
Chapter 7 

Models with Multiple Job Classes 

7.1. Introduction 

Multiple class models, like single class models, provide estimates for 
performance measures such as utilization, throughput, and response time. 
The advantages of multiple class models over single class models include: 
l Outputs are given in terms of the individual customer classes. For 

example, in modelling a transaction processing system, response times 
for each of a number of transaction types could be obtained by includ- 
ing each type as a separate class. With a single class model, only a 
single estimate for response time representing the average over all 
transaction types could be obtained. 

l For systems in which the jobs being modelled have significantly 
different behaviors, such as systems with a mixture of CPU and I/O 
bound jobs, a multiple class model can provide more accurate results. 
This means that some systems can be modelled adequately only by 
multiple class models, since the single class assumption that jobs are 
indistinguishable is unacceptable. 

The disadvantages of multiple class models relative to single class models 
include: 
l Since there are multiple customer classes in the model, multiple sets 

of input parameters (one set per class) are required. The data gather- 
ing portion of the modelling process therefore is more tedious. 

l Most current measurement tools do not provide sufficient information 
to determine the input parameters appropriate to each customer class 
with the same accuracy as can be done for single class models. This 
not only complicates the process of parameterization, but also means 
that the potentially greater accuracy of a multiple class model can be 
offset by inaccurate inputs. 

l Multiple class solution techniques are somewhat more difficult to 
implement, and require more machine resources, than single class 
techniques. 
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For the most part, these disadvantages result from inadequate modelling 
support software, and thus should become less significant as queueing 
network modelling becomes more widespread. The first two disadvan- 
tages can be eliminated by measurement tools that are designed with 
knowledge of the information required to establish a model. The third 
disadvantage is significant only if one is developing queueing network 
modelling software. Commercially available software packages are capable 
of evaluating multiple class models. Thus, once the model inputs have 
been obtained, it is no more difficult to deal with a multiple class model 
than with a single class model. 

7.2. Workload Representation 

As illustrated in Chapter 4, the inputs of multiple class models largely 
correspond to those of single class models. The major additional con- 
sideration is the specification of scheduling disciplines. Since customers 
in single class models are indistinguishable, the scheduling disciplines at 
the various service centers are characterized entirely as being either delay 
or queueing. However, in multiple class models, customers are distin- 
guishable, and so the choice of scheduling discipline can be important. 

There are a large number of scheduling disciplines that can be 
represented in (separable) multiple class queueing network models. For 
practical purposes, however, the following disciplines have proven to be 
sufficient: 
l jirst-come-first-served (FCFS) - Under FCFS scheduling, customers 

are served in the order in which they arrive. Although this is the sim- 
plest of scheduling disciplines to implement, it is difficult to model 
analytically. To do so, it is necessary to impose the restriction that all 
customer classes have the same service requirement at each visit to 
the service center in question (S,,,). It is possible, however, for 
different customer classes to require different total numbers of visits 
to the service center ( Vc,k), thus providing for distinct service 
demands there (Dc,k). A FCFS center might be appropriate to 
represent a disk containing user files for a number of classes. Since 
the basic operations performed at the device by the various classes are 
the same, it is reasonable to assume that the average service times 
across classes are nearly equal. The actual number of file accesses for 
a customer of each class can be represented in the model by appropri- 
ate values of the V,,, for each class c. 
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l processor sharing (PSI - Processor sharing is an idealization of round 
robin (RR) scheduling. Under RR, control of the processor circulates 
among all jobs in the queue. Each job receives a quantum of service 
before it must relinquish control to the next job in the queue, re- 
joining the queue at its tail. Under PS, the length of the quantum is 
effectively zero, so that control of the processor circulates infinitely 
rapidly among all jobs. The effect is that jobs are served simultane- 
ously, but each of the n jobs in service receives only l/n-th of the full 
power of the processor. For example, each of three jobs at a processor 
shared, 3 MIPS (million instructions per second) CPU would receive 
service at a rate of 1 MIPS. PS often is appropriate to model CPU 
scheduling in systems where some form of RR scheduling actually is 
employed. 

0 last-come-&St-served preemptive-resume (LCFS) - Under this discipline 
an arriving job preempts the job in service (if any) and immediately 
begins service itself. When a job completion occurs, the most recently 
preempted job resumes service at the point at which it was inter- 
rupted. LCFS might be used to model a CPU in a system where the 
frequency with which high priority system tasks are dispatched is high 
enough that LCFS is a reasonable approximation. 

0 delay - As in single class models, multiple class delay centers are 
used to represent devices at which residence time consists entirely of 
service (there is no queueing delay). 

Although the first three disciplines seem quite different, the performance 
measures obtained from a model will be the same regardless of which is 
used. In most cases, we therefore distinguish only between queueing and 
delay disciplines, without being more specific. 

