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Abstract—JavaScript is ubiquitous on the web. At the same
time, the language’s dynamic behavior makes optimizations chal-
lenging, leading to poor performance. In this paper we conduct
a limit study on the potential parallelism of JavaScript appli-
cations, including popular web pages and standard JavaScript
benchmarks. We examine dependency types and looping behavior
to better understand the potential for JavaScript parallelization.
Our results show that the potential speedup is very encouraging—
averaging 8.9x and as high as 45.5x. Parallelizing functions
themselves, rather than just loop bodies proves to be more fruitful
in increasing JavaScript execution speed. The results also indicate
in our JavaScript engine, most of the dependencies manifest via
virtual registers rather than hash table lookups.

I. INTRODUCTION

In an increasingly online world, JavaScript is around every
corner. It’s on your search engine and your new word pro-
cessing software [1]. It’s on your smart phone browsing the
web and possibly running the applications on your phone [2].
One company has estimated that 99.6% of sites online today
use JavaScript [3]. Dubbed the “Assembly Language of the
Internet,” JavaScript is used not only for writing applications,
but also as the target language for web applications written in
other languages, such as Java [4], [5], [6].

At the same time, the very features that have made this
dynamically-typed language so flexible and popular make it
challenging for compiler writers to efficiently optimize its
execution. A number of websites offer tips and services to
both manually and automatically optimize JavaScript code
for download time and execution performance [7], [8], [9].
Further, many web-based companies such as Google, go as
far as optimizing versions of their websites specifically for
mobile devices.

These JavaScript optimizations are of particular importance
for online mobile devices, where power is rapidly becoming
the limiting factor in the performance equation. In order
to reduce power consumption, mobile devices are following
in the footsteps of their desktop counterparts by replacing
a single, higher-power processor with multiple lower-power
cores [10]. At the same time, advances in screen technology
are reducing power consumption in the display [11], leaving
actual computation as a larger and larger proportion of total
power usage for mobile devices.

There have been a number of efforts to increase the speed
of JavaScript and browsers in general [12], [13], [14]. More
recently, researchers have sought to characterize the general
behavior of JavaScript from the language perspective in order
to write better interpreters and Just-In-Time (JIT) compilers

[15], [16], [17]. Several of these studies compared the behavior
between JavaScript on the web to standard JavaScript bench-
marks such as SunSpider and V8. Researchers unanimously
concluded that the behavior of JavaScript on the web differs
significantly from that of standard JavaScript benchmarks.

This paper addresses the slow computation issue by explor-
ing the potential of parallelizing JavaScript applications. In
addition to the obvious program speedups, parallelization can
lead to improvements in power usage, battery life in mobile
devices, and web page responsiveness. Moreover, improved
performance will allow future web developers to consider
JavaScript as a platform for more compute-intensive appli-
cations.

Contributions and Summary of Findings

We present the first limit study to our knowledge of par-
allelism within serial JavaScript applications. We analyze a
variety of applications, including several from Alexa’s top 500
websites [18], compute-intensive JavaScript programs, such as
a fluid dynamics simulator, and the V8 benchmarks [19]. In
contrast to prior JavaScript behavior studies [15], [16], [17],
we take a lower-level, data-dependence-driven approach, with
an eye toward potential parallelism.

As a limit study of parallelism, we focused on two funda-
mental limitations of parallelism: data dependences and most
control dependences (via task formation; see Section III-A).
We impose JavaScript-specific restrictions, such as the event-
based nature of execution. We believe this model captures all
the first order effects on parallelism.

Our results show that JavaScript exhibits great potential for
parallelization—speedups over sequential execution are 8.9x
on average and as high as 45.5x. Unlike high-performance
computing applications and other successfully parallelized
programs, however, JavaScript applications currently do not
have significant levels of loop-level parallelism. Instead, better
parallelization opportunities arise between and within func-
tions. As a result, current JavaScript applications will require
different parallelization strategies.

The vast majority of data dependencies manifest themselves
in the form of virtual registers, rather than hash-table lookups,
which is promising for employing static analyses to detect par-
allelism. Finally, our results demonstrate that parallel behavior
in JavaScript benchmarks differs from that of real websites,
although not to the extent found for other JavaScript behaviors
measured in [15], [16].



The remainder of this paper explains how we reached these
conclusions. Section II provides some background information
on the JavaScript language. Section III describes the model
we used for calculating JavaScript parallelism, special con-
siderations in measuring parallelism in JavaScript, and how
we performed our measurements. Next, Section IV details
our findings with respect to JavaScript behavior and potential
speedup. Section V describes related work and its relationship
to our study, and Section VI concludes.

