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God help us if we ever take the theater out of the
auction business or anything else. It would be an
awfully boring world.

— A. Alfred Taubman,
Chairman, Sotheby Galleries.
Wall Street Journal, 18 Sep 1985.

Perhaps no one as yet has been truthful enough
about what ”truthfulness” is.

— Friedrich Nietzsche.
Beyond Good and Evil, (1886).

ABSTRACT
We describe mechanisms for auctions that are simultane-
ously truthful (alternately known as strategy-proof or incen-
tive-compatible) and guarantee high “net” profit. We make
use of appropriate variants of competitive analysis of algo-
rithms in designing and analyzing our mechanisms. Thus,
we do not require any probabilistic assumptions on bids.

We present two new concepts regarding auctions, that of
a cancellable auction and that of a generalized auction. We
use cancellable auctions in the design of generalized auc-
tions, but they are of independent interest as well. Can-
cellable auctions have the property that if the revenue col-
lected does not meet certain predetermined criteria, then
the auction can be cancelled and the resulting auction is
still truthful. The trivial approach (run a truthful auction
and cancel if needed) yields an auction that is not necessarily
truthful.

Generalized auctions can be used to model many problems
previously considered in the literature, as well as numer-
ous new problems. In particular, we give the first truthful
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profit-maximizing auctions for problems such as conditional
financing and multicast.

1. INTRODUCTION
Recent economic and computational trends, such as the

negligible cost of duplicating digital goods and the emer-
gence of the Internet as one of the most important arenas for
resource sharing between parties with diverse and selfish in-
terests, have led to a number of new and interesting dynamic
pricing problems. In this paper, we describe a generalized
auction framework within which many of these problems
can be formulated and solved. Our focus is on the design of
auction mechanisms that maximize the profit of the resource
provider (a.k.a., the auctioneer), assuming selfish behavior
on the part of the resource consumers.1

We follow a common approach originating in the field of
mechanism design, which is to design protocols in which all
rational participants are motivated to behave according to
the protocol. We assume that each consumer has a private
utility value, the maximum value that the consumer is will-
ing to pay for the resource. For dynamic pricing problems,
the mechanism takes as input bids from each of the con-
sumers and determines which bidders receive the resource
and at what price. We say the mechanism is truthful (or
equivalently, strategy-proof or incentive-compatible) if it is
in each consumer’s best interest to bid their true utility
value.

1.1 Motivating Problems
Basic Auction: An auctioneer has k identical items to
be sold in a sealed-bid, single-round auction. This problem
is, of course, well-studied by economists and game theorists
(see, e.g., the survey on auction theory by Klemperer [11]).
The traditional model of bidder behavior is that bidders try
to maximize their profit, defined as the difference between
their utility value and the price at which they get the item.
Given this definition, the only truthful mechanism which
sells the k items to the top k bidders is the classical k-item
Vickrey auction [21], in which each bidder pays the k + 1st

1In our discussion below, we shall interchangeably refer to
the notion of providing a good or a service or a resource.



bid value.
A natural problem is whether or not there are truthful

mechanisms whereby the auctioneer can increase their rev-
enue by selling fewer items.2 For example, it could be that
selling only 1 item, say using a 1-item Vickrey auction, the
auctioneer could obtain a much greater revenue than by sell-
ing all k items. This would happen, for example, if the
second highest bid is at least k times the k + 1st highest
bid value. The question then becomes: how do we design
truthful auctions that obtain near-optimal revenue to the
auctioneer, for any values of the bidders’ bids?

Goldberg, Hartline, and Wright [7] looked at this problem
for the case where k is unbounded and defined a competi-
tive framework for its analysis. This competitive framework
allows auctions to be analyzed without Bayesian assump-
tions on consumer utility values. They also presented an
auction that is guaranteed to get near-optimal revenue for
the case where there is sufficient competition between the
bidders (meaning that an optimal mechanism would sell
many items). The problem of designing a revenue maxi-
mizing truthful auction when the competition for the item
is minimal was left open in their work.

Conditional Financing: A company is considering an
initial public offering of its shares, or a venture capitalist is
trying to sell fixed return junk bonds for some venture. The
company would like to sell the shares only if the revenue
raised is sufficiently high. How can this be done so that
the company raises as much money as is possible, given the
potential shareholders’ honest valuations of the company,
but so that, if the company is not valued sufficiently highly
by the public, the IPO can be cancelled?

Offering a pay-per-view broadcast in a segmented
market: A company offering a pay-per-view broadcast needs
to formulate a pricing scheme for its potential viewers. Sup-
pose that the potential viewers are partitioned into markets
(e.g., by location or by some measure of the quality of the
good they are receiving). Further, suppose that the cost of
providing the broadcast to viewers in the ith market is Ci,
a fixed cost which is paid once if and only if there are any
viewers in the ith market. The goal of the company is to
maximize its profit, the sum of the prices paid by each of
the viewers minus the costs of providing the broadcast to
those markets in which there are viewers.

Multicast pricing: Feigenbaum, Papadimitriou and Shen-
ker [5] initiated the study of pricing algorithms for multicast
transmission. The model is a network with users residing at
nodes in the network. There are costs associated with trans-
mitting data across each of the links in the network. Each
user has a utility for receiving the broadcast. The problem is
to choose the multicast tree and the prices to charge each of
the recipients of the broadcast. Feigenbaum et al. focus on
the network complexity of implementing solutions that are
either budget-balanced, in which the broadcaster precisely
recovers the cost of the transmission, or efficient, in which
the receivers chosen are the set which maximizes the differ-
ence between the sum of the utilities of the receivers and
the cost of multicasting to that set of receivers. For budget-
balanced solutions there is no profit to the broadcaster, and

2Surprisingly, to our knowledge, this problem has not been
considered by economists. Most likely, this is because their
study of auctions typically uses a Bayesian approach that
assumes the knowledge of probability distributions on bidder
utility values.

for efficient solutions the broadcaster may run a deficit. Our
interest is in designing truthful pricing mechanisms which
maximize the broadcaster’s profit. This natural problem
has received no attention to date.