7.3, Case Studies 

In this section we present three simple case studies where multiple 
class separable queueing network models were used to obtain perfor- 
mance projections. The first examines the difference in performance pro- 
jections provided by single and multiple class models. The second illus- 
trates the principal advantage of multiple class models over single class 
models, namely the ability to specify inputs and outputs in terms of indi- 
vidual classes. The third demonstrates the successful use of a multiple 
class model to evaluate a loosely-coupled multiprocessor system. 
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7.3.1. Contrast with Single Class Models 

In this case study we will construct single class and multiple class 
models of a hypothetical system, and will use these models to project the 
effects on response times of a CPU upgrade. Our purpose is to illustrate 
the qualitative differences between the projections that can be obtained 
from single and multiple class models. 

The hypothetical system has two resources, a CPU and a disk. There 
are two workload components, one batch and the other interactive. 
Measurements provide the following information (times are in seconds): 

Bbarrh CPU = 600 Binrerartwe.c~u = 47.6 
B batch,Disk = 54 B mieractiw . Disk = 428.4 
C barch = 600 Gteracrive = 476 
N batch = 10 Nir2rmrtive = 25 
Z batch = 0 Z interactise = 30 

To construct a single class model of this system, we define a single 
“average” customer class, in essence by imagining that the measurement 
data did not distinguish on the basis of workload type. Our model will 
have two service centers (CPU and Disk) and a single, terminal class. 
This class will have 35 customers with think times of 13.271 seconds 

( 
476 

x 30). Service demands will be ,602 seconds at the CPU 
600+476 

(600+47.6 1o76 > and .448 seconds at the disk ( 54fdt?268’4 >. 

The multiple class model will have two service centers and two classes: 
a batch class of 10 customers, and a terminal class of 25 customers with 
think times of 30 seconds. Batch service demands will be 1.0 and .09 
seconds at the CPU and disk, respectively. Interactive service demands 
will be .lO and .90 seconds at the CPU and disk, respectively. 

Table 7.1 shows the outputs for the single class and multiple class 
models, for the base system and for an upgraded system in which the 
CPU speed is increased by a factor of five. The single and multiple class 
models agree well for the base system. They differ considerably for the 
system with the CPU upgrade, however, even when the projections of the 
single class model are compared to the “overall” projections of the multi- 
ple class model. For example, the multiple class model shows an overall 
throughput of 5.26 for the system with the upgraded CPU, compared with 
2.11 for the single class model. Further, while the single class model pro- 
jects a 60% improvement in average response time, the multiple class 
model projects an 80% improvement for batch jobs, but a 200% degrada- 
tion for interactive users. 

These differences can be accounted for by the nature of the workload. 
In the single class model, each “average” job requires a significant 
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single class 
overall 

base upgrade 
x 1.64 2.11 
R 8.07 3.32 

UCPU .985 .254 
QCPU 10.70 .34 
UDisk .733 .946 
QDL-~ 2.58 6.63 

overall 
multiple class 

batch 
base 
1.66 
7.52 
1.000 

10.57 
.752 

2.37 

base 
.93 

10.79 

I ,926 
9.72 
,084 
.28 

T 
upgrade base upgrade 

4.64 .74 .62 
2.16 3.40 10.57 
,928 .074 ,015 

5.20 .a5 .08 
.418 .668 ,561 

4.80 2.09 6.22 

interactive 

Table 7.1 - Single and Multiple Class Results 

amount of disk processing, and so the speedup of the CPU has a limited 
effect due to the performance constraint imposed by this secondary 
bottleneck. In the multiple class model, the batch class is heavily CPU 
bound, while the interactive class is heavily I/O bound. Thus, increasing 
the speed of the CPU greatly increases the batch throughput but is of lit- 
tle direct benefit to the interactive class. Further, because of the 
increased batch throughput, the interactive class suffers increased com- 
petition from the batch class at the disk center, and thus experiences a 
performance degradation. 

In summary, this example illustrates two important points regarding 
the use of queueing network models: 
l A model can project effects that intuition might not recognize. In this 

case, we have the counter-intuitive result that performance can 
degrade with a CPU upgrade. 

l Single class models of systems with significantly heterogeneous work- 
loads may give misleading results, both because the performance pro- 
jections for the “average” job may be inaccurate, and because it is not 
possible to obtain projections for specific classes from the average 
results. 



132 General Analytic Techniques: Models with Multiple Job Classes 

7.3.2. Modelling Workload Growth 

The system studied here was a Digital Equipment Corporation PDP-10 
running a special-purpose software package layered on the TOPS-10 
operating system. The objective of the study was to project response 
times as the number of online users increased and as the number of users 
that simultaneously could be memory resident was altered. Although 
benchmarking using a remote terminal emulator (RTE) was possible, a 
queueing network modelling approach was chosen. This decision was 
motivated by the fact that projections for a large number of system 
configurations were required, and timely results with rough (say, 30%) 
accuracy were more desirable than the more accurate but considerably 
more time consuming results possible using benchmarking. 