II. BACKGROUND

JavaScript is a dynamically typed, prototype-based, object-
oriented language. It can be both interpreted and JIT’ed by
JavaScript engines embedded in browsers, such as SpiderMon-
key in Firefox [20], SquirrelFish Extreme1 in Safari [21], and
V8 in Chrome [22]. The current standard for JavaScript does
not directly support concurrency.

Conceptually, JavaScript objects and their properties are
implemented as hash tables. Getting, setting, or adding a
property to an object requires the interpreter or JIT to either
look up or modify that particular object’s hash table.

The majority of production interpreters2 convert JavaScript
syntax into an intermediate representation of JavaScript op-
codes and use one of two main methods to manipulate the
opcodes’ operands and intermediate values: stacks or registers
[23]. Stack-based interpreters contain a data stack (separate
from the call stack) for passing operands between opcodes as
they are executed. Register-based interpreters contain an array
of “register slots” (that we call “virtual registers,” which are
higher-level than actual machine registers) that are allocated
as needed to pass around operands and intermediate data.
Whether an interpreter is stack-based or register-based does
not affect the way that data dependencies manifest; these
two methods are simply used for storing the operands for
each opcode. Interpreters such as SpiderMonkey are stack-
based, whereas SquirrelFish Extreme is register-based. Some
research suggests that register-based interpreters can slightly
outperform stack-based interpreters [24].

Memory in a JavaScript program consists of heap-allocated
objects created by the program, as well as a pre-existent Doc-
ument Object Model produced by the browser that represents
the web page and the current execution environment. All of
these are distinct from local variables and temporaries. In this
study we examine a register-based interpreter, which therefore
exposes dependencies via virtual registers for local variables
and temporaries, and via hash table lookups when accessing
an object’s hash table.3

1Also known by its marketing name, Nitro.
2The notable exception is V8, which compiles JavaScript directly to

assembly code.
3In this study, register slots that directly reference objects for hash table

lookups we classify as hash table lookups, distinct from local variables and
temporaries stored in the register slots that we classify as being stored in
“virtual registers.”

A Day in the Life of a JavaScript Program

For the most part, JavaScript is used on the web in a
highly interactive, event-based manner. A JavaScript event is
any action that is detectable by the JavaScript program [25],
whether initiated by a user or automatically. For example,
when a user loads a web page, an onLoad event occurs. This
can trigger the execution of a programmer-defined function
or a series of functions, such as setting or checking browser
cookies. After these functions have completed, the browser
waits for the next event before executing more JavaScript code.

Next, in our example a user might click on an HTML p
element, causing an onClick event to fire. If the programmer
intends additional text to appear after clicking on the p
element, the JavaScript function must modify the Document
Object Model (DOM), which contains all of the HTML
elements in the page. The JavaScript function looks up the
particular object representing the p element in the DOM
and modifies the object’s text via its hash table, causing the
browser to display the modified page without requiring an
entire page reload. Any local variables needed to complete
this text insertion are stored in virtual registers.

III. METHODOLOGY

Because of JavaScript’s event-based execution model de-
scribed above, we must make special considerations to quan-
tify the amount of potential speedup in JavaScript web appli-
cations. Below we explain some terminology for talking about
JavaScript parallelism, how we set up our model (Section
III-A), and how we made our measurements from the dynamic
execution traces (Section III-B).

A. Event-driven Execution Model Considerations

For our study, we parallelize each event individually, as
described in Section II by dividing them into tasks that can
be potentially executed concurrently. We define a task as any
consecutive stream of executed opcodes in an event, delimited
either by a function call, a function return, an outermost4 loop
entrance, an outermost loop back-edge, or an outermost loop
exit. A task consists of at least one JavaScript opcode and has
no maximum size. Tasks are the finest granularity at which we
consider parallelism; we do not parallelize instructions within
tasks. Since the tasks are essentially control independent, we
take into account control dependences indirectly.

Figure 1 illustrates a high-level representation of the tasks
created from the execution of a simple JavaScript function.
When executing function f, JavaScript code is converted into
a dynamic trace of opcodes. Our offline analysis divides these
opcodes into eight tasks, appearing in boxes on the right of
Figure 1.