1.2 Generalized Auction Problems
We define a framework for modeling dynamic pricing prob-

lems for revenue maximization as generalized auctions. This
framework captures all of the problems just described, and
many others.

A generalized auction problem A = (S, c(·)) is described
by the following parameters:

• S = {Si : 1 ≤ i ≤ m}. The sets Si partition the n
bidders into m market segments. Importantly, within
each market, bidders are indistinguishable from one
another.3

• c(·), a cost function mapping vectors in {0, 1}m to non-
negative real numbers. The domain of c(·) describes
each possible market allocation, so, for example, a vec-
tor r = (r1, . . . , rm) in the domain indicates for each
market i whether or not goods are allocated to that
market (ri = 1 or ri = 0, respectively). The cost, c(r),
is the cost to the auctioneer (the service provider) of
providing the goods assuming the market allocation,
r.

So, for example, for the basic unlimited supply auction
problem, m = 1, and c(r) = 0 for all r as duplicating and
distributing the goods is assumed to be free for the auc-
tioneer. For the multicast pricing problem, the number of
markets is the number of nodes in the network, and the
viewers at the ith node form Si, the ith market. The cost
of a market allocation c(r) is exactly the cost of transmit-
ting along the multicast tree defined by the nodes (markets)
receiving the broadcast.

A mechanism for a generalized auction problem takes as
input a bid value bi for each of the n bidders (which we
combine to get the bid vector b), and decides for each bidder,
whether or not that bidder receives the good and, if so, at
what price. The profit of the auctioneer is the difference
between the prices paid by the receiving bidders and the
cost of providing the goods to those bidders. Our goal is
to design mechanisms that are truthful and which maximize
the profit of the auctioneer.

Following [7], we use a form of competitive analysis to
evaluate the performance of truthful mechanisms. Consider
a particular generalized auction problem. We denote the
profit of a truthful mechanismM on input b by pM(b). For
randomized auction mechanisms pM(b) is a random vari-
able. A key question is how to evaluate the quality of the
mechanismM as a profit maximizer. In Section 2 we present
an upper bound on the profit achievable by any reasonable
truthful mechanism given input bids b. We use the bound
to motivate a mechanism-independent quantity p(b) against
which we compare pM(b). We then define the competitive
ratio of M to be

sup
b

p(b)

E[pM(b)]
.

3Bidders in different markets may also turn out to be indis-
tinguishable from one another if the cost structure of pro-
viding services to them is identical.



Our goal is thus to construct truthful mechanisms that min-
imize this competitive ratio.

1.3 Cancellable Auctions
A natural approach to the design of generalized auction

mechanisms that do not incur deficits is to run a basic auc-
tion on each market and then cancel the results if the revenue
raised from the bidders does not exceed the costs that the
auctioneer will have to pay to provide goods to the selected
receivers. Consider, for example, the problem of selling a
digital good via a truthful auction, where the cost of pro-
ducing the good is C, and, once produced, the good can
be duplicated at negligible cost (so that effectively the auc-
tioneer has an unlimited supply of the good). In this case,
the auctioneer (who will bear the burden of producing the
good), does not even want to produce the good unless they
can recover their cost of C.

We are thus motivated to introduce a stronger form of
truthful auctions, cancellable auctions. Given a truthful
auction A and a parameter C, we define an auction AC

as follows: On input b, run A on b. If the resulting revenue
is at least C, return the outcome of A(b). Otherwise, can-
cel A by returning the outcome with no winners. We say
that A is cancellable if, for any value of C, AC is truthful.
As we shall see in Section 3.1, not every truthful auction is
cancellable.

1.4 Contributions
The contributions of this paper are twofold. We start by

presenting a number of new results pertaining to the basic
auction problem.

• We present a new, simple, and easy to analyze 4-
competitive auction, and show that this auction is can-
cellable (See Section 3). Thus, as we shall see, it can be
used as a building block in the design of mechanisms
for generalized auction problems.

The previous auctions known to be constant competi-
tive for this problem (described in [7]) are more com-
plicated to analyze and only large constant bounds
(much greater than 4) are known for their competitive
ratios. Also, they are not all cancellable.

• We prove a lower bound of 2 on the competitive ra-
tio of any monotone truthful auction (For a definition
of “monotone” and other pertinent details, see Sec-
tion 3). We note that the class of monotone auctions
is natural; all currently known competitive auctions
are monotone.

In addition, we present a number of new results about
generalized auction problems:

• We prove an upper bound on the profit achievable by
any reasonable truthful mechanism, thereby motivat-
ing the performance measure we use for evaluating gen-
eralized auctions (See Section 2).

• We present a truthful mechanism that obtains a con-
stant factor of the optimal truthful profit on any input
set of bids for which (a) there is competition in each
market, i.e., there is not one bidder whose bid dwarfs
all other bids; and (b) there is a significant profit mar-
gin to be had, i.e., the optimal profit is at least a con-
stant factor more than the cost incurred by the optimal

allocation. Furthermore, on any set of bids not satis-
fying these conditions, the mechanism incurs no deficit
(See Section 4).

Thus, we obtain mechanisms that are profit maximiz-
ing for a broad class of generalized auction problems,
including all the problems mentioned earlier in this
section. For example, we obtain the first results on
profit maximization for the conditional financing prob-
lem and for the multicast pricing problem in a worst-
case, competitive analysis framework.4 Although it
is not the primary focus of our paper, the multicast
pricing mechanism we present also has low network
complexity, in the sense of Feigenbaum et al. [5].