The system workload was divided into three components, primarily on 
the basis of similarity of resource usage. The first component consisted 
of users running jobs, the second of users executing system utility func- 
tions (such as printing or plotting), and the third of users editing. All 
classes were represented as terminal workloads. Service demands for 
these three classes were obtained by monitoring an RTE experiment 
involving a representative (although synthetic) jobstream. This base 
model was validated by comparing model outputs with measurements 
taken during the RTE experiment. Agreement was good, so the study 
proceeded to the projection phase. 

Benchmark 1 
50 users 

Benchmark 2 
70 users 

class 

running jobs 
utility 
editing 
total 
running jobs 
utility 
editing 
total 

l- model I actual 
R 
9.97 

122.8 
63.4 

9.2 
63.6 

1.83 

Table 7.2 - Performance Projections 

To assess the impact of workload growth on response times, the work- 
load intensities of the three classes were increased to reflect various larger 
user populations. The model then was evaluated to obtain performance 
projections. For several specific user populations, additional RTE experi- 
ments were conducted to assess the accuracy of the model. Table 7.2 
compares the model results with those obtained during RTE experiments 
for two user populations. The accuracy is reasonably good, despite the 
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extremely simple model used. (Response time improves as the user 
population increases because of an increase in main memory size that was 
represented in the model and implemented in the actual configuration. 
This additional memory resulted in reduced swapping. Techniques for 
modelling swapping are presented in Chapter 9.) 

7.3.3. A Multiprocessing System 

The configuration under consideration consisted of two Cyber 173 sys- 
tems with private memories and disk subsystems, plus a set of shared 
disks supporting a Federated File System (FFS). The Cyber systems 
were used both to process local workloads and to process FFS requests 
from remote sites. The purpose of the study was to assess the impact of 
an expected growth in the batch components of the systems’ workloads. 
Figure 7.1 shows the model that was employed. 

D-D-- 

10 
D-D-- 

13 

D-D- 

D-D- 
CPUS Controllers Disks 

Figure 7.1 - The Multiprocessing System Model 

1 FFS 

Measurements obtained from software monitors were used to 
parameterize the model. Service demands were calculated for five work- 
load components: system A interactive, system A batch, system B 
interactive, system B batch, and FFS accesses by remote systems. All 
workload components initially were represented using transaction classes, 
with the FFS arrivals split evenly between systems A and B. An attempt 
at validating this model showed reasonably accurate throughputs and utili- 
zations, but poor estimates for queue lengths and response times. It was 
observed that the model projected that on average thirteen jobs would be 
active simultaneously in each system. However, it was known that 
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system limitations permitted a maximum of five memory resident jobs. 
Because of this, the batch and interactive workload components of each 
system were converted to classes of batch type in the model, with work- 
load intensities corresponding to the measured multiprogramming levels. 
This change resulted in nearly identical throughputs and utilizations and 
improved device residence time estimates, and so was adopted as the 
“validated” model. (This study points out the possible danger in using 
simple models with transaction classes when studying systems that have 
memory constraints. A more satisfactory model for memory constrained 
systems is presented in Chapter 9.) 

The increase in the batch workloads was represented by increasing the 
workload intensities of the corresponding classes in the model, with all 
other parameters remaining unchanged. These were adjusted so that the 
estimated model throughput of batch jobs matched the anticipated offered 
workload. Response time estimates from this model were obtained as 
indications of the ability of the systems to handle the increased workload. 
It was projected that the systems would be able to handle the maximum 
expected batch volumes and still provide adequate interactive and FFS 
response times. 

7.4. Solution Techniques 

The solution techniques for multiple class models yield values for per- 
formance measures such as utilization, throughput, response time, and 
queue length, for each individual customer class. These techniques are 
natural extensions of the single class solution techniques. As in the sin- 
gle class case, the details of the solution technique depend on the types of 
the workloads (open or closed). This dictates the organization of our dis- 
cussion 

7.4.1. Open Model Solution Technique 

Let C be the number of classes in the model. Each class c is an open 
class with arrival rate OX,. 
x - (Xl ) x2 ) 1.. 

We denote the vector of- arrival rates -by 
, A,>. Because the throughputs of the classes in open 

models are part of the input specification, the solution technique for these 
models is quite simple. We list below the formulae to calculate perfor- 
mance measures of interest. 
l processing capacity 

A system is said to have sufficient capacity to process a given offered 
load x if it is capable of doing so when subjected to the workload over 
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a long period of time. For multiple class models, sufficient capacity 
exists if the following inequality is satisfied: 

This simply ensures that no service center is saturated as a result of 
the combined loads of all the classes. In the derivations that follow, 
we will assume that this inequality is satisfied. 

l throughput 

By the forced flow law the throughput of class c at center k as a func- 
tion of X is: 

l utilization 

From the utilization lawi 

UC,, (xl = Xc%, (T;)Sc,k = h,DC,k 

l residence time 

As with single class models, residence time is given by: 