We define the critical path as the longest sequence of
memory and/or virtual register dependencies between tasks
that occurs within a given event. The critical path is the
limiting factor that determines the overall execution time for an
event; all other data-dependent sequences can run in parallel

4Not nested inside any surrounding loop.



function f() {
  var i = 0;
  g();
  i++;
  for (var j = 1; 
       j < 3; j++) {
    i += j;
  }
  return i;
}

function g() {
  return 0;
}

function f() {
  var i = 0;
  g();
  i++;
  for (var j = 1; j < 3; j++) {
    i += j;
  }
  return i;
}

function g() {
  return 0;
}

set i = 0 // start f
call g

return 0 // return from g

increment i
set j = 1
test loop condition j < 3

i += j

increment j
test loop condition j < 3

i += j

increment j
test loop condition j < 3

return i // return from f

set i = 0 // start f
call g

return 0 // return from g

increment i
set j = 1
test loop condition j < 3

i += j

increment j
test loop condition j < 3

i += j

increment j
test loop condition j < 3

return i // return from f

Fig. 1. An example JavaScript function f appears on the left. The right shows a high-level, pseudo-intermediate representation of the execution of f, to
illustrate how tasks are delineated. Each box represents one task. The i += j tasks are the loop body tasks.

with the critical path. Since a typical JavaScript opcode in
SquirrelFish executes in approximately 30 machine cycles,
tasks rather than individual opcodes are a more realistic gran-
ularity for parallelization, given the overheads associated with
parallelization. We use the procedure detailed in Algorithm
1 to calculate critical paths for the events observed in the
dynamic execution traces.

Potential speedup from parallelization is measured by cal-
culating the length of the critical path for each event that
was observed in a dynamic execution trace, summing them
together, and dividing into the total execution time, that is,

Speedup =
T∑n−1

i=0 ci
(1)

where n is the number of events, ci is the length of the critical
path for event i in cycles, and T is the total number of cycles
for the entire execution. This optimistically assumes there is
no limit in the number of processors available to execute
independent JavaScript tasks.

We conservatively force events to execute in the order
that they were observed in the original execution trace. If
JavaScript were able to run in parallel, one could imagine a
few JavaScript events occurring and running simultaneously,
such as a timer firing at the same time as an onClick event
generated by the user clicking on a link. However, from the in-
terpreter’s perspective, it is difficult to distinguish between true
user events that must be executed sequentially and automatic
events that could be parallelized, making it very challenging
to know whether such events could logically be executed
simultaneously. Therefore, we do not allow perturbations in
event execution order.

Additionally, while interpreting some JavaScript functions,
some built-in functions in the language make calls to the
native runtime, and therefore we cannot observe these instruc-

Algorithm 1 Critical Path Calculation for Events
{build dependency graph}
for each opcode do

for each argument in opcode do
if argument is a write then

record this opcode address as the most recent writer
else if argument is a read then

find last writer to the read location
if read and last writer are in different tasks, but in
the same event then

mark dependency
update longest path through this task, given the
new dependency’s longest path

end if
end if

end for
update longest path through this task with this processed
opcode’s cycle count

end for

{find critical path for each event}
for each task in tasks do

event ← this task’s event
if the longest path through this task > the event’s current
critical path then

event’s critical path ← longest path through task
end if

end for

tions executed from the interpreter’s perspective. Examples
of this function type include the JavaScript substring,
parseInt, eval, and alert functions. We examine the
potential speedup in two cases: the first conservatively assum-



ing that all calls to the runtime depend on the previous calls;
and the second assuming no dependencies ever occur across
the runtime. We take these elements into consideration in order
to make our parallelism measurements as realistic as possible.

B. Experimental Setup

In order to measure the potential speedup of JavaScript
on the web, we instrumented the April 1, 2010 version of
the interpreter in SquirrelFish Extreme (WebKit’s JavaScript
engine, used in Safari and on the iPhone). We then used Safari
with our instrumented interpreter to record dynamic execution
traces of the JavaScript opcodes executed while interacting
with the websites in our benchmark suite.

A growing number of recent studies have concluded that
typical JavaScript benchmark suites, such as SunSpider and
V8, are not representative of JavaScript behavior on the
web [15], [26]. Therefore, we created our own benchmark
suite, partly comprised of full interactions with a subset of
the top 100 websites from the Alexa Top 500 Websites [18].
We supplemented our benchmark suite with a few other web
applications that push the limits of JavaScript engines today,
and the V8 version 2 benchmarks for reference. With the
exception of the V8 benchmarks that simply run without user
input, the length of logged interactions ranged from five to
twenty minutes. Table I explains the details of our benchmark
collection.