1.5 Related Work
There has been a great deal of recent work at the intersec-

tion of game theory, economic theory and theoretical com-
puter science [14, 17]. On the game theory and economics
end, there is a large body of work on mechanism design (also
known as implementation theory or theory of incentives) (see
e.g., [12], chapter 23). One of the most important positive
results in this field is the family of Vickrey-Clarke-Groves
mechanisms [4, 8, 21].

Recent work in computer science pertaining to these fields
has focused largely on merging the considerations of incen-
tives with considerations of computational complexity (e.g.,
[9, 14, 15, 16]). One of the first examples of such work is
the paper of Nisan and Ronen [15] in which the mechanism
design framework is applied to some standard optimization
problems in computer science, such as shortest paths and
scheduling on unrelated machines.

Another line of research focuses on the complexity and
design of cost sharing mechanisms. Feigenbaum, Papadim-
itriou and Shenker [5] study the distributed complexity of
implementing two well-known cost sharing mechanisms, Mar-
ginal Cost and Shapley Value, for multicast transmission
where routing is done over a subtree of a fixed universal
tree. Jain and Vazirani [10] apply techniques from approxi-
mation algorithms to find cost sharing methods for approx-
imate Steiner trees. The choice of mechanisms considered
in [5, 10] is motivated by the desire to find a solution that
is either budget-balanced or efficient, and hence there is no
issue of maximizing the profit of the broadcaster.

Of course, auctions, be they traditional or combinatorial,
have received a great deal of attention (see e.g., the sur-
veys [11, 20]).

The work most closely related to our own is the work in
[7], on which we build. Other work on profit maximiza-
tion evaluated using worst-case analysis includes the work
of Bar-Yossef et al. [3] in which an online version of the ba-
sic auction problem is studied in a competitive framework.
Other interesting results in a similar framework include the
work of Archer and Tardos [1], in which they present a mech-
anism which gets within a logarithmic factor of optimal for
certain scheduling problems. Archer and Tardos [2] also
show a Ω(n) lower bound on the competitive ratio for short-
est path mechanisms even when there is close competition
among the bidders.

4Recent work by Shenker and Vazirani studies profit max-
imization for the multicast pricing problem in a Bayesian
setting [19]



2. PRELIMINARIES
In Section 1, we defined the generalized auction problem
A = (S, c(·)). A mechanism for this generalized auction
problem is a mapping (perhaps randomized) from inputs to
outputs. An input is a bid vector b, where bi, 1 ≤ i ≤ n, is
the bid input by the ith bidder. An output is an allocation
vector, x, and a price vector, p. The allocation vector, x,
has xi = 1 if bidder i receives the good and xi = 0 otherwise
and in the price vector, p, pi is the price bidder i pays. We
will denote by r the allocation vector induced on the market
segments, i.e., rj = 1 if any bidders in Sj receive the good
and rj = 0 otherwise.

We assume that the ith bidder, 1 ≤ i ≤ n, has a private
utility value ui and that each bidder’s objective in choosing
their bid value is to maximize their profit, defined as uixi −
pi. We assume each bidder knows the mechanism, and that
the bidders do not collude. We also impose a standard set
of conditions on the auction mechanisms we consider:

• No Positive Transfers (NPT): pi ≥ 0. This precludes
paying bidders to take an item.

• Voluntary Participation (VP): pi ≤ bi if xi = 1, and
pi = 0 if xi = 0.

We say that a deterministic mechanism is truthful if each
bidder, for any fixed choice of values for the other bids, can
maximize their profit by bidding their utility value. We say
that a randomized mechanism is truthful, if it is a probabil-
ity distribution over deterministic mechanisms.5

Given a mechanism M, for each input b ∈ Rn, the profit
to the auctioneer, pM(b), is the revenue from the bidders
minus the cost of providing the goods, i.e.,

pM(b) =
X

i

pi − c(r).

2.1 An Upper Bound on the Profit of Truthful
Mechanisms

To motivate our performance measure, we will first prove
a bound on the optimal auctioneer profit for any reason-
able mechanism. To do this we need to first extend several
notions from basic auctions to generalized auctions.

Bid-independence
We describe a useful characterization of truthful general-
ized auctions using the notion of bid-independence. Let b−i

denote the vector of bids b with bi removed, i.e., b−i =
(b1, . . . , bi−1, ?, bi+1, . . . , bn). We call such a vector masked.
Given a randomized function f on masked vectors (i.e., f(b−i)
is a random variable), the bid-independent generalized auc-
tion defined by f on bid vector b is Mf (Auction 1).

Bid-independent auctions are truthful and vice versa.

Theorem 2.1. An auction is truthful if and only if it is
the bid-independent auction defined by some function f .

This is a straightforward generalization of the equivalent
result for deterministic auctions in [7].

5This is a strong notion of truthfulness for randomized
mechanisms. Weaker notions exist, but are not important
for the results presented in this paper.

Auction 1 Bid-independent Auction (Mf )

For each bidder i:

1. vi ← f(b−i).

2. If vi ≤ bi, set xi ← 1 and pi ← vi.
6 (Bidder i wins.)

3. Otherwise, set xi = pi = 0. (In this case, we say that
bidder i is rejected.)

Note that f(b−i) and f(b−j) need not be independent.

Monotonicity
Using standard terminology, we say that random variable X
dominates random variable Y if for all x

Pr[X ≥ x] ≥ Pr[Y ≥ x] .

We are now ready to define monotone generalized auctions.

Definition 2.2. A generalized auction, M, is monotone
on markets S if it is defined by a bid-independent function
f with the property that for any bid vector b, and any pair
of bidders i and j within the same market such that bi ≤ bj

the random variable f(b−i) dominates the random variable
f(b−j).

To get a feel for this definition, observe that when bi ≥ bj

the bids visible in the masked vector b−j are the same as
those visible in the masked vector b−i except for the fact
that the larger bid bi is visible in b−j whereas the smaller
bid bj is visible in b−i. Intuitively, monotonicity means that
the bid-independent function, upon seeing a set of higher bid
values outputs higher threshold prices.

