
Chapter 11

Processors

11.1. Introduction

Thus far we have considered only single CPU systems. We also have
ignored the effects of the scheduling discipline that determines the order
in which customers are served. In this chapter we will consider the
representation of multiprocessors and scheduling disciplines.

In the realm of multiprocessor systems, an important distinction exists
between loosely-coupled multiprocessors and tightly-coupled multiprocessors.
In a loosely-coupled multiprocessor, the processors interact primarily
through shared direct access storage devices. Since the processors operate
essentially independently, they can be represented as separate service
centers in a queueing network model, with different customer classes
used to distinguish I/O operations originating from different CPUs. This
approach was discussed in Chapter 10. In a tightly-coupled multiproces-
sor, the processors share main memory, and typically are under the con-
trol of a single operating system. Special techniques are required in
building queueing network models of tightly-coupled multiprocessors;
these techniques are the subject of Section 11.2.

Scheduling disciplines were ignored in the case of single class models
(Chapter 6) because of two assumptions made there: that customers are
indistinguishable (or “statistically identical”) in their service demands,
and that the expected remaining service time of a customer in service at a
center does not depend on how much service the customer already has
received. (The implication of this second assumption is that the expected
time until the next customer completion at any particular center is not
changed by removing one customer from service in order to serve
another.) Given these two assumptions, system performance measures
do not depend on the scheduling discipline used, as long as the processor
is not idle when there is work to be done. The second assumption is
violated, however, if the bursts of service required by a customer on suc-
cessive visits to a processor vary widely in duration. Section 11.6
discusses an approach to modelling first-come-first-served (FCFS)
scheduling when service bursts are highly variable.

253

254 Representing Specific Subsystems: Processors

In multiple class models, the situation is more complex. In Chapter 7
the following restrictions were placed on the scheduling disciplines used
at queueing centers:
l The scheduling discipline cannot discriminate among customers based

on class identity.
l If the scheduling discipline is FCFS, then the average time required to

complete a customer in service must be independent not only of the
amount of service it has acquired, but also of its class.

l If the scheduling discipline is not FCFS, then it must be one of a spe-
cial group of disciplines that includes processor sharing (PS) and last
come first served (LCFS). One important property of this group of
disciplines is that each customer receives service immediately upon
arrival at a center.
Under these restrictions, the performance estimates of a multiple class

model are identical regardless of which of FCFS, PS, and LCFS schedul-
ing is used at any center. Unfortunately, these scheduling disciplines do
not adequately represent those used in many operating systems. In par-
ticular, class identity and the amount of acquired service often are used in
making scheduling decisions. Separable models of such systems may not
accurately reflect the relative performance of various workload com-
ponents (classes). In Section 11.3 we suggest a way to model systems in
which scheduling is done according to strict priorities among classes. In
Section 11.4 we consider the more difficult case in which priorities are not
based purely on class identity. Finally, in Section 11.5 we treat the case
of FCFS scheduling when the service requirement per visit to the FCFS
center differs from class to class.

11.2. Tightly-Coupled Multiprocessors

Tightly-coupled multiprocessor systems are in widespread use. These
systems have two or more processors cooperating to complete work from
a single shared queue.

It is easiest to view a tightly-coupled multiprocessor as a single service
center, since in the system there is a single queue of jobs for all proces-
sors. The service rate of this center (i.e., the number of instructions
delivered per time unit) is ideally the sum of the service rates of the indi-
vidual processors. Consequently, the straightforward approach to model-
ling n tightly-coupled processors is to create a single center representing
them in the model, and to divide the service demands of all customers at
that center by n.

11.2. Tightly-Coupled Multiprocessors 255

This technique provides a simple, first-cut modelling approach, but it
ignores two important aspects of multiprocessors. The first aspect is that
the total service rate of n processors can be significantly less than n times
the rate of a single processor because of competition for software locks
(such as those controlling access to the shared queue of jobs) and
interference in accessing main memory. Thus, we need a more realistic
assessment of the total processing power actually delivered by the mul-
tiprocessor. The second aspect is that the effective service rate of a mul-
tiprocessor is not constant, but depends on the number of jobs queued at
the center. Consider a four processor system. Ideally, if four (or more>
jobs desire service at the center, all four processors can be kept busy, and
the effective service rate of the center is its maximum rate. However, if
less than four jobs are queued at the center, some of the processors will
be idle, and so the effective service rate will be reduced correspondingly.

