rather than v;, is what makes u; distinguished.

2. For each pair (u;,v;) € M, and a € W, \ V., d[(u;,v;),a| < ¢,. Here ¢, is the
maximum allowable distance to unmatched nodes.

The reader can verify during the proof that by choosing ¢, = 1 and ¢4 = 6, all
inequalities involving these constants hold.

We will be using the following facts about commute times.

Lemma 12 1. Commute times satisfy the triangle inequality.

2. d[(a,b),d < 2= and d[(a,b),d < e

Ca,b Ca,b ’

9. e < d[(a,b),d] +1 and

Cb,e
Cap CZ:b < d[(av b)a C] + L.

4. d[(a,b),c] < d[(a,b),d] + S

Ca,b.
5. If d[(x,y), z] > ko, d[(a,b),z] < ki and d[(a,b), z] < ko, then

(ky + ko + 1)
Cpy < ——"—=
Yy — ko

Cop-

Proof: Parts 1 and 2 follow immediately from the definition of commute time
and relative distance. For part 3,

Ca,c < min(ca,c; Ca,c - Ca,b) + Ca,b < min(ca,c; C1b,c)
Ca,b o Ca,b a Ca,b

+1 < d[(a,b),c] +1,

12

where the second inequality follows from part 1. The other case is similar. For part
4,

min(ca cy Cb c) min(C’a d> Cb d) + Cd c Cd c
)) <))) —) .
Cap - Cap il).d} + Cap

d[(a,b),c] =

Finally, part 5 follows from the application of part 2, part 1 and part 3 to give

Cy.z < (min(Cy 4, Cypp) + max(Cy z, Cy2)) < (d[(a,b), z] +d[(a,b),z] +1

)
< .
Coy < ko = ko = ko Cap

’

Finally, use the fact that d[(a,b),z] < k; and d[(a,b), 2] < ky. O
Lemma 13 The Commute Algorithm’s matching is always good.

Proof: The proof is by induction. Consider first the matching A, at the start
of a phase: there is a single matched pair (p, q), consisting of a page p whose request
started the phase, and a page ¢ that was chosen (out of the shrunk window of the k
most recently requested pages) to maximize C, ,. In this base case, the distinguished
node can be chosen arbitrarily. Clearly, for a € W,. \ V), we have d[(p, q),a] < 1.

Now suppose that M, is a good matching: we will show that M, ;; is also good. We
take ¢ to be the distinguished node in the new pair. By the choice of ¢ (maximizing
Cyp,,) and the assumption on M,, M, satisfies the following goodness conditions:

L. d{(p,q),a] < ¢, for any a € Wi \ Vi, ,,

2. For any pairs (u;, v;), (uj,v;) € M,, d[(ui, v;), u;] < cq., and for any (u;, v;) € M,
and a & Vi, ., d[(us, v:), 0] < cu.

r+417

3. For each pair (u;,v;) € M,, d[(u;,v;),q] < ¢, since ¢ was in the window but not
in the matching.

There are two cases to consider:

Case 1: We did not switch. (d[(p, q), (uj,v;)] < ¢s, Vj.)

Cs
Remember that d[(p, q), (u;,v;)] = min (d[(p,q), u],d[(p,q),vi]). It might be
that d[(p,q),u;] > cq. But in this case, d[(p,q),v;] < ¢;, otherwise we would
have switched. We show that for all pairs (uy, v;) in M,, d[(u;,v;), vi] < cq, SO
v; can play the former distinguished role of u;.

Let (uj,v;) € M,, j #i. We have:

Coi s+ D0
d[(ujavj)yvi] < d[(u],vy),q] 4+ L% < ¢, M

Y
U ,V; Cus,

13

where both inequalities follow from Lemma 12, the first from part 4 and the
second from part 3. However, from part 5 of Lemma 12, since d[(p, q), u;] > cq,
d[(uj,vj), q] < ¢y, and d[(uj,v}), u;] < cq, it follows that

Cy tcqg+ 1

Cp)q S Cu] sUj5°
Cd

Substituting into the previous equation gives

1D (ey 1
(cs+1)(cy + cqa+)Scd-

d[(’LLj, Uj), ’Ui] < Cy T+
Cq

Case 2: We did switch:

Consider the new edges (p,u;) and (g,v;) (chosen so that d[(p,q), (uj,v;)] is
maximized). We show that p and ¢ become distinguished vertices, and that
for some other pairs (u,vx), vp must become the distinguished vertex. The
detailed proof that M, is good follows:

We will need to use the following three inequalities
e Since d[(p, q), (uj, v)] > cs
min {Cp,uj y Cp,vja Cq,uj) Cq,vj }

Cs

(2)

Cp:q <

e From Lemma 12, part 5, since d[(p, q),u;] > ¢, (because we switched),
d[(ug, vk), q] < ¢y, and d[(ug, vg), u;] < ¢q (both because M, was good), it
follows that for any pair (ug,v;) € M,, k # j,

Cy+cqg+1
Cpg < Cupn == —— (3)
e Lastly,
d[(p,), (ur, vr)] < d[(p, q), (ug, v;)]- (4)

Many of the goodness conditions follow immediately from the goodness of M,.
The ones that require proof are described below, each with a derivation.