DC,k (delay centers) 
R,,, (Xl = 

D c,k [I + ‘c,k (‘)I (queueing centers) 

where A,,k (x> is the average number of customers seen at center k by 
an arriving class c customer. The intuition behind this formula is 
similar to that for single class models. For delay centers, a job’s 
residence time consists entirely of its service demand there, v,,kS,,k. 
The explanation of the formula for queueing centers depends on the 
scheduling discipline used. For FCFS centers, the residence time is 
simply the sum of an arriving job’s own service time, Vc,kSc,k, and 
the service times of the jobs already present at the arrival instant, 

v,,k [Ac,k ~&,k], since at FCFS centers all classes must have the 
same service time at each visit. For PS centers, the residence time is 
the basic service requirement, V, kSc,k, “inflated” by a factor 
representing the service rate degradation due to other jobs competing 
in the same queue, 1 + A, kc>. For LCFS centers the equation has 
no simple intuitive explanation, but nonetheless is valid. 
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An implication of the assumptions made in constructing separable net- 
works is that the queue length seen on average by an arriving custo- 
mer must be equal to the time averaged queue length. Thus, for 
queueing centers : 

Rc,k c;> = Dc,k [ 1+ Qk (r;)] 

where Qk G) is the time averaged queue length at center k (the sum 
over all classes). Applying Little’s law: 

Notice now that the right hand side of the above equation depends on 
the particular class c only for the basic service demand Dc,k. Thus, 
&.k G) 

Rj,k (T;> 
must equal Q k D! k 

r.’ @Vh2 Rj,k c> = D Rc,k G>. Substi- 
,‘,A e.k 

tuting into the equation above and re-writing, we have: 

&,k <‘i;> = 
D e,k 

l-2 q&c;> 
(queueing centers) 

j=l 

l queue length 

Applying Little’s law to the residence time equation above, the queue 
length of class c at center k, Qcc.k ($, is: 

Qcc,k (x) = XcRc,k (x) 

I UC,, cr;, (delay centers) 

= 

I 

u,%k c) 

l- 2 q,, G;> 
(queueing centers) 

j=l 

l system response time 

The response time for a class c customer, R, <?d, is the sum of its 
residence times at all devices: 

R, G:> = 2 Rc,k 6) 
k=l 
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l average number in system 

The average number of class c customers in system can be calculated 
using Little’s law, or by summing the class c queue lengths at all 
centers : 

These formulae are summarized as Algorithm 7.1. 

prOCeSSing capacity : m;x 

throughput : XC <r;> = X, 

utilization : UC>, c> = kcDc,k 

D 

< 1 

residence time : Rc,k <r;> = 
c>k (delay) 

D c,k 

1 - &&i) 
(queueing) 

j=l 

quezle length : !& <r;> = h&k c;> 

&>k c) 
(delay) 

= 

uc,k G) 

1 - 2 q,k 6) 
(queueing) 

j=l 

system response time : R, cr;> = 3 Rc,k Gi;> 
k=l 

average number in system : Qc (xl = h,R, (r;> = 2 Q,,k <s;> 
k=l 

Algorithm 7.1 - Open Model Solution Technique 

Open Model Example 

Figure 7.2 shows a simple open model with two customer classes and 
two service centers, and illustrates the calculation of various performance 
measures. (All times are in seconds.) 
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Model Inputs: 

V A,CP(I = lo v,,D;sk = 9 h,CPU = 5 VB,Disk = 4 

&,CP, = l/10 SA,Disk = l/3 sB,CPU = 2/5 sB,Disk = 1 

D - 1 A,CPlJ - DA,Disk = 3 DB,CPU = 2 DB,D,sk = 4 
hA = 3119 jobslsec. hB = 2119 jobs/se& 

Model Structure: Model Structure: 

Arrivals Arrivals A A 
i 

CPU Disk CPU 

Departures Departures 

Selected Model Outputs: 

xA,CP”c) = AA vA,CPIJ = 6 X 10 = 1.58 jobs/set. 

uA,CPUG) = ~DA,CPU = +x 1 = .158 

RA,CPu6;) = DA~cpu 1 

I- 2 q.cp,m 
- = 1.58 sets. 

= 12119 

j=A 

QA.CPLI~) = 
uA,CPU~) = 3/19 

l- $ v,,CPLm 

= .25 jobs 

j=A 

RAG) = RA,cpuCd + RA,Dj& (r;> = $$ + T E 30.08 sets. 

Figure 7.2 - Open Model Example 
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7.4.2. Closed Model Solution Techniques 

A closed, multiple class model consists of C classes, each of which has 
a fixed population. We denote the workload intensity by 
TV- (N t , . . . , NC), where N, is the class c population size. Because the 
throughputs of closed classes are not provided as inputs, obtaining solu- 
tions for closed models is somewhat more complicated than for open 
models. The solution technique used is an extension of the single class 
mean value analysis (MVA) algorithm. Like its single class counterpart, 
multiple class MVA relies on three key equations: 
l For each class, Little’s law applied to the queueing network as a whole 

l For each class, Little’s law applied to the service centers individually 

It also is useful to consider the total queue length at center k: 

0 For each class, the service center residence time equations 

(delay centers) 

(queueing centers) 
(7.3) 

where &,k 6% iS the ar rival instant queue length at center k seen by 
an arriving class c customer. 