Traces were generated on a 2.4 GHz Intel Core 2 Duo
running Mac OS 10.6.3 with 4 GB of RAM. Additionally, we
used RDTSC instructions to access the Time Stamp Counter
to count the number of cycles each JavaScript opcode took
to execute. However, the cycle counts that we measured
had several confounding factors, resulting in a variance of
sometimes several orders of magnitude: the JavaScript inter-
preter was run in a browser, influencing caching behavior,
along with network latency and congestion effects out of our
control [27]. Therefore, out of the approximately 400M total
dynamic JavaScript opcodes observed, for each type of opcode
we selected the minimum cycle count observed and placed
these values in a lookup table we used to calculate the critical
paths for events. Additionally, if making repeated XML HTTP
requests is the primary action of a JavaScript program, the
perceived speedup may be less than our measurements because
network latency may come to dominate the time that a user is
waiting.

IV. RESULTS

In this section, we first evaluate the overall degree of
potential speedup. Then we explore other facets of the par-
allelization problem, including which types of tasks are most
useful for maximizing speedup and what types of dependences
manifest in typical JavaScript programs.

A. Total Parallelism

The graph in Figure 2 shows the potential speedup, con-
servatively assuming dependencies across calls to the native
runtime, with both function call boundaries and outermost loop

Benchmark Classification Details
ALEXA TOP 100 WEBSITES
bing search engine two textual searches on

bing.com and browsed
images

cnn news read several stories on
cnn.com

facebook micro data posted on wall, wrote on
other’s walls, expanded
news feed

flickr photo sharing visited contact’s pages,
posted comments

gmail productivity archived emails, wrote
and sent email

google search engine two textual searches and
looked at images on
google.com

googleDocs productivity edited and saved a
spreadsheet, shared with
others

googleMaps visualization found a driving route,
switched to public transit
route, zoomed in to map

googleReader micro data read several items, mark
as unread, share item

googleWave compute intensive create new wave, add
people, type to them,
reply to wave

nyTimes news read several stories on
nyTimes.com

twitter micro data posted tweet, clicked
around home page for
@replies and lists

yahoo search perform several searches
and look at images

youtube video watch several videos,
expand comments

COMPUTE INTENSIVE SUPPLEMENTAL BENCHMARKS
ballPool data visualization chromeexperiments.com/

detail/ball-pool/
fluidSim compute intensive fluid dynamics simulator

in JavaScript at
nerget.com/fluidSim/

pacman compute intensive NES emulator written in
JavaScript playing Pacman
at benfirshman.com/
projects/jsnes/

V8 BENCHMARKS VERSION 2
v8-crypto V8 Encryption and decryption
v8-deltablue V8 One-way constraint solver
v8-earley-boyer V8 Classic Scheme

benchmarks, translated to
JavaScript by Scheme2Js
compiler

v8-raytrace V8 Ray tracer
v8-richards V8 OS kernel simulation

TABLE I
PROVIDES THE DETAILS AND A GENERAL CLASSIFICATION FOR THE

BENCHMARKS USED IN THIS STUDY.

bodies as task delimiters. As previously mentioned, runtime
calls are a set of built-in functions implemented natively
rather than in JavaScript. To reiterate, we conservatively force
events to execute in the same order that they were observed
in the original execution trace, and we use Equation (1) to
calculate the potential speedup. The potential speedups range
from 2.19x and 2.31x for the v8-crypto and google
benchmarks respectively, and up to 45.46x on googleWave,
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Fig. 2. Potential speedup with runtime dependencies, and function and loop
task delimiters.

with an average over all the benchmarks of 8.91x. If we ex-
clude the minimum and maximum outliers (googleWave and
v8-crypto, respectively), the adjusted (arithmetic) mean is
7.42x.

B. Task Granularity—Functions and Loops

Figures 3 and 4 illustrate the speedup measurements for
function-delimited and outermost loop delimited tasks. We
divided up the execution trace into tasks using the method
in Figure 1 and discussed in Section III-A. When we break
up tasks at loop boundaries, we do not include opcodes related
to modifying the loop induction variable in the loop task.
However, opcodes that use the loop induction variable to index
into an array lookup in the loop body do cause a dependency
between the loop task and its parent function task. If JavaScript
had explicit support for parallel loop iterations, it is possible
that some of these currently unparallelizable loop bodies, such
as the array index example, could be rewritten in a way that
would enable parallelization.

The graphs indicate that loops alone, in today’s JavaScript
web applications do not yet seem to be good candidates for
automatic loop parallelization. The two leaders in speedup
with only loop delimited tasks, fluidSim, and ballPool
were the two most scientific-computing-like benchmarks in the
benchmark suite. This does suggest that there may be benefits
for loop parallelization in the future, should JavaScript perfor-
mance improve to the point that developers are willing to write
more complex and compute-intensive JavaScript programs.