Optimal fixed-pricing
We first recall the definition of optimal fixed pricing for basic
auctions [7]:

Definition 2.3. Let b be a bid vector and let bi be the ith
largest component of the vector b. Then the optimal fixed
price revenue on b, F(b), is

F(b) = max
i

ibi.

Note that F(b) can be Θ( 1
log n

P
i bi), and therefore a log n

factor from the sum of the bids, an obvious upper bound on
the revenue for a multi-priced auction.7 F(b) is the optimal
profit for any mechanism that uses a single selling price for
all winners.

We now extend this to general auctions:

Definition 2.4. The optimal profit for any selling mech-
anism for A = (S, c(·)) that uses a single price for each
market is

FA(b) = max
r∈{0,1}m

0@ X
1≤j≤m

rjF(bSj )− c(r)

1A .

where bSj is the restriction of b to the jth market Sj.

7Consider, for example, n bids with bi = 1/i.



Profit upper bound
Theorem 2.5. Let M be any monotone auction for the

basic auction problem on bids b, and let W be the event that
there is at least one winner, i.e., there exists i such that
xi = 1. The revenue R =

P
i pi of M on input b satisfies:

E[R | W] ≤ F(b).

Proof. Let f be the bid-independent function defining
M. Let q be the probability that the event W occurs. We
define gi(x) as follows:

gi(x) = Pr[f(b−i) ≤ x | W]

= 1
q
Pr[f(b−i) ≤ x ∩W]

For x ≤ bi bidder i is a winner and thus f(b−i) ≤ x implies
event W. So we can conclude that for x ≤ bi,

gi(x) = 1
q
Pr[f(b−i) ≤ x].

By the monotonicity of f , for all i and j, gi satisfies the
property that if bi ≥ bj then gi(x) ≥ gj(x) for x ≤ bj .

Now consider the following thought experiment. Let U
be a random variable that is uniform on [0, 1]. Imagine
running the bid-independent auction that for each i using
g−1

i (U) to set the threshold for bidder i, with g−1
i defined

as g−1
i (y) = inf {x : gi(x) = y}. We denote by RU the

resulting auction revenue. We observe that the threshold
distribution for bidder i in this experiment is precisely the
same as the original threshold distribution for bidder i con-
ditioned on W:

Pr
ˆ
g−1

i (U) ≤ x
˜

= Pr[U ≤ gi(x)]

= gi(x).

Therefore, by summing the expectations for the bidders, we
obtain

E[RU ] = E[R|W] .

We complete the proof by showing that the expected rev-
enue from our thought experiment E[RU ] is at most F(b).
Conditioned on U = u, let k be the index of the smallest
winning bid. Thus, g−1

k (u) ≤ bk. Since gk(x) ≤ gj(x) for
all j such that bj ≥ bk, and gk(x) and gj(x) are monotone
non-decreasing functions, we must have g−1

j (u) ≤ g−1
k (u) ≤

bk ≤ bj and therefore all bidders with bid values at least bk

win at a price at most bk. Thus, the revenue, Ru, is at most
bk times the number of bids with bid value least bk which
totals to at most F(b). This holds for all u ∈ [0, 1], and
thus E[RU ] ≤ F(b).

Corollary 2.6. The expected profit for any monotone
basic auction on any set of bids b is at most F(b).8

We now give an upper bound on profit for generalized
auctions.

Theorem 2.7. Let A = (S, c(·)) be a generalized auction
problem. For any truthful mechanism M that is monotone
on S, and for any input bid vector b, we give an upper bound
pM(b), the profit of M on bid set b as:

E[pM(b)] ≤ FA(b).

8A similar result was claimed in [7]; however, the proof was
incorrect.

Proof. Define the following:

• qr with r = (r1, . . . , rm) ∈ {0, 1}m – the probability
that the result of the auction is the allocation r to the
markets.

For 1 ≤ j ≤ m define:

• qj – the probability that there is at least one winner
in market Sj . Note that qj =

P
r∈{0,1}m rjqr.

• Fj = F(bSj ) – the optimal fixed price revenue for
market j.

• Rj – the revenue collected from the jth market.

Note that from Theorem 2.5 we have

E[Rj ] = qjE[Rj | rj = 1]

≤ qjFj (1)

Now we bound the expected profit:

E[pM(b)] = E
hX

j
Rj − c(r)

i
=
X

j
E[Rj ]−E[c(r)] .

By equation (1),

E[pM(b)] ≤
X

j
qjFj −E[c(r)]

=
X

j
Fj

“X
r
rjqr

”
−
X

r
qrc(r)

=
X

r
qr
“X

j
rjFj − c(r)

”
.

This is a convex combination, so we have

E[pM(b)] ≤ max
r∈{0,1}m

0@ X
1≤j≤m

rjFj − qrc(r)

1A
= FA(b).

The proof just presented may seem at first glance to be
more complicated than necessary. However, we note that
the most obvious approach of using the equation

E[pM(b)] =
X
r

qr

 X
j

E[Rj |r]− c(r)

!

and then showing that E[Rj |r] ≤ Fj fails: E[Rj |r] can in
fact significantly exceed Fj .

2.2 Competitive Mechanisms
The fact that FA(b) is an upper bound on the profit of

any monotone truthful auction on input set b motivates the
evaluation of truthful mechanisms by considering their com-
petitive ratio relative to FA, i.e., the supremum over all
bid vectors of FA(b)/pM(b). Unfortunately, in many cases,
there is no constant bound achievable on this competitive
ratio. For example, for the basic unlimited supply auction
problem with no costs, FA(b) is equal to the optimal fixed
price revenue F(b). However, it is easy to show that no
randomized unlimited supply auction can obtain a constant



fraction of F(b). Intuitively, if there is one very high bid-
der that completely dominates all other bidders, there is no
way to truthfully extract a constant fraction of his bid value
[6]. In contrast, as we show below, it is possible to obtain a

constant fraction of F (2)(b), where

F (2)(b) = max
i≥2

ibi,

i.e., the optimal fixed price revenue assuming at least two
items are sold (again, bi is the ith largest bid).