1. d[(p,u;),q] < cq, and d[(g, v;),p] < cq. This follows from (2).

2. d[(p,u,),a] < ¢, and d[(q,v),a] < ¢, for any unmatched ¢ € W, 4. For
the first inequality, applying Lemma 12 part 2, the fact that C,, > C,,
for all unmatched a, and equation (2) gives:

Cpo _ Coa (1.
Cpu- - Cpu- -

k) ()

d[(p, uz), a] <

Similarly, for the second inequality:

Cya < Cop+ Cha 2
qu,,j - C’q,vj ey

d[(¢,vj),a] <

14

3. For each pair (ug,vy) € M,, k # j, d[(ug, vx),q] < cq and d[(ug, vg), p] <
cqg. The first inequality follows from the fact that A, was good, so
d[(ug, vx), q] < ¢y. As for the second inequality:

C
d[(ug,vg),p] < d[(uk,ve),q] + C& by Lemma 12, part 4
Uk Vg

C
Cy + =24 since d[(ux, vi), q] < ¢y

<
Cukavk
Cy +C 1 .
< cu—|—¥ by equation (3)
S
S Cq.

4. For each pair (ug,vy) € M,, either both d[(p,u;),ur] < ¢4 and
d[(gq, v;), ux] < cq, or vy, can become distinguished.

To prove this, assume that d[(p, u;), ux] > cq. By assumption
Cp,uk > Cdeyu]., (5)
and from (2) above,
Cpg < Cpu, /s (6)
Combining these two facts with lemma 12, part 3, we obtain
szuk _ szq
Cpaq Cp:q
Cde,uj _ Cp,u]-
Chq ¢sCpyg
Cou;
Cpg

dl(p,q), ux] >

> (cq—1/cs)

and so
d[(p, q), ux] > d[(p, q), us]- (7)
Therefore, by the choice of 7,

d[(p, Q);Uk] < d[(p, Q); (uj7vj)]' (8)

Therefore

VAN

Co.uy, Cpq(1+d[(p,q),vk]) by Lemma 12, part 4
Cp (1 +d[(p,q),us]) by (8)
Cpg+ Cpu;

Cpu;(1+1/c) by (2)

INIA

VAN

15

so d[(p,u;),vk] < cg4. The previous four lines of equations also establish
that d[(¢,v;), vi] < ¢q, by substituting ¢ for p and v; for u,.

Now let (u;,v;) € M,. From (5) and (6) we have
Cq,uk 2 Cp,uk B Cpq

> (ca—1/cs)Cpu,
> (ca—¢s/2)Cpu;-

But,
Cour < Cup (1 + d[(w, v0), q] + d[(wr, v1), we])
< Cupw(1+cy+ca)
and so L4t
Cpuj < mcuz,vz- (9)
We have

Cp,q(l + d[(p, (1): Uk])
Cul,vl
Cpo(1 +d[(p, q), u5])

Cu + (by 8)
Culzvl

dl(u, v),ve] < d[(w,), q] +

VAN

3C) u.,
< e+ Y (by 2
- ¢ + 2011,1,’[)[(y)

< ¢ (by9).

|

The following lemma shows why we are interested in relative distances:

Lemma 14 Let M be a Markov chain. Let u,v,h be three states in M, and let
v = Pr(h visited during an (u,v) commute). Then
Cuv CU’U

>V 2 A A
Cuh Cuv + Cuh

Proof:

We use the following well-known proposition from renewal theory (see for exam-
ple [7], page 147): Consider a Markov chain started in state i. Let 0 < S < oo be a
stopping time such that Xg = 7. Let 7 be an arbitrary state. Then

E;(number of visits to j before time S) = m; E;(S5),

16

where 7; is the stationary probability of state j, and E;(X) is the expected value of
random variable X when the chain is started in state .