We note that performance measures can be computed using the above 
equations once the A,,, 6% are known. 

As with single class models, there are two approaches to the evalua- 
tion of closed models, exact and approximate. (We emphasize again that 
the word “exact” refers to how the solution relates to the model, not 
how the solution of the model relates to the system being modelled.) As 
with the single class MVA algorithms, the two methods differ in how the 
arrival instant queue lengths are computed. 
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7.4.2.1. Exact Solution Technique 

To obtain an exa_ct solution of a closed model, one must compute the 
values of the A,,k(N) exactly. Given these values, equations (7.1)-(7.3) 
can be applied to compute the full solution of the model. The key to the 
exact MVA solution technique is the multiple class generalization of the 
relationship used in the single class case: 

(7.4) 

where NT is population 8 with one class c customer removed. Intui- 
tively, the queue length seen upon arrival to a center is equal to the time 
averaged queue length at the center with the arriving customer removed 
from the network. 

Beginning from the trivial solution of the network with the empty 
population 6 (Qk (8) = 0 for all centers k), equation (7.4) can be used, 
along with equations (7.1)-(7.31, to construct iteratively the solutions for 
increasing populations, culminating in performance measures for the 
population of interest, R. Note that in general the solution for each 
population 3 requires as input C solutions, one for each population 
n-l, ) c = 1 ) .*. ) C. Figure 7.3 illustrates this by showing the pre- 
cedence relations of the solutions required to evaluate a network with 3 
class A customers and 2 class B customers: the solution of the empty 
network is required to compute solutions with populations consisting of a 
single customer, (lA,OB) and (OA,lB), which then can be used to com- 
pute solutions for populations with two customers, etc. As a result of 
these complex dependencies, the time and space requirements of the 
multiple class algorithm are significantly greater than those of the single 
class algorithm. They are proportional to: 

time: CK fj(ili,+l) arithmetic operations 
c=l 

space: K fj W,+l) storage locations 

where c,,, is the index of the class with the largest population. A 
significant implication of these time and space requirements is that it can 
be impractical to compute the exact solution of networks with more than 
a few customer classes. For example, the solution of a network with 10 
centers and 5 classes of 10 customers each requires more than 8,000,OOO 
arithmetic operations and 145,000 storage locations. (In contrast, a single 
class model with 10 centers and 50 customers requires roughly 500 arith- 
metic operations and 10 storage locations.) This is the motivation for the 
approximate solution technique to be described in the next section. 
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(3A, 2B) 

1-L 
(3A, 1B) @A, ‘N 

(3-4, OB) @A, 1B) (IA, ‘X0 

l/\/l 
W, OB) (IA, W (0.4, 2% 

(IA, OB) WA, 1B) 

(OA, W 

Figure 7.3 - Precedence of Intermediate Solutions 
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for k-l to K do Qk @) - 0 

for ~-1 to 2 iV, do 
c=l 

for each feasible population 7i ES (n, , . . . , nc) with n total 
customers do 

begin 
for c-1 to C do 

for k-l to K do 

D, (delay) 
R c,k - 

,.,c + &(n-l,.)] (queueing) 

for c-1 to C do X, - nc 

zc + 2 Rc,k 
k=l 

for k-l to K do Qk (Ti) - 2 X,R,,k 
c=l 

end 

Algorithm 7.2 - Exact MVA Solution Technique (Closed Models) 
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The exact MVA solution technique appears as Algorithm 7.2. When 
this algorithm terminates, the values of Rc,k, x,, and Qk (all for popula- 
tion %‘> are available immediately. Other model outputs are obtained by 
using Little’s law. Here is a summary: 

class c system throughput: 4 
class c system response time: NJ& - Z, 
average number of class c in system: NC - X, Z, 
class c throughput at device k: xc v,.k 

class c utilization of device k: xc Dc,k 

class c queue length at device k: X,Rc.k 
class c residence time at device k: R c.k 

Closed Model Example (Exact Solution) 

Table 7.3 shows the computation required by the MVA solution of a 
closed model corresponding to the open model of Figure 7.2. The open 
classes have been replaced by batch classes, each with one customer. 
Other parameter values are the same. 

population vectors 
(0~,0B) (iA,OB) (OA,IB) UA,~B) 

RA,CPU 
R A.Disk 

RB,CPU 
R B . Disk 

xA 

XB 

QA.CPU 
QA ~ Disk 
QB,CPU 

f&Disk 

Table 7.3 - Exact MVA Computation 

7.4.2.2. Approximate Solution Technique 

Because the exact solution technique can require excessive time and 
space for large numbers of classes, the approximate solution technique 
often is the only one that can be used in practice. Moreover, since the 
approximate technique is quite accurate, it is useful as a general tech- 
nique, even for networks that could be solved exactly. 