As the basic auction is a special case of the general auc-
tion, it is not possible to be constant competitive with FA(b).
Furthermore, we conjecture that for the fixed cost unlimited
supply auction where the cost of producing the good is C
and FA(b) = max(0,F(b) − C) it is not possible to even

attain a constant fraction of max(0,F (2)(b)−C) as this dif-
ference gets arbitrarily small. Intuitively, it is much easier to
be competitive with gross profit than it is to be competitive
with the net profit.

We are thus motivated to define the following weaker no-
tion of competitiveness:

Definition 2.8. For generalized auction problems, we say
that a truthful mechanismM is β-competitive if, for all bid
vectors b,

E[pM(b)] ≥
profitβ(b)

β
,

where

profitβ(b) = max
r∈{0,1}m

0@ X
1≤i≤m

riF (2)(bSi)− βc(r)

1A ,

As noted previously, we cannot be constant competitive
against FA(b). Nonetheless, for a large class of inputs,
achieving a constant fraction of FA(b) implies achieving a
constant fraction of profitβ(b) and vice versa. This is the
class of bids for which

• For each market Sj , F(bSj ) = F (2)(bSj ), meaning
there is no single bidder whose bid completely domi-
nates all others in that market, and

• The optimal profit margin is a constant factor of the
cost of the optimal allocation.

Thus, for an interesting class of problems and inputs to these
problems, we will present mechanisms that obtain profit
that is within a constant factor of optimal. An interest-
ing problem left open by our work is whether or not there
is a stronger performance measure one can compare against
and still obtain strong competitiveness guarantees.

2.3 Randomized Mechanisms
In [7] it is proven that no deterministic symmetric9 mech-

anism for the basic auction problem is constant competitive.
Thus, we are compelled to use randomized mechanisms, and
shall do so for the remainder of the paper.

9An auction is symmetric if its outcome is the same for any
permutation of the input bids.

3. BASIC AUCTION RESULTS
In this section, we consider the basic auction problem as-

suming the auctioneer has an unlimited supply of items.10

All the results presented in this section can be generalized
easily to hold for the case where the auctioneer only has
a fixed number, k, of items. For a k-item auction, simply
reject all but the k highest bidders and run an unlimited
supply auction on the remaining bids.

3.1 Cancellability
Cancellable auctions are crucial building blocks in the de-

sign of mechanisms for more general auctions. As discussed
in the introduction, we define cancellable auctions as follows.

Definition 3.1. Given a truthful auction M and a pa-
rameter C, we define the auction MC as follows: On input
b, runM on b. If the resulting revenue is at least C, return
the outcome ofM(b). Otherwise, cancelM by returning the
outcome with no winners. We say that M is cancellable if
and only if, for any value of C, MC is truthful.

There are two natural ways to prove that an auction is
cancellable: The first is to show that for each C, there is
a bid-independent function f such that the outcome (as a
random variable) of the bid-independent auction defined by
f is the same as that ofMC . A second approach is to show
directly that in MC any bidder’s profit is maximized by
bidding their utility value. Specifically it suffices to use the
following:

Proposition 3.2. The truthful auction M is cancellable
if for any bid vector b−i and any bidder i with utility ui, if
bidder i wins upon bidding ui, then Rui ≥ Rb for any b such
that xi = 1 when bidder i bids b. For the fixed values of b−i,
Rb denotes the revenue of M when bidder i bids b.

To see this, observe that, by assumption, M is truthful,
and thus, bidder i’s profit before the possible cancellation
is maximized by bidding their utility value. To ensure that
bidder i’s profit is still maximized after cancellation by bid-
ding ui, it must be that if the auction is cancelled when
bidder i bids ui, then bidder i loses when bidding any value
that results in the auction not being cancelled. Another
way to put this is that a truthful auction is cancellable if its
revenue is not a function of the bid values of the winning
bids.

We next observe that the notion of a cancellable auction
is strictly stronger than that of a truthful auction.

Observation 3.3. Not all truthful auction mechanisms
are cancellable.

In particular, one variant of the class of constant-competitive
auctions presented in [7], the Dual-price Sampling Optimal
Threshold auction (Auction 2, below), is not cancellable.11

DSOT is obviously truthful, as it is bid-independent. We
observe now that the auction obtained by running DSOT
and cancelling the outcome if the revenue is less than C is
not truthful.

10In terms of the generalized auction problem, this means
that there is only one market containing all the bidders,
and the cost function is identically 0.

11In fact, none of the auctions developed in [7] are cancellable
except for the Random Sampling Optimal Threshold auction
(RSOT).



Consider b = {1, 1, 1, . . . , 1, h}. Clearly, for h sufficiently
large, h is the optimal threshold for its partition: bids in
the other partition will be rejected and the revenue of the
auction is close to n/2. However, if the high bidder bids
1 instead of h, b∗ = {1, 1, 1, . . . , 1, 1} and all bidders get
xi = 1 and pi = 1. Thus the auction revenue is n.

Suppose the auction is to be cancelled if its revenue is less
than C = 3

4
n. Then,

• the high bidder’s profit is 0 when bidding h, and

• the high bidder’s profit is h− 1 when bidding 1.

Thus DSOT is not cancellable.

Auction 2 Dual-price Sampling Optimal Threshold Auc-
tion (DSOT)

For any input b:

1. Partition b into two sets, bS′ and bS′′ , by flipping a
fair coin for each bid.

2. Let p′ (resp. p′′) be the optimal fixed price for the bids
in bS′ (resp. bS′′).

3. Use p′ as a threshold for bids in S′′ and p′′ for bids
in S′ (I.e., for i ∈ S′ if bi ≥ p′′ then set xi ← 1 and
pi ← p′; otherwise set xi ← 0 and pi ← 0).