The first of these problems, that of accounting for the interference of
the processors with one another in estimating effective service rates, is
best solved by using the results of benchmark studies of the
configurations under consideration, such as those typically provided by
trade journals and vendors. For example, such figures might indicate that
an IBM 3033MP (a tightly-coupled dual processor) is roughly 1.7 times as
powerful as a single 3033 processor when running a mixed TSO and batch
workload under the MVS operating system. Since the power of a mul-
tiprocessor can vary significantly depending on the operating system run
on it and the nature of the workload to be processed, standard estimates
are not likely to be highly reliable. As in all cases where the input param-
eters are not known with high confidence, it is good practice to evaluate
the model for several effective service rates representing a reasonable
range, thereby assessing the sensitivity of the results to the parameter
whose value is in question.

The second of these problems, that of accounting for variability in the
effective service rate of the multiprocessor as a function of the number of
jobs needing processor service, is solved easily using a flow equivalent
service center. Figure 11.1 graphs effective service rate as a function of
the queue length for a four processor system. Service rates increase with
queue length until all four processors are busy, after which increasing the
number of jobs contending for the processors does not result in any
increase in effective service rate. The dashed line illustrates the ideal
growth in service rate, and the solid curve represents the effect of conten-
tion. The flow equivalent service center used to represent the multipro-
cessor is parameterized by giving the effective service rates for each possi-
ble customer population that could be seen there. This set of population
and service rate pairs is essentially a tabular representation of the curve
shown in Figure 11.1.

256 Representing Specific Subsystems: Processors

Ideal

Processor queue length

Figure 11.1 - Service Rate Function of a Four Processor System

11.3. Priority Scheduling Disciplines

In most current operating systems, processor scheduling disciplines are
based on priorities. These priorities may be static (giving consistent
preference to one workload component over another) or they may be
dynamic (reflecting changing estimates of workload characteristics).
Priority scheduling disciplines are not compatible with separable models.
Since these disciplines can have a substantial effect on performance, it is
important to be able to represent them. A number of approaches have
been devised.

One approach was described as an example in Chapter 8. First, the
I/O subsystem, which by itself was separable, was analyzed in isolation,
and a multiple class flow equivalent service center was constructed.
Then, a high-level model was defined that consisted of two centers: this
FESC, and the priority scheduled CPU. Finally, the global balance tech-
nique was used to evaluate this model. This approach is quite accurate.
Its drawbacks are, first, that it requires special purpose global balance
software, and second, that because of the complexity of a global balance
analysis it becomes infeasible for models with more than a few classes or
customers, and for models with multiple priority scheduled centers.

Because of the difficulties in using the technique described in the last
paragraph, another approach is required. The one we present here is

11.3. Priority Scheduling Disciplines 257

based on the mean value analysis technique. In practice, it has been
found to be acceptably accurate, and is applicable even to very large
models. Consider a model with C customer classes, each of which has a
distinct priority at the CPU. (The generalization to several classes with
equal priorities is straightforward.) For notational simplicity, assume that
the classes are ordered so that higher numbered classes have priority over
lower numbered classes. We develop an approximation to the residence
time of class c customers at the CPU by considering successively the
effects of jobs with lower, equal, and higher priorities than class c:
l lower priority customers (classes 1 through c - 1)

Because class c has preemptive priority over classes 1 through c - 1,
customers in these classes do not interfere with class c customers.
Considering only these lower priority classes we obtain the following
approximation to the CPU residence time of class c:

R ~,CPU~ = Q,CPU

l equal priority customers (class c)
Each class c customer arriving at the CPU must queue behind any
other class c customers~already there. Class c customers that arrive
subsequently do not cause further delay. Accounting for both lower
and equal priority classes we have:

R c,cp(im = Q,CPU [l + Qc,cpu (IT)]
where IT is the vector of workload intensities with one class c cus-
tomer removed if class c is not transaction type (i.e., if class c is
closed), and is the full workload intensity vector otherwise (i.e., if
class c is open).

l higher priority customers (classes c + 1 through C)
An arriving class c customer must wait for all higher priority custo-
mers already in the queue. It also must wait for all higher priority
customers that arrive while it is at the CPU. Because of this complica-
tion, it is not possible to estimate accurately the number of higher
priority customers for which the class c customer must wait. Instead,
we consider the servicing of higher priority customers to be “break-
downs” of the processor with respect to delivering service to the class
c customers. Because of these breakdowns, more than DC,cpU time
units are required for the class c customer in service to accumulate
D c.cpu time units of service. In particular, since the CPU is busy

q,cp,(n of the time with higher priority customers, it takes
j=c+l

D c,CPU
c- time units for the currently selected class c

1 - 2 q,,,,(f)

j=c+l

258 Representing Specific Subsystems: Processors

customer to complete. (For instance, once service is begun, it takes
twice as long to complete on a processor 50% busy with higher priority
customers than on a FCFS processor.) The final approximation for
the residence time of class c, accounting for lower, equal, and higher
priority classes, is thus:

D
&,cpu (7) =

r,CPU [I + Qc,c~u(Z-l,.l]

1 - 2 u,,,m
,i=r+1

A solution technique could be constructed from the

(11.1)

mean value
analysis technique by substituting equation (11.1) for the standard
residence time equation in Algorithms 7.1 or 7.2. However, rather than
further complicating these basic algorithms each time we extend our
modelling techniques, we prefer to build upon them, using the basic algo-
rithms as subroutines in our extended algorithms. (We return to this
concept of layered implementation in Chapter 16.1

In the case of priority scheduling, we can obtain the same results as
we would obtain by replacing the residence time equation, by using the
shadow CPU technique. This technique gets its name from the fact that
the single priority scheduled CPU in the actual system is represented in
the model by C FCFS service centers, each visited by one class. Let
CPU,, denote the c-th shadow CPU, which is vi$ted only by class c. The

service demand at CPU, is set equal to r.CPU
/- . It should

i=c+ 1
be apparent that the residence time of class c at its shadow CPU is given
by equation (11 .l>: the service demand inflation caused by higher prior-
ity classes is captured in the redefinition of the service demand at the sha-
dow CPU, and the queueing for customers of class c but not other classes
is a consequence of the FCFS scheduling used at the shadow CPU, plus
the fact that only class c visits there. Thus, we have created a queueing
network amenable to the analysis techniques of Chapter 7 that represents
the effects of priority scheduling.

Algorithm 11.1 describes the shadow CPU technique more precisely.
Because the CPU utilizations of the various classes are not known before-
hand, it is necessary to employ iteration. Initially, the throughput of each
class is estimated to be zero. This corresponds to estimating that the
CPU utilization of each class is zero. The model is evaluated, yielding an
improved estimate for the throughput, and thus the CPU utilization, of
each class. New model inputs are calculated based on these improved
estimates. The iteration continues until successive estimates of the
throughput of each class are sufficiently close. Extension of Algorithm

11.3. Priority Scheduling Disciplines 259

1. Given a K center model with a priority scheduled CPU,
create ma Kf C-l center model by replacing the original
CPU center with C FCFS shadow CPU centers, each of
which will be visited by only one class. Assume that the
classes are ordered so that higher numbered classes have
priority over lower numbered classes. Initially, assume that
the throughput of each class c, Xc,, is equal to zero.

2. Iterate as follows:
2.1. Estimate the CPU utilization of each class c as:

U c,CPU = ~cQ,CPU

where DC,Cpu is the “real” CPU demand of class c.
2.2. Set the service demand of each class c at the j-th sha-

dow CPU to:

D c,CPU

D C,CPUj = (1 - $ 4,CPU
k=c+l

0

c=j

c#j

2.3. Evaluate the shadow CPU model using either the exact
or the approximate algorithms given in Chapter 7.

Repeat Step 2 until successive estimates of the X,. for each
class c are sufficiently close.

3. The tinal performance measures for the system as a whole
and for every center except the CPU are obtained directly
from the last iteration. At the CPU, the residence time of
each class, Rr,CPU, and the queue length of each class,
Q c,cpu, are obtained directly. The utilization of each class,
though, is obtained as UC,,, = XCDC,Cpu. (The utiliza-
tions reported for the C shadow CPUs are meaningless be-
cause of the way in which the service demands have been
inflated.)

Algorithm 11.1 - Priority Scheduling at the CPU

11. L to the case in which several centers are priority scheduled is straight-
forward.

Table 11.1 shows the results of applying Algorithm 11.1 to a particular
example. We consider a system with four disks and a priority scheduled

260 Representing Specific Subsystems: Processors

Model Inputs:

NA = <varying> 2, = 10 NB = 6 z, = 0

center
CPU Disk 1 Disk 2 Disk 3 Disk 4

DA.k 4 2 2 2 2
DB,~ 40 2 4 6 8

(all times are in seconds)

Class A Response Time:

(all times are in seconds)

Table 11.1 - Priority Scheduling

CPU. There are two classes. Class A, which is of terminal type, has
priority over class B, which is of batch type.