1.4. Solution Techniques 143 

The multiple class approximate solution technique is a straightforward 
extension of the single class approximation. Equations (7.1)- (7.3) are 
employed, but the arrival instant queue lengths are estimated iteratively. 
The estimates are obtained based on the time averaged queue lengths at 
the service centers with the full customer population. Thus, the approxi- 
mate solution technique does not require that one first compute solutions 
for all populations between the zero population and the full population, 
but instead iterates at the full population. An initial guess for time aver- 
aged queue lengths is made to start the iteration. The approximating 
function is applied to this guess, and the resulting approximate arrival 
instant queue lengths are used in equation (7.3). Applications of equa- 
tions (7.2) and (7.1) result in new estimates for time averaged queue 
lengths, which then can be used to begin the next step of the iteration. 
The iteration continues until successive estimates of time averaged queue 
lengths are sufficiently close. The approximate solution technique is sum- 
marized as Algorithm 7.3. 

1. set Qcc,k (8) NC - 7 for all c,k. 

2. Approximate Ac,k (8) by h, Ql,k 6% , . . . , 
[ 

!&k cm,], for all 
c,k. (The choice of h, is discussed in the text.) 

3. Apply equations (7.1)-(7.3) to compute a new set of Qc,,(@) 
for all c,k. 

4. If the Q,,k (z> resulting from Step 3 do not agree to within 
some tolerance (e.g., 0.1%) with those used as inputs in Step 
2, return to Step 2 using the new Qcr.k CR>. 

Algorithm 7.3 - Approximate MVA Technique (Closed Models) 

The significant advantage of this method over the exact technique is 
that it iterates on solutions of the network with the full customer popula- 
tion @‘, rather than building up from the solution for the empty network. 
The approximation therefore requires much less storage than the exact 
technique, since it maintains the solution of the network for only one 
population (8). In particular, the storage requirement is proportional to 
the product of C and K. The savings in time are harder to quantify 
because of the iterative nature of the approximate algorithm, although 
empirically these savings are considerable. The number of operations 
required per iteration is proportional to the product of C and K. (In 
other words, the populations of the classes are not a consideration.) Less 
than two dozen iterations typically are required for convergence to less 
than a 0.1% change in queue lengths. The accuracy of the technique 
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typically is within a few percent of the exact solution for throughputs and 
utilizations, and within 10% for queue lengths and residence times. 

As noted, the approximate solution technique is built upon estimates 
for the arrival instant queue lengths at each device for each class that 
depend only on information obtained from the solution of the network 
with the full population, A particular estimate for the function h, that 
has been used successfully is: 

A,,#) = Qk(Nx) 

Qc,, CR)] 

- 

I 

N,-1 
= N, t&k (8) 

I 
+ 2 Qj,k (p) (7.5) 

j=i 
j#c 

Comparing equation (7.5) to the exact formula (7.41, it is evident that 
the assumption made in the approximation is that the removal of a custo- 
mer from the network does not affect the placement of customers in 
other classes, and reduces queue lengths in its own class in proportion to 
their original size. Equation (7.5) has worked well in practice. More 
sophisticated estimates also have been used, although these are somewhat 
more difficult to implement and require more machine resources, in 
terms of both time and space. 

An important benefit of the approximate technique is that non-integer 
multiprogramming levels easily are incorporated in the model. One sim- 
ply sets N, to the (non-integer) multiprogramming level and applies the 
approximation. No interpolation between separate integer solutions is 
required. 

Closed Model Example (Approximate Solution) 

Table 7.4 shows the intermediate and final values for the example 
given in Section 7.4.2.1 (Table 7.31, calculated using the approximate 
solution technique. The iteration was halted when the maximum change 
in all queue length estimates was less than ,001. 

7.4.3. Mixed Model Solution Technique 

Mixed queueing network models are those in which some classes are 
open and some are closed. Such models may be constructed, for 
instance, to model a mixed batch and transaction processing system. We 
denote the workload intensity vector of the entire model by 
7~ (N1 or XI , N2 or X1 , . . . , NC or XC>. Mixed models are evaluated 
using Algorithm 7.4. 
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teration class 
performance measure 