The CDF in Figure 5 illustrates the iteration counts of
each loop sequence in each benchmark, excluding the V8
benchmarks, which do not exhibit the same looping behavior
as the “typical” web-site benchmarks. As an example, we
count the code in Figure 1 as one distinct loop sequence
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Fig. 3. The potential speedup for only function delimited tasks, with runtime
dependencies.

executing for two iterations. If function f were called again,
we would count the loop as a separate loop sequence. We find
that 52% of loops in the suite iterated only one or two times.
However, we can see a very long tail in the graph; a few loops
were very hot—one loop in the pacman benchmark executed
1.4M times.

The graphs in Figures 6 and 7 show the frequency with
which loops execute for different numbers of iterations in the
fluidSim and googleWave benchmarks. We singled out
these two benchmarks because fluidSim had the largest
speedup with only loop delimited tasks, and googleWave
had the largest overall speedup. The googleWave shows
behavior typical of most of the benchmarks: a large number
of short executing loops. fluidSim is unusual because
the dramatic slope increase in the graph is bimodal; in this
benchmark most loops execute only a few iterations, but then
a large number of loop sequences also loop 4k times.

The two outliers for loop-only delimited tasks, fluidSim
and ballPool, did not prove to have an appreciable differ-
ence in the fraction of loops executed relative to the entire
program size compared to other benchmarks. In fact, we
found that the fluid dynamics simulator actually had a smaller
number of loops executed relative to its program size than
a number of the less loop-parallelizable benchmarks. Instead,
the average loop body (task) sizes were among the very largest
observed in all the benchmarks. This suggests that fluidSim
and ballPool have more long, independent loops, rather
than a larger proportion of loop iterations. Although other
benchmarks had smaller loop bodies on average, such loop
bodies were not often independent from each other.

Task Size. Additionally, we examined the average task size
to ensure that our level of granularity is realistic for making
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Fig. 4. The potential speedup for only loop delimited tasks, with runtime
dependencies.
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Fig. 5. CDF showing the number of iterations that each distinct loop
instance took, incorporating data from all the benchmarks except for the V8
benchmarks. About half of the suite’s loop sequences iterate only once or
twice.

parallelization worthwhile. As shown in Figure 8, the average
task size in most benchmarks is around 17 SquirrelFish opcode
instructions, or 650 cycles, with a few outliers with much
larger task sizes, such as v8-crypto (137 opcodes) and
fluidSim (73 opcodes). Because task sizes were this short,
we see little reason to examine parallelism at an even finer
granularity. However, 17 opcodes, or 650 cycles is still quite
a fine granularity — we chose this granularity due to the
limit study nature of this work, and moreover, tasks can
be combined where appropriate during an implementation to
better amortize parallelization overheads.
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Fig. 6. CDF showing the frequency of loop instances executing for a given
number of iterations in the fluidSim benchmark. This benchmark has a
second large increase in slope in the right side of the graph, indicating a large
number of loop instances with a high number of iterations (4k iterations).
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Fig. 7. CDF showing the frequency of loop instances executing for a
given number of iterations throughout the googleWave benchmark. In this
benchmark, the hottest loop instance executes 464 times. The shape of this
CDF is very representative of most JavaScript benchmarks.

C. Dependences

Below, we further explore the types of dependencies, aver-
age dependency lengths, and our assumptions about runtime
dependencies in JavaScript. Figure 9 indicates that the majority
of dependencies arise from local variables in virtual registers.
At least 84% of the dependencies of the web page-based
benchmarks (as opposed to the V8 benchmarks) were register-
based, which provides promise for static analysis and poten-
tially some automatic and even non-speculative parallelization.
Many of the V8 benchmarks, in contrast, had a much higher
incidence of memory dependencies.
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Fig. 8. The average task size of benchmarks by SquirrelFish opcode count,
on a log scale.
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Fig. 9. Percentage of all dependencies that are virtual register to register
dependencies between tasks versus hash-table lookups between tasks.

Dependency distance refers to the number of cycles (or
instructions) between a write to a virtual register or hash
table and its subsequent read. Figure 10 shows the aver-
age hash table and virtual register dependency distances by
JavaScript opcode count. We see that in general, virtual
register dependency lengths are shorter than the lengths for
memory dependences (average of 50k opcodes for virtual
register dependencies versus 160k for hash table lookups). The
difference is unsurprising because virtual registers house local
and temporary variables, whereas storing data into objects
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Fig. 10. Average memory and register dependency distances between tasks
by SquirrelFish opcode count, on a log scale.

that may be referenced from function to function manifest
as memory dependences. The graph indicates that the aver-
age dependency distance for both virtual registers and hash
table lookups is fairly high. Large dependency distances may
provide more flexibility for an automatic parallelization, since
there is slack to exploit. Additionally, because the memory
dependence