Let w, v, h be three states in M. Using the proposition, we obtain that
E,(# of visits to h during a (u,v) commute) = 7, (E,(T,) + E,(Ty,)) = m4Cyy- (10)

Consider a random walk starting at u. Let p; be the probability that h is visited
before v and let py be the probability that h is first visited after v, but before a (u, v)
commute has completed. Clearly v = p; + ps. Furthermore,

E.,(# of visits to h during a (u,v) commute) =

p1ER(F# of visits to h during the time it takes to go from A to v to u back to h)

+po By (F# of visits to h during the time it takes to go from A to u and back to h.)
Once again using the proposition, we obtain

E, (# of visits to h during a (u,v) commute) =
p1y (En(1y) + Eo(1y) + Ey(1h)) + pemn(En(Ty) + Ey(1h))-
Combining this with equation 10, we obtain
Cuv = pr(En(Ty) + Ey(T0) + Eu(Th)) + p2Clun-

Since (En(Ty,) + E,(T,) + E.(T})) > Cyp, we obtain

Cuwv
C

7 <
uh
On the other hand, (EL(Ty,) + Ey(T,) + Eu(T})) < Cuy + Cun, and so

uv
V2 AT A
Cuv + Cuh
completing the proof of the theorem.
l

We are ready to prove the main theorem.

Proof of Theorem 11: We show that CA incurs an expected number of faults

which is at most a constant times the expected number incurred by the optimal on-line
algorithm OPT.

Let a hole of OPT be any page in W, that OPT does not have in memory. We
maintain a 1:1 mapping from pairs in the matching to holes of OPT, satisfying the
following two properties:

o If h; is the OPT hole associated to pair (u;, v;) for some i, then d[(u;, v;), h;] =
O(1).

17

e The mapping of pairs to holes is changed only when there is either an OPT-
fault, or a new pair is added to the matching. In both cases, the association
changes for O(1) pairs.

Say that a (z,y) commute begins at time t if (z,y) is a pair in the matching at
time ¢ (i.e. (x,y) = (u;,v;) or (x,y) = (v;,u;) for some i), CA had a fault on the most
recent request, and the most recent request was at x. Let T'(x,y) be the set of times
t such that a (x,y) commute begins at time ¢. Define a new node to be a node that
is visited in the current phase, but wasn’t one of the nodes visited in the previous
phase, and let G be the total number of new nodes seen in all phases in the request
sequence.

The number of faults incurred by CA during a page request sequence, denoted
C(CA), satisfies

C(CA) = (Z 3 1)+O(G),

(z,y) teT(z,y)
where the last term comes from ensuring that the last & requests are in memory at
the end of each phase.

Let h(x,y,t) be the OPT hole associated to pair (z,y) at time ¢, for t € T'(x, y).
Let X,,. be the indicator random variable that is 1 if ¢ € T'(z,y) and h(z,y,t) is
requested during the (z,y) commute beginning at time ¢.

For t € T'(z,y), let t € Q(x,y) if either h(x,y,t) gets swapped to another pair or
the phase containing ¢ ends before the (z,y)-commute starting at time ¢ completes.

Otherwise let t € R(x,y). Let C(OPT) be the number of faults incurred by OPT.
For any page request sequence, we have

S Y X, <2C(0PT),

(z,y) teR(z,y)
since each OPT fault can be accounted for at most twice, namely by a (z, y) commute
and a (y,) commute, for some pair (u;, v;).

The mapping of pairs to holes only changes if OPT incurs a fault or if a new
pair is added to the matching, and then only O(1) pairs are affected. A new pair is
added to the matching only when a new node is visited. At most 2g commutes are
in progress at the end of a phase, where ¢ is the number of new nodes visited during
the phase. Thus we have

Y > Xy =O0(C(OPT)+G).

(z,9) t€Q(z,y)
(Note that in fact 3o,) ey 1 = O(C(OPT) + G).) Therefore,

> > Xuyr = O(C(OPT)+G)

(z,y) teT'(w,y)

18

= O(C(OPT) + k),
where £ is the number of pages that can be held in memory, since it is known [8] that
any paging algorithm incurs Q(G — k) faults.
Lastly, since d[(x,y), h(z,y,t)] = O(1)), by Lemma 14 there is a constant p > 0
such that for all u, v, ¢ such that t € T'(u,v),

E[anyzt] Z p

Putting all this together, we obtain by linearity of expectations that
E[C(CA)| = O(F[C(OPT)| + k),

so the fault rate of CA is at most a constant factor greater than that of OPT.
It remains only to describe the mapping of pairs to holes.

At the beginning of a phase, the single matched pair is associated with any OPT-
hole in the window — note that there is at least one. In general, if h; is the hole
associated with (u;,v;), we maintain the following invariant:

h; is unmatched, or is u; or v;, or {h;, hy} = {ug, vy} for some k # j.