To assess the value of Algorithm 11.1 we would like to know whether
its results are significantly better than those obtained by ignoring priority
scheduling (i.e., by assuming that processor sharing is used). Unfor-
tunately, we cannot determine exact performance measures for our exam-
ple. Even though it has only five centers and two classes, it is too large
to be analyzed using the global balance technique (described in Section
85.1). We have used simulation to obtain an estimate of the exact per-
formance measures. As indicated in Section 85.2, simulation has two
important drawbacks that make it less attractive than queueing network
modelling for computer system analysis. First, the probabilistic nature of
simulation causes the accuracy of its results to depend on the duration of
the simulation. (For the duration used here, and in Sections 11.5 and
11.6, the error in the estimates obtained should be taken to be 5 to
lo%.) Second, the computational expense of simulation is too great to
allow it to be used regularly.

In the table we show the response time experienced by class A users
for five different class A populations. The results obtained by ignoring
the priority scheduling and applying mean value analysis directly are
labelled “MVA” in the table, the results obtained by using Algorithm

11 q 4. Variations on Priori@ Scheduling 261

11.1 are labelled “Algorithm ll.l”, and the results obtained via simula-
tion are labelled “simulation”.

Comparing the results of MVA and Algorithm 11.1 illustrates the
benefits of using Algorithm 11.1 rather than ignoring the priority schedul-
ing. Comparing the results of Algorithm 11.1 and simulation illustrates
the accuracy of Algorithm 11.1 for the specific example under considera-
tion. Algorithm 11.1 will not always exhibit such close agreement to the
results of simulation. Fortunately, though, the instances in which the
algorithm may be unreliable are easy to identify. In most systems, prior-
ity scheduling is used to ensure that customers requiring short bursts of
CPU service are not delayed excessively by customers requiring long
bursts of CPU service. (Note that processor sharing is one step in this
direction relative to FCFS scheduling, but that priority scheduling is one
step further.) The technique presented in this section is designed to work
well in this situation. It relies on the elongation of low priority service
demands to reflect interruptions by high priority customers. This elonga-
tion is appropriate when service bursts of high priority customers are very
short and very frequent relative to those of the low priority customers.
However, whenever low priority service burst lengths are not significantly
longer than high priority service burst lengths, the algorithm suggested in
this section must be used with caution.

11.4. Variations on Priority Scheduling

While many operating systems permit specification of absolute priori-
ties of the type discussed in the previous section, others support priorities
of other natures. Two types of non-absolute priorities can be described as
biased processor sharing and goal-oriented scheduling.

11.4.1. Biased Processor Sharing

Biased processor sharing describes a situation in which one class is
favored over another by giving it longer bursts (“quanta”) rather than by
excluding the other class entirely when a customer of the higher priority
class is present. Thus, a relative priority is associated with each class, and
each customer receives service at a rate proportional to the relative prior-
ity of its class. For example, if the relative priorities of classes A and B
are 2 and 1 respectively (a larger number indicating a higher priority),
then with one customer of each class competing for service, the class A
customer would progress at 2/3 the rate at which it would progress if
alone at the center. With two class A customers and one of class B, each
class A customer would progress at 2/5 of its full rate while the one class
D custome: would progress at l/5 of its full rate.

262 Representing Specific Subsystems: Processors

An evaluation technique for this type of scheduling can be obtained by
another modification of the residence time equation of the MVA algo-
rithm:

where rri is the relative priority of class ?. The quotient in parentheses is
simply the inverse of the rate at which an individual class c customer
receives service based on our expectation of the number of customers of
each class at the center.

11.4.2. Goal-Oriented Scheduling

Goal-oriented scheduling differs from biased processor sharing in that
dynamic scheduling priorities are used to ensure that each class attains
specified performance objectives. For example, interactive users may be
given general priority over a batch workload, subject to a constraint that
batch throughput must have a certain minimum value. Such dynamic
priorities are difficult to model in general, but creative use of transaction
classes is helpful in some cases. For example, in the case described
above, the model could initially give priority to the interactive class. If
the solution indicates that the batch class attains its throughput goal, then
no change to the model is needed. If the batch class fails to meet its
throughput goal, however, we can assume that the goal-oriented
scheduler would reduce the priority given to the interactive users enough
to ensure the specified batch throughput. This can be reflected in the
model by converting the batch workload to a transaction workload with its
arrival rate set to the specified minimum throughput. For transaction
classes, throughput is equal to arrival rate unless the system is saturated.
Thus, the batch class is assured of the performance that it would attain
under the goal-oriented scheduler, and the consequent degradation of ser-
vice to the interactive class is represented.