Q C,CPU &Disk xc Rc 

0 
A .500 ,500 
B .500 .500 

1 
A .250 ,750 .167 6.000 
B .333 .667 .111 9.000 

2 A .211 .790 .158 6.333 
B .263 .731 .105 9.500 

3 A .195 .805 ,154 6.474 
B .253 .747 .104 9.579 

4 A .193 .807 ,154 6.495 
B ,249 .I51 .104 9.610 

5 A .192 .808 .154 6.508 
B .248 .I52 ,104 9.614 

\ 
exact A .211 .789 ,158 6.333 

solution B .263 .731 .105 9.500 

Table 7.4 - Approximate MVA Computation 

An important aspect of queueing phenomena is illustrated by Step 2 of 
Algorithm 7.4. In that step, the performance measures of the closed 
classes of a mixed model are computed by creating a model that consists 
only of closed classes; the open classes have been eliminated. The effect 
of the open classes on closed class performance measures is represented 
by “inflating” the service demands of the closed classes at all devices. 
The “inflation factor” used is l- U[O],k, which is the percentage of time 
that the processor is not in use by the open classes. In essence, this fac- 
tor indicates the effective speed of the processor as seen by the closed 
classes, given that some of its time is allocated to other (in this case 
open) classes. For example, if a 3 MIPS (million instructions per second) 
CPU is utilized 33% by transactions constituting an open class in the 
model, it appears to be a 2 MIPS CPU to the other classes. Dividing all 
service demands by .67 to create the closed model of Step 2 simply 
reflects the fact that more processing time is required on the effectively 
slower processor. This technique of inflating service times, which often is 
referred to as load concealment, will be used repeatedly in later chapters to 
reduce the complexity of models by eliminating customer classes while 
still incorporating their effects on performance. 
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Let { 0) be the set of open classes and {C) the set of closed 
classes. 

1. For each center k, obtain its utilization by each open class: 

u,,,(n = h,D,,, c E {oj 

and its total utilization by all open classes: 

u[O,.k(fl = 2 bD,,k 
c E IO\ 

This simply is an application of the forced flow law and the 
utilization law to each open class. 

2. Solve the closed model consisting of the K centers and the 
closed customer classes (but no open classes). The service 
demand DC’, k of each class c E (C} at each center k in the 
closed model is set to: 

D” 
D 

r,k = 
c,k 

I- U{o),k (3 
c E {cl 

where Dc9k is the service demand of class c at center k in the 
original mixed model. The throughputs, queue lengths, and 
residence times obtained from the solution of this model are 
the performance measures for the corresponding closed classes 
in the mixed model. Utilizations can be computed by applying 
the utilization law to the original set of service demands Dc,k. 

3. Residence times and queue lengths for the open classes can be 
computed using the performance measures of the closed 
classes: 

&k(f) = ~,R,,k(~ c E K4 

where QIC),k (7) is the total queue length of all closed classes 
at center k obtained from the solution of the closed model in 
Step 2. 

Algorithm 7.4 - Exact MVA Solution Technique (Mixed Models) 
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Mixed Model Example 

Figure 7.4 shows a mixed model with four classes and two centers. 
Classes A and B are open, while classes C and D are closed. As shown 
in the figure, the solution of the model is obtained in three steps 
corresponding to those of Algorithm 7.4. 

7.5. Theoretical Foundations 

As with single class models, certain assumptions about the behavior of 
a model are necessary to the mathematical proof that the solution 
obtained by the MVA procedure gives the exact performance measures 
for that model. With only one exception, the assumptions required in the 
multiple class case are straightforward extensions of those required in the 
single class case: 
l service center flow balance - The number of arrivals of each class at 

each center is equal to the number of completions of that class there. 
l one step behavior - Only a single customer can move (arrive to or 

depart from a service center) at a time. 
l routing homogeneity - Given a more detailed view of customer 

behavior that includes the routing patterns of customers, routing 
homogeneity is satisfied if the proportion of time that a customer of 
class c leaving center j proceeds directly to center k depends only on 
c, j, and k, and is independent of the number of customers or their 
classes currently at any of the centers, for all c, j, and k. 

l device homogeneity - This is the one assumption whose extension 
from the single class case is less than straightforward. In the single 
class case, we allowed the rate of completions of jobs from a center to 
vary in an arbitrary manner with the number of jobs at that center 
(although the rate could not otherwise be dependent on the number 
or placement of customers within the network). In the multiple class 
case, we do not allow completely arbitrary variation in completion rate 
as a function of population. Specifically, let n be the total number of 
customers at center k, n, be the number of class c customers there, 
and pu,,k (n,n,> be the completion rate of class c customers at center k 
with those queue lengths. Device homogeneity is satisfied when: 

for all c and k, where ak (n> is a positive constant for fixed k and II. 
This assumption will be discussed further in Chapter 8. 
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Model Inputs: 

D A,CPU = 114 DB.CPU = 112 DC,CPU = 112 DD.CPU = 1 

D A, Disk = l/6 DB.Disk = 1 Dc,msk = 1 D D,Disk = 413 

h/f = 1 hB = 1/2 NC = 1 ND = I 

Model Structure: 
Departures 

14 i. 

Class C 

Class D 

Class B r 
/I ; 

Class A 
f 

m CD 
CPU Disk 

Evaluation: 
1. Compute the total utilization of the devices by the open classes: 

‘%),c~r/(~ = ~ADA,CPU + ~BDB,CPU = ~5 

U(0).Disk(n = iADA,Disk + hBDB,Disk = .667 

2. Solve the closed model obtained by deleting the open classes and 
inflating the service demands of the closed classes: 

5 
D&pu = L = 

l-.5 
1 D;,CPU = 

1 
-iry=2 

D” 
1 

C.Disk = l-.667 = 
3 D” 

1.333 
D,Disk = l-.667 = 

4 

This model is equivalent to the closed model solved in the example of 
Section 7.4.2, so the same performance measures will result, e.g., 
CPU queue lengths are ,211 and .789 for classes C and D. 