3.2 The Sampling Cost Sharing Auction
The main result of this section is a competitive truthful

auction that is cancellable. It it simple, easy to analyze, and
achieves a competitive ratio that is better than that known
for any other auction.

We first review a standard cost sharing mechanism [13,
18]. Given bids b and cost C, this mechanism finds a subset
of the bidders to share the cost C, if possible. More precisely
the cost sharing mechanism is defined as follows:

CostShareC : Given bids b, find the largest k such
that the highest k bidders can equally share the
cost C. Charge each C/k.

Important properties of this mechanism are as follows.

• If C ≤ F(b), CostShareC has revenue C; otherwise it
has no revenue and the outcome is x = 0 and p = 0.

• CostShareC is truthful.12

A formal description of the Sampling Cost Sharing auc-
tion is given in Auction 3. As we will show, this auction
has the property that it is 4-competitive and cancellable.
SCS computes the optimal fixed price revenues for two ran-
dom partitions of the bidders and has each partition cost

12For example, we can exhibit a function f such that
CostShareC is equivalent to the bid-independent auction de-
fined by f :

1. Let b′ be b−i with b′i set to value C.

2. Find the largest k such that the highest k bidders can
equally share the cost C.

3. Return C/k as the threshold for bidder i.

It is easy to verify that the auction defined by f is in fact
CostShareC .

share the other partitions optimal revenue. Typically, these
optimal fixed price revenues will be different and the parti-
tion with the lesser revenue will be completely rejected as
it cannot afford to cost share the optimal revenue of par-
tition with the higher optimal revenue. In the case where
the optimal revenues are the same, we could either allow
both partitions to have winners or impose some tie breaking
criterion to make sure that only one of the partitions has
winners. If we allow both partitions to have winners, the re-
sulting mechanism, while being truthful and 4-competitive,
is not cancellable.13 Thus, if we want a cancellable auction,
we must do some sort of tie breaking. The technique we
choose, as described in the formal definition of SCS, is to
use the total order, ≺, on fixed price revenues. We omit
a more detailed explanation of this tie breaking technique
from this extended abstract.

Auction 3 Sampling Cost Sharing Auction (SCS)

1. Partition bids b, into two sets S′ and S′′, by flipping
a fair coin for each bid. Let the resulting bid vectors
be bS′ and bS′′ .

2. Compute F ′ = F(bS′) and F ′′ = F(bS′′), the optimal
fixed price revenues for bS′ and bS′′ , respectively.

3. Compute the auction results by running CostShareF′′

on bS′ and CostShareF′ on bS′′ .

We impose a total ordering, “≺”, on values of the form “kbi”
that respects their natural partial ordering given by “<”.
We define ≺ as:

kbi ≺ `bj ⇐⇒ kbi < `bj ∨ kbi = `bj ∧ i < j.

Note that F ′ and F ′′ are of the form “kbi” for some k and
i, so using this total ordering in Steps 2 and 3 guarantees
F ′ 6= F ′′.

Theorem 3.4. SCS is 4-competitive, and this bound is
tight.

Proof. We begin by observing that the auction revenue
is R = min(F ′,F ′′). Suppose, without loss of generality,
that F ′ < F ′′. Then CostShareF′′ on bS′ will reject all bids
in bS′ . However, CostShareF′ on bS′′ will be able to achieve
revenue F ′.

By definition, F (2) on b sells to k ≥ 2 bidders at a single
price p for a revenue of F (2) = kp. These k bidders, all
with bid value at least p, are divided uniformly at random
between bS′ and bS′′ . Let k′ be the number of them in
bS′ and k′′ the number in bS′′ . As such, F(bS′) ≥ pk′ and

13For example, consider two bidders with utilities u1 = 4 and
u2 = 2 and a cost C = 3. Assume we sample with S′ = {1}
and S′′ = {2}. If both bidders bid their utility we have
F ′ = 4 and F ′′ = 2 and the revenue is R = 2. Since the
revenue is less than the cost C, the auction is cancelled and
the first bidder’s profit is zero. If we allow ties, the first
bidder could lower their bid to b1 = 2 causing F ′ = F ′′ = 2.
This results in both bidders winning and yields a revenue
of R = 4. In this case, the auction is not cancelled and the
first bidder’s profit is two.



F(bS′′) ≥ pk′′. Therefore,

R
F (2)

=
min(F(b′),F(b′′))

F (2)(b)
≥ min(pk′, pk′′)

pk

=
min(k′, k′′)

k
.

Thus, the competitive ratio

E[R]

F (2)
≥ 1

k

k−1X
i=1

min(i, k − i)
`

k
i

´
2−k

=
1

2
−
`k−1

b k
2 c
´
2−k.

This ratio achieves its minimum of 1/4 for k = 2 and k = 3.
As k increases, the sum approaches 1/2.

To see that the bound on the competitive ratio is tight,
consider the case where b consists of two very high bids h
and h + ε, and all other bids negligibly small. In this case
F = F (2) = 2h, whereas the expected revenue of the SCS
auction is h ·Pr[two high bids are split] = h/2 = F/4.

Finally, we prove the following.

Lemma 3.5. SCS is a cancellable auction.

Proof. Let SCSC be the auction that runs SCS and can-
cels the outcome if its revenue is not at least C. By defini-
tion, SCS is cancellable if and only if SCSC is truthful for
all C. We prove this using Proposition 3.2.

Consider any fixed outcome of the coin flips of SCS, and
any bid vector b−i. In addition, suppose that bidder i’s
utility value is ui. For this particular execution, suppose
that bidder i is in S′. If bidder i wins in this execution of
SCS (prior to the possible cancellation) then F ′′ ≺ F ′. Now
suppose that bidder i changes his bid, resulting, possibly, in
a new value of F ′. If we still have F ′′ ≺ F ′, then the total
revenue of the auction is unchanged, equal to F ′′. Other-
wise, if we now have F ′ ≺ F ′′, then bidder i loses. Thus,
in terms of Proposition 3.2, Rui ≥ Rb for any b such that
xi = 1 when bidder i bids b.