11.5. FCFS Scheduling with Class-Dependent Average
Service Times

If different classes have significantly different average service times per
visit CL?,,,,) at a FCFS center, our standard evaluation techniques from
Chapter 7 may not provide acceptable accuracy. This situation is handled
quite easily by another modification to the residence time equation of
these techniques. The original form of the residence time equation is:

11.6. FCFS Scheduling with High Variability in Service Times 263

Rc,k (3 = Dc,k [l + Qk (Z--1,.)] = v,,, [s,,: + SC,, Qk (I--1,.)]

Since all classes must have the same service time per visit at a FCFS
center (in a separable network), we can think of this equation as a shor-
tened form of:

Simply substituting non-identical S,,, into the above equation provides
an intuitively appealing evaluation technique for FCFS centers at which
different classes have different average service times per visit: each class
i customer found ahead of an arriving class c customer is multiplied by a
class i service time. With this small change to one equation of the stan-
dard MVA algorithm, substantially more accurate solutions are obtained
for models involving FCFS centers at which average service times differ
from class to class.

An example is shown in Table 11.2. We consider a system with four
disks and a CPU scheduled FCFS. There are two classes. Class A is of
terminal type and class B of batch type. In the table we show the
response time experienced by class A users for five different values of
class A service time per visit at the CPU. We obtain results in three
different ways: by ignoring the class-dependent average service times and
applying mean value analysis directly (“MVA” in the table), by using the
algorithm suggested in this section (“Section 11.5” in the table), and by
simulating the system (“simulation” in the table).

The results show that the effect of class-dependent average service
times can be pronounced, and that the algorithm suggested here yields
good results for the example under consideration.

11.6. FCFS Scheduling with High Variabilityin Service
Times

In the previous section we presented a solution technique for FCFS
centers where the average service times per visit differ among the custo-
mer classes. This technique was necessary because of the restrictions
required for a model to be separable (see Sections 7.2 and 7.51, and thus
amenable to analysis using the standard algorithms of Chapter 7. In this
section we present a technique that overcomes another restriction of
separable networks, that imposed by the service time homogeneity
assumption (see Section 7.5). This assumption states that the rate of
completion of customers from any service center does not depend on the
state of the model as a whole (i.e., the locations of the other customers).

264 Representing Specific Subsystems: Processors

Model Inputs:

NA = 10 z, = 10 NB = 6 z, = 0

center
CPU 1 Disk 1 / Disk 2 1 D lisk 3 1 Disk 4

sA9k <varying > 1 1 1 1
VA,, 8 2 2 2 2
%k 2 1 1 I 1
b,k 20 2 4 6 8

[all times are in seconds)

Class A Response Time:

~~

(all times are in seconds)

Table 11.2 - FCFS with Class-Dependent Average Service Times

In modelling most computer systems, any violation of this assumption
does not result in significant error. Therefore, it is only in unusual situa-
tions that the technique to be presented need be employed. (We
discourage superfluous use of the technique because it requires more
parameter values than the simpler separable models, and so the parame-
terization effort is increased.)

As a rule of thumb, we can expect separable models to perform satis-
factorily when the variability in service times per visit at each FCFS
center is moderate, that is, when the average and standard deviation of
service times are comparable. Centers for which the use of the technique
will yield a noticeable improvement in accuracy are characterized by hav-
ing most service bursts (service acquired in a single visit) be of compar-
able duration, with occasional bursts of much longer duration. As an
example, in a batch system the CPU service quantum might be set very
long to reduce context switch overhead; this could result in many short
service bursts during file access, followed by a single long period of com-
putation once the data has been acquired. In such a situation a separable
model would not capture the effect on performance of the occasional very
long service bursts, even if the average service time in the model was set
to the measured average of the system. The effect of these long bursts is

11.6. FCFS Scheduling with High Variability in Service Times 265

to increase the amount of queueing that occurs in the system. Thus, a
separable model will tend to give optimistic results when used in these
situations.

As in other cases, we suggest a solution technique based on modifying
the MVA residence time equation, then using the modified equation in
the basic MVA iteration. Residence time consists of service time plus
queueing time. Consider a class c customer arriving at service center k.
Service time per visit (S,,,) is an input parameter, and so presents no
problem. Since we are considering FCFS centers, queueing time is
required for all jobs already present at the center. The arriving job must
wait on average Si,k time units for each class i customer found in the
queue but not yet in service. Finally, the arriving customer must wait for
the customer currently in service to finish. We can summarize this as:

where rj,k is the average time until completion of a class j customer
found to be in service by a class c arrival at center k. The first term in
this equation represents the inherent service requirement of the class c
job. The second term approximates the total time spent waiting for cus-
tomers in the queue (the Qi,k (Ix) term) but not in service (thus the
- q,, (1-j term). Interpreting Uj,k (1x1 as the proportion of time
that an arriving class c customer finds a class j customer in service, the
final term approximates the time spent waiting for the customer in service
to complete.