Notice that the invariant remains unchanged when the distinguished node in a pair
changes. (In the case where {h;, hy} = {uy, v} for some k # j, and the designated
node for pair {uy, vy} changes, swapping h; and hy ensures that the invariant remains
true.) The following procedure ensures that at any time h; is changed, it is set to
an unmatched node, or u; or v;, or uy for some k # j, so d|(u;,v;), hj] = O(1), as
required.

The first case to consider is when no switch was performed, and the pair (p, q)
needs to find a hole h(p,q). We have the following cases.

1. If p = h; for some j and ¢ = hy, for some k, then p becomes h(p, q), hy remains
g and we continue with (u;,v;) in place of (p, q).

2. If only one of p or ¢ is associated with a pair, say ¢ = h(ug, vg), then g becomes
h(p,q), and we continue with (ug, vg).

3. At this point, there must be an OPT'-hole that is unmatched because there are
at least ¢ holes total and only 2 — 1 pairs are associated with a hole. We consider
three cases depending on what this unassociated OPT'-hole is.

(a) If the OPT-hole is unmatched, is p or is ¢, set h(p, q) to this OPT-hole.

(b) If the OPT-hole is uy or vy such that hy € {ug, vy}, set h(p, q) to uy and
hk to Vg .

(c) If the OPT-hole is uy or vy such that hy & {uy, v}, set h(p,q) to hy and
h to the unassociated OPT-hole .

19

The second case is when a switch was performed, producing pairs (p,u;) and
(¢,vj). In this case, we first unmatch h; from (u;,v;), and then apply two steps
according to the directions in the no-switch case above: first for (u;,p) and then for

(q= vj)'
When OPT incurs a fault at a hole &, the page is loaded into memory, so is no
longer a hole. The pair (u;,v;) then finds an unassociated OPT-hole as in the no-

switch case above. This scheme satisfies the two required properties of the mapping
from pairs to holes.

|

5 Acknowledgements

We would like to thank the reviewers for extensive comments and excellent sugges-
tions.

References

[1] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the power
of randomization in on-line algorithms. In Proc. 22nd Annual ACM Symposium on
Theory of Computing, pages 379-388, 1990.

[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality
of reference. In Proc. 23rd Annual ACM Symposium on Theory of Computing, pages
249-259, 1991.

[3] A.Z. Broder. Generating random spanning trees. In Proc. 30th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 442447, 1989.

[4] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R.Smolensky, and P. Tiwari. The electrical
resistance of a graph captures its commute and cover times. In Proc. 21st Annual ACM
Symposium on Theory of Computing, pages 574-586, 1989.

[6] D. Cheriton and K. Harty. Application-controlled physical memory using external
page-cache management. Technical report, Department of Computer Science, Stanford
University, 1991.

[6] P.J. Denning. Working Sets Past and Present. In IEEE Trans. Software Eng. SE-6:64-
84, 1980.

[7] C.Derman. Finite State Markov Decision Processes. Academic Press, New York, 1970.

[8] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. On competitive
algorithms for paging problems. To appear in Journal of Algorithms, 1990.

[9] P.A. Franaszek and T.J. Wagner. Some distribution-free aspects of paging performance.
Journal of the ACM, 21:31-39, 1974.

20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S.S. Irani, A.R. Karlin, and S.J. Phillips. Strongly competitive algorithms for pag-
ing with locality of reference. In Third Annual ACM-SIAM Symposium on Discrete
Algorithms, 1992.

AR. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica, 3(1):70-119, 1988.

R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23:309-311, 1978.

P.A.W. Lewis and G.S. Shedler. Empirically derived models for sequences of page
exceptions. IBM J. Res. and Develop., 17:86-100, 1973.

D. McNamee and K. Armstrong. Extending the mach external pager interface to accom-
modate user-level page replacement policies. Technical Report 90-09-05, Department
of Computer Science and Engineering, University of Washington, 1990.

P. Raghavan. Lecture Notes on Randomized Algorithms. Technical Report RC 15340,
IBM Research, 1990.

P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In
16th International Colloguium on Automata, Languages, and Programming, volume
372 of Lecture Notes wn Computer Science, pages 687-703. Springer-Verlag, July 1989.
Revised version available as IBM Research Report RC15840, June 1990.

G.S. Shedler and C. Tung. Locality in page reference strings. SIAM Journal on
Computing, 1:218-241, 1972.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202—-208, February 1985.

J.R. Spirn. Program Behavior: Models and Measurements Elsevier Computer Science
Library. Elsevier, Amsterdam. 1977.

J.S. Vitter and P. Krishnan. Optimal Prefetching via Data Compression In Thirty-
Second Annual IEEE Symposium on Foundations of Computer Science, 1991.

21