3.3 Lower bound on Competitive Ratio
We say that auction defined by bid-independent funciton

f is scale-invariant if, for all i and all x, Pr[f(b−i) ≥ x] =
Pr[f(cb−i) ≥ cx]. In this section we show that any scale-
invariant auction has a competitive ratio of at least 2. When
bids are restricted to be within a certain range (e.g., in the
range [1, M ]) or are restricted to be powers of α for some
α > 1, it is possible to design non-scale-invariant auctions
that do better. However, for arbitrary nonnegative bids,
we conjecture that for any auction with competitive ratio c,
there is a scale-invariant auction with competitive ratio c.
If this conjecture is true, then the competitive ratio of SCS
is within a factor of 2 of optimal.

We say that an auctionM is symmetric ifM(b) =M(π(b))
for any permutation π(b) of the bid vector b.

Lemma 3.6. Let M be an auction with competitive ratio
c. Then there is a randomized symmetric auction M′ with
competitive ratio c.

Proof. Given an auction M, we define M′ as follows:
Apply a random permutation π to the input bid vector b
and runM on π(b). ClearlyM is symmetric. Furthermore,
applying a permutation to the input vector does not change
the value of F (2). By the choice of M, for any b and π,
the (expected) revenue ofM on π(b) is at least F (2)/c and

therefore the expected revenue ofM′ on b is at least F (2)/c.

Theorem 3.7. The competitive ratio of any randomized
scale-invariant auction is at least two.

Proof. We will show this result for the special case where
there are only two bidders. Recall that any truthful auction
is a bid-independent auction Mf for some f , where f is
randomized function on masked vectors b−i. Lemma 3.6
allows us to consider, without loss of generality, symmetric
auctions only. For symmetric two bidder auctions, given bids
b1 and b2, f(b2) determines the price for b1 and vice versa.
For scale-invariant auctions, f(b2) is completely determined
by f(1) scaled appropriately by b2.

Note that F (2)(b) = 2min(b1, b2) for an auction with only
two bidders. Given bids of the form b = (1, h) for any h ≥ 1,

F (2)(b) = 2. Consider the deterministic bid-independent
and scale-invariant function g(x) = x. For two bidders, the
corresponding auction Mg is trivially 2-competitive as its
revenue is at least min(b1, b2). We show that this auction
achieves the best (smallest) competitive ratio among scale-
invariant auctions.

We focus here on the case that f(1) is a finite, discrete ran-
dom variable. The general case follows by taking the limit
as the number of different values taken on by the random
variable goes to infinity and by approximating any continu-
ous distribution with a discrete one. We will now show how
from any finite, discrete random variable f(1) representing a
two bidder auction, we can inductively construct a sequence
of auctions with non-increasing competitive ratio ultimately
arriving at Mg. This would imply that Mf ’s competitive
ratio is no better that of Mg which is 2.

Let p(x) = Pr[f(1) = x] and let Rf (h) denote the ex-
pected revenue forMf on bids {1, h}. That is,

Rf (h) =
X

0≤x≤1

xp(x/h)

| {z }
from 1

+
X

0≤x≤h

xp(x)

| {z }
from h

The proof of the theorem is by induction on m, where m is
the number of values x such that x 6= 1 and p(x) > 0. For
the base case, m = 0, and then, trivially f = g. Given non-
zero m, we can construct a new auctionMf ′′ with p′′(x) =
Pr[f ′′(1) = x] that has less than m values x such that x 6= 1
and p′′(x) > 0. We do this in two steps. Let x

¯
denote

the lesser of the value one and the smallest value of x such
that p(x) is non-zero. Likewise, let x̄ denote the larger of
the value one and the largest value of x such that p(x) is
non-zero.

The basic inductive step of the proof will consist of first
constructing p′ from p with the property that 1/x

¯
′ = x̄′.

We then move probability mass from x
¯
′ and x̄′ to 1 to get

p′′ and the auction Mf ′′ with m′′ < m. To show that the
competitive ratio ofMf is at least that ofMf ′ it suffices to
show that any value of h′, we can find a value h such that
Rf ′(h′) ≥ Rf (h).

We begin by constructing p′. There are three cases.



Case 1, 1/x
¯

= x̄: Define p′ as p.

p′(x) = p(x)

Case 2, 1/x
¯

< x̄: For example,

-

0 1 2 3

x
¯
?

1
x
¯
?

x̄

?

Define p′ as p but with all weight above 1/x
¯

moved
down to be at 1/x

¯
. That is,

p′(x) =

8><>:
0 if x > 1/x

¯P
x′≥1/x

¯
p(x′) if x = 1/x

¯
p(x) otherwise.

To show thatMf ′ defined by this p′ has a competitive
ratio that is at most that ofMf , we consider all h′ ≥ 1
and show that there exists an h such that Rf ′(h′) ≥
Rf (h).

• For h′ < 1/x
¯
, Rf ′(h′) = Rf (h′) because p(x) =

p′(x) for x ∈ [0, 1/x
¯
). Thus, choose h = h′.

• For h′ = 1/x
¯
, Rf ′(h′) = Rf (h′) + h(p′(h) −

p(h)) > Rf (h′). Thus, choose h = h′.

• If h′ > 1/x
¯

then bid 1 is rejected by bothMf ′ and
Mf (since for all y ≤ 1, p(y/h′) = p′(y/h′) = 0).
Note that since p(x) is non-zero on finite number
of x there exists an ε such that with h = 1/x

¯
+ ε,

Rf (h) =

1/xX̄
0≤x

xp(x) ≤ Rf ′(h′)

For all h′ > 1/x
¯

choose this h.