This equation is the basis for an MVA-like analysis technique for
models containing FCFS centers with high service time variability. The
remaining problem is to estimate rj,k, which often is called the residual
service time of class j at center k. To do so, we assume that a class c job
is equally likely to arrive at any point during the class j service interval
(that is, class c arrivals occur at random with respect to class j service
intervals). Even with this simplification, a reasonable choice for rj,k is
not immediately apparent. IntUitiVdy, one might guess ‘j.,k = sj,k/2. In
fact, however, this is an extreme value (representing the smallest possible
residual service time) occurring only when the class j service times of all
visits to center k are exactly equal. Under our assumptions, the residual
service time is given by:

rj,k

where variance is the variance in the service times per visit of class j at

266 Representing Specific Subsystems:~ Processors

center k. Thus, the actual residual can be any number at least as large as
half the average service time (since it is possible for the variance to be
any non-negative value). As an example, suppose class j experienced ten
service bursts of length 1 for each burst of length 90. An arriving custo-
mer is then nine times as likely to arrive during the single long burst as
during any of the short bursts. Thus, the residual service time is
c.1) (5) + t.9) (45) = 41. In contrast, the average service time is
$! 1 + + 90 = 9.09. This surprising situation results from the fact

that a customer is much more likely to arrive during a long burst than a
short burst, even if many more bursts are short than long.

Table 11.3 presents an example of the use of this technique. We con-
sider a system with four disks and a CPU. There is a single class of ter-
minal type. In the table we show the response time experienced by users
for five different degrees of variability in CPU service times. We obtain
results in three different ways: by ignoring the high variability in CPU
service times and applying mean value analysis directly (“MVA” in the
table), by using the algorithm suggested in this section (“Section 11.6”
in the table), and by simulating the system (“simulation” in the table).

The results show that the effect on performance of service time varia-
bility becomes more severe as this variability increases. The approach
suggested in this section reflects the degradation in response time that
occurs with increasing variability.

We note that this technique can be used whether the center we are
considering has unusually high or low variance in service times per visit.
While service time distributions with low variance also can be trouble-
some at FCFS service centers, their potential impact on model accuracy is
more limited. Separable models tend to be slightly pessimistic for sys-
tems with low variance FCFS centers.

11.7. Summary

System configurations that include multiple processors or that use cer-
tain scheduling disciplines may require special techniques to obtain
sufficiently accurate models. Tightly-coupled multiprocessors provide ser-
vice at a total rate that depends on the number of jobs currently requiring
CPU service. The set of processors is best represented as a single flow
equivalent service center that provides service at a rate proportional to
the number of busy processors, less a factor to account for interference
among the processors. Loosely-coupled multiprocessors, on the other
hand, require no such special treatment since each processor serves a
separate job queue. Separate job classes can be used to distinguish jobs
from different processors when they use shared I/O devices.

11.7. Summary 267

Model Inputs:

N = 10 z = 10

~“T’
(all times are in seconds)

Response Time:

~~

(all times are in seconds)

Table 11.3 - FCFS with High Variability in Service Times

Many operating systems use scheduling disciplines that are based on
job class priorities, but priority scheduling is not compatible with separ-
able models. Consequently, to obtain a model that can be validated, it
may be necessary to employ a specialized technique for modelling priority
scheduling. We have described a technique based on replacing the prior-
ity CPU by C “shadow” CPUs, each one visited by just one class. The
service demand of each class at its shadow CPU is inflated to reflect the
impact of higher priority classes. In some situations a different technique
- based on hierarchical decomposition, a flow equivalent service center,
and global balance - also may be applicable. Both of these techniques
can be adapted to situations in which one, some, or all of the service
centers are scheduled by priority. When priorities among classes are not
absolute, it may be appropriate to model the discipline as biased processor
sharing or goal-oriented scheduling. Techniques for treating these discip-
lines have been suggested.