3. Using the queue lengths of the closed classes, compute the perfor- 
mance measures of the open classes. For example: 

R A.CPU = 
.25 (l+l.O) = 1 o R .5 0+1.01 

B,CPU 
= = 

l-.5 
* 2 

l--.5 * 
0 

Figure 7.4 - Example Mixed Network 
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l homogeneous external arrivals - The rate of arrival of customers of 
each class is independent of the number and class of the customers 
currently in the system or the placement of those customers. 

While these assumptions are sufficient for the model to be separable (and 
thus to be efficiently evaluated), the solution techniques that have been 
presented so far require one additional restriction: 
l service time homogeneity - The completion rate of class c customers at 

center k times the ratio of the total number of customers at k to the 
number of class c customers at k is constant for all fixed c and k 
(i.e., when a,(n) = 1 for all k,n). 

This last assumption ensures that all service centers are load independent, 
which means that the rate of service is independent of the current state of 
the queue at the device. Somewhat more complicated models can be 
constructed using load dependent service centers, whose service rates 
depend on their queue lengths. These will be discussed in Chapter 8. 

7.6. Summary 

In this chapter we have focused on multiple class, separable queueing 
network models. We are interested in separable networks because they 
are reasonably accurate models of computer systems and can be solved 
efficiently; more general models require excessively large amounts of 
time and space. Exact solutions of separable models with a few customer 
classes, and accurate approximate solutions of models with many custo- 
mer classes, can be obtained with modest machine resources. 

The major advantage of multiple class models over single class models 
is also the main drawback. By identifying distinct workload components, 
output performance measures for each can be given separately. At the 
same time, input parameter values are required for each’ individual class. 
This typically requires considerable additional effort over that for a single 
class model, as measurement tools often do not provide sufficient infor- 
mation about resource consumption by classes. 

While certain restrictive assumptions are required to construct separ- 
able models, it often is the case that separable models accurately project 
the behavior of complex computer systems despite these restrictions. In 
cases where aspects of a computer system important to its performance 
cannot be represented directly, variations on simple separable models 
must be used. These variations are the subject of Part III. 
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7.7, References 

Almost all work with multiple class models has been conducted in the 
stochastic setting. The work of Baskett et al. 119751, which describes 
separable models for open, closed, and mixed workloads, is probably the 
most referenced paper in the area of queueing network models. Chandy 
et al. [19771 describe the stochastic properties required for a network to 
be separable. 

The case studies in Sections 7.3.1, 7.3.2, and 7.3.3 were reported by 
Denning and Buzen [19781, Sanguinetti and Billington [19801, and 
Lindzey and Browne [19791, respectively. 
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7.8. Exercises 

1. What is the principal advantage of multiple class models over single 
class models? The principal disadvantage? 
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2. Evaluate the open model example of Figure 7.2 by hand with the fol- 
lowing independent changes: 
a. Both arrival rates halved. 
b. DA,cPL/ doubled. 

3. Extend the solution of the closed network shown in Table 7.3 to the 
case of two class A and two class B customers. Check your results 
against those obtained using the multiple class, exact MVA implemen- 
tation in Chapter 19. 

4. Construct an “equivalent” single class model to the model of Figure 
7.2. Compare the performance measures of the single class model to 
the aggregate measures of the multiple class model. 

5. In evaluating a model with a one transaction and one batch class, the 
solution technique involves the removal of the transaction class and 
the “service time inflation” of the batch class. This procedure yields 
an exact solution. 
Investigate the use of service time inflation to remove a batch class 
from a model. Consider a model with two batch classes and five 
centers. Class A has service demands 1, 2, 2, 2, 2 at the five centers, 
while class B has service demands 3, 1, 1, 1, 1. 
a. Use the software in Chapter 19 to obtain solutions to the model 

with populations (2 A , 2 B), (2 A , 8 B), and (2 A , 16 B). 

b. For each population H, construct an approximate model with 
respect to class A by removing the class B customers from the 
model, and inflating the class A service demand at each center k 
by 1 - Us,, (@i>. Compare the results for response time and sys- 
tem throughput with those obtained in (a). How do you derive 
sensible utilizations for class A from this approximate model? 

c. Give an intuitive explanation for the differences observed using the 
two class model of (a) and the single class approximation of (b). 

6. Implement the approximate MVA solution technique (Algorithm 7.3) 
for models with two closed (batch or terminal) classes. 

7. Argue that 0 ( KCfi (N, f 1) > is the correct expression for the time 
c=l 

complexity of Algorithm 7.2. 
8. Argue that 0 ( KC > is the correct expression for the time complex- 

ity of Algorithm 7.3 (assuming that the number of iterations does not 
depend upon K or C>. 