Case 3, 1/x
¯

> x̄: Define p′ as p but with all weight below
1/x̄ moved up to be at 1/x̄. That is,

p′(x) =

8><>:
0 if x < 1/x̄P

x′≤1/x̄ p(x′) if x = 1/x̄

p(x) otherwise.

Showing that the competitive ratio of Mf ′ is at most
that of Mf is similar in spirit to Case 2 and we omit
the details.

After any of case 1, 2, or 3 above, we are left with p′

such that 1/x
¯

= x̄ and the corresponding auction Mf ′ has
at most the same competitive ratio asMf . Now we seek to
reduce the number of values x such that x 6= 1 and p(x) > 0.

Define p′′ as p′ but with as much as possible of the mass
from x

¯
and x̄ moved to be at 1, balanced so as to keep the

expected value from changing. Thus, we move mass q from
x
¯

and mass q/x̄ from x̄ with q = min(p′(x
¯
), p′(x̄)x̄) so that

either x
¯

or x̄ will have mass zero in p′′, thus reducing the
number of values x such that x 6= 1 and p′(x) > 0.

p′′(x) =

8>>><>>>:
p′(x)− q if x = x

¯
p′(x)− q/x̄ if x = x̄

p′(x) + q + q/x̄ if x = 1

p′(x) otherwise.

Showing that the competitive ratio of Mf ′′ is at most
that of Mf ′ is also similar in spirit to Case 2 and we again
omit the details.

4. APPLICATIONS OF CANCELLABLE
AUCTIONS

In this section we show how cancellable auctions can be
used as a building block for the construction of profit opti-
mizing mechanisms. For generalized auction problems, we
define the following Local Sampling Cost Sharing auction
(Auction 4).

Auction 4 Local Sampling Cost Sharing auction (LSCS)

On input b:

1. Run SCS on each market, bSj , to get revenue Rj .

2. Compute the maximizing (or approximate) market al-
location r∗ = argmaxr

P
j rjRj − c(r).

3. For each j, if r∗j = 0, cancel auction on Sj . Else collect
Rj in revenue from market Sj .

Lemma 4.1. The Local Sampling Cost Sharing auction is
truthful.14

This proof is immediate from the cancellability of SCS.

Theorem 4.2. LSCS is 4-competitive.

Proof. Since SCS is 4-competitive, for all j we can ex-
pect at least F (2)(bSj )/4 from the jth market. Consider
the allocation r′ used by profit4(b), that is, r′ maximizes
maxr

P
j rjF(bSj )− 4c(r).

Our revenue is

pLSCS(b) = max
r

X
j

Rjri − c(r)

≥
X

j

Rjr
′
i − c(r′)

and

E

"X
j

Rjr
′
i − c(r′)

#
≥
X

j

F (2)(bSj )r
′
i/4− c(r′)

= profit4(b)/4

and so

E[pLSCS(b)] ≥ profit4(b)/4.

Corollary 4.3. LSCS is 4-competitive for the multicast
problem.

We note that LSCS for the multicast problem of [5] can be
implemented with low network complexity, 2 messages per
link, using the natural prize-collection algorithm for trees
(E.g. [5]).

Corollary 4.4. Consider the algorithm LSCS′ that dif-
fers from LSCS in that rather than actually compute the
optimal allocation, it makes use of an α approximation to
the optimal allocation. LSCS′ is 4α-competitive.

14In fact, any cancellable auction could be used in place of
SCS and the resulting local mechanism would be truthful.



As we have seen, the LSCS auction works very well for
generalized auction problems when each market has size at
least 2 and there is competition in each market.

These assumptions might be valid for multicast in the
Internet today where the content provider is charged for
usage of the backbone, while consumers are located at single
ISPs and are already paying a flat rate for their service. In
this case, the consumers at each ISP would form markets and
there would possibly be a large number of them at each.

A key open question is how well a more global auction
mechanism can do when these assumptions do not hold. For
example, there is a relatively simple global mechanism for
the basic market segmentation problem (where there are m
markets but the cost, c(r), is zero for all r). It remains open
whether this or any other more global mechanism works well
in any quantifiable sense.

5. CONCLUSIONS
For the basic auction problem we have presented a number

of results. The most important of these are that the Sam-
pling Cost Sharing auction is 4-competitive and cancellable
and that no scale-invariant auction can achieve a competi-
tive ratio less than two. A natural resulting open question is
that of determining the optimal competitive ratio for any ba-
sic auction. However, even for the two bidder case, a “proof
from the book” that no auction (scale-invariant or not) can
achieve a competitive ratio of better than two would be an
interesting result.

For the fixed cost unlimited supply auction, i.e., one mar-
ket with cost C if there are any winners, we have shown
that it is possible to get a constant fraction of F (2)(b)− 4C
in worst case. We conjecture that this scaling of C is nec-
essary in the sense that it is not possible to get a constant
fraction of F (2)(b)−C in worst case. This result seems likely

because F (2)(b) − C can be arbitrarily small compared to

F (2)(b) and we know it is not possible to be better than

2-competitive against F (2)(b).
For general auctions we gave a local mechanism that is

competitive if there is competition amongst the bidders in
each market and if there is a significant profit margin. This
solution can be applied directly to the multicast cost sharing
problem of [5]. To design competitive mechanisms for gener-
alized auction problems that do not require the assumption
of competition among the bidders in each market (e.g., al-
lowing for singleton markets), global mechanisms must be
employed. Even for simple special cases of the multicast
tree, this problem is difficult. Special cases, e.g., segmented
markets with no cost (for all r, c(r) = 0), that do permit
natural global mechanisms are difficult to generalize.

Our formulation for generalized auctions captures a wide
variety of allocation mechanisms; however, more general
models can be considered. In particular, our model could
be extended to allow cost functions that can take into ac-
count how many items are allocated to each market instead
of just whether or not any goods were allocated to the mar-
ket.
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