Finally, FCFS scheduling also requires special treatment under some
circumstances. If the average service requirement per visit to a center
differs from class to class, then the model is not separable. Once again, a
simple modification to the MVA algorithm produces good model solu-
tions. Similarly, if there is high variability in the length of service times
at each visit to a center, then FCFS scheduling cannot be accurately
represented in a separable model. The high variability can be captured by

268 Representing Specific Subsystems: Processors

adapting the MVA solution technique, and by making further assump-
tions that allow estimates for the residual service time of jobs found in
service by an arriving customer.

The techniques described in this chapter are useful for the specific cir-
cumstances in which they have been described. An equally important
reason for presenting them, however, is that they are indicative of the
approaches that must be creatively applied to achieve efficient and accu-
rate solutions to non-separable models.

11.8. References

Sauer and Chandy were the first to use flow equivalent service centers
and a global balance solution of a two center model to evaluate non-
separable models, including ones involving priority scheduling [Sauer &
Chandy 19751. They discuss other techniques for evaluating non-
separable models elsewhere [Chandy & Sauer 1978; Sauer & Chandy
19801.

Bard first demonstrated the flexibility of the basic MVA algorithm in
adapting to non-separable models, treating both priority models and
models in which different classes have distinct average service require-
ments per visit to an FCFS center [Bard 19791. Bard also has described a
modelling approach capable of treating the dynamic priority scheduling
used in IBM’s VM/370 operating system [Bard 19811.

The shadow CPU technique described in Section 11.3 was developed
by Sevcik [19771. His approach involved identifying separable models
that provide optimistic and pessimistic bounds on the performance of a
(non-separable) model with a priority center.

The MVA-based approach to modelling high service time variability
was proposed by Reiser and Lavenberg 119781. An alternative approach
is based on global balance and Cox’s method of stages representation [Cox
195.51. Cox demonstrated that arbitrary service time distributions can be
approximated as closely as desired by using a sufficient number of
exponentially distributed stages with probabilistic selection. Sevcik, Levy,
Tripathi, and Zahorjan describe three-parameter method of stages
representations for both high variability and low variability distributions
[Sevcik et al. 19771. With these three-parameter representations, it is
possible to match two characteristics (typically the mean and variance) of
an arbitrary distribution. Lazowska has shown that more accurate models
are obtained by matching the mean and some percentile (say the 90th)
than by matching the mean and variance [Lazowska 19771. Lazowska and
Addison provide a technique for determining a method of stages

11.8. References 269

representation that matches the mean and an arbitrary number of percen-
tiles of an arbitrary distribution [Lazowska & Addison 19791.

The simulation results reported in Tables 11.1, 11.2, and 11.3 were
obtained from IBM’s Research Queueing Package [Sauer et al. 19821.

[Bard 19791
Yonathan Bard. Some Extensions to Multiclass Queueing Network
Analysis. In M. Arato, A. Butrimenko, and E. Gelenbe (eds.), Perfor-
mance of Computer Systems. North-Holland, 1979.

[Bard 19811
Yonathan Bard. A Simple Approach to System Modelling. Perfor-
mance Evaluation 1,3 (November 1981>, 225-248.

[Chandy & Sauer 19781
K. Mani Chandy and Charles H. Sauer. Approximate Methods for
Analyzing Queueing Network Models of Computing Systems. Com-
puting Surveys 10,3 (September 19781, 281-317.

[Cox 19551
D.R. Cox. A Use of Complex Probabilities in the Theory of Stochas-
tic Processes. Proc. Cambridge Philosophical Society 51 (1955)) 3 13-
319.

[Lazowska 19771
Edward D. Lazowska. The Use of Percentiles in Modeling CPU Ser-
vice Time Distributions. In KM. Chandy and M. Reiser (eds.), Com-
puter Performance, North-Holland, 1977, 53-66.

[Lazowska & Addison 19791
Edward D. Lazowska and Clifford A. Addison. Selecting Parameter
Values for Servers of the Phase Type. In M. Arato, A. Butrimenko,
and E. Gelenbe (eds.), Performance of Computer Systems. North-
Holland, 1979, 407-420.

[Reiser & Lavenberg 19781
Martin Reiser and Stephen S. Lavenberg. Mean Value Analysis of
Closed Multichain Queueing Networks. Report RC-7023, IBM T.J.
Watson Research Center, March 1978.

[Sauer & Chandy 19751
Charles H. Sauer and K. Mani Chandy. Approximate Analysis of Cen-
tral Server Models. IBM Journal of Research and Development 19,3
(May 19751, 301-313.

[Sauer & Chandy 19801
C.H. Sauer and K. Mani Chandy. Approximate Solution of Queueing
Models. IEEE Computer 13,4 (April 19801, 25-32.

270 Representing Specific Subsystems: Processors

[Sauer et al. 19821
Charles H. Sauer, Edward A. MacNair, and James F. Kurose. The
Research Queueing Package, Version 2: Introduction and Examples.
Report RA 138, IBM T.J. Watson Research Center, 1982.

[Sevcik 19771
Kenneth C. Sevcik. Priority Scheduling Disciplines in Queueing Net-
work Models of Computer Systems. Proc. IFIP Congress ‘77 (1977),
565-570.

[Sevcik et al. 19771
Kenneth C. Sevcik, Allan I. Levy, Satish K. Tripathi, and John Zahor-
jan. Improving Approximations of Aggregated Queueing Network
Subsystems. In K.M. Chandy and M. Reiser (eds.), Computer Perfor-
mance. North-Holland, 1977, l-22.

11.9. Exercises

1. Consider a single class model of a dual processor system. The service
demand at the CPU is 8 seconds (with each process~or providing a por-
tion of this service) and the service demands at each of the four disks
are 2 seconds, The single customer class is of terminal type, with
Z = 20 seconds.
a. Compare the results obtained by modelling the dual processor as a

single fast processor (with a service demand of 4 seconds) to the
results obtained by using the FESC approach of Section 11.2 (with
service rates of 0.125 with one customer in the queue, and 0.250
with more than one customer in the queue). Obtain solutions for
populations of 5, 10, and 20 online users. (Use the MVA imple-
mentation of Chapter 18, extended to accommodate FESCs and
terminal classes.)

b. What do your solutions for the three population sizes indicate
about the accuracy of the “single fast processor” approach in (a)?
How well would you expect this approach to work if the
configuration contained four processors rather than two?

2. Section 11.3 developed a technique for modelling preemptive priority
CPU scheduling. Using this as a basis, develop a technique for model-
ling non-preemptive priority scheduling. Under non-preemptive prior-
ity, a job in service at the CPU receives a full service burst, even if a
higher priority job arrives during that burst. When the service burst
completes, the highest priority waiting job is selected for the next ser-
vice burst.

11.9. Exercises 271

3. Consider a simple interactive computer system consisting of a CPU
and four disks. Assume that the disks are scheduled FCFS, and that
users can choose their I/O block size: the number of bytes transferred
between a file and main storage on each access. Measurements of the
system show that 75% of the users choose block sizes resulting in ser-
vice times per disk visit of 32 milliseconds, and 25% choose sizes
resulting in service times per disk visit of 44 milliseconds.
a. Suppose that there are a total of 24 online users divided into two

classes based on blocksize. Both classes have 20 second think
times, and have interactions that require 4 seconds of CPU service
and an average of 100 accesses to each of the four disks. Use the
technique of Section 11.5 to estimate response times for each class.

b. Using the throughput values obtained from (a>, compute the aver-
age service time per I/O operation at each disk. Use this value to
construct a model of the system with a single class of “average”
users. This model can be evaluated using standard mean value
analysis techniques.

c. Compute the overall average response time in the two class model
of (a>. (Remember that the response times of the classes must be
weighted by their throughputs.) Compare your result to the
response time obtained in (b). What does this tell you about the
effect on system performance of FCFS scheduling with class-
dependent service times?

d. Repeat (a> through (c) under that assumption that 75% of the
users have disk service times of 12 milliseconds, and 25% have
disk service times of 116 milliseconds. Compare your results to
those obtained earlier. What does this tell you about the impor-
tance of reflecting service time variability in models of computer
systems?

e. Returning to the single class model, use the technique of Section
11.6 to model the high service time variability of an “average” job
at each disk. To do so, you will need to estimate the variance of
the service times at the disks. If proportion p of the total accesses
require S, time units and proportion l-p require S2 time units,
then the average service time S is equal to psi -I- (l-p)& and a
reasonable estimate of the variance in service times is:

variance = p(S1 - sj2 + (1 -p> (S* - s>*

Calculate response times for the original set of disk service times
and the modified set of cd), and compare these to the results
obtained earlier. How do you account for the differences in the
various estimates?

272 Representing Specific Subsystems: Processors

4. Discuss the treatment of scheduling disciplines in single class, separ-
able queueing network models.

5. Discuss the treatment of scheduling disciplines in multiple class,
separable queueing network models.

6. We have considered FCFS scheduling in four contexts: single class
separable models, multiple class separable models, single class with
high variability in service times, and multiple class with class-
dependent average service times. Compare and contrast these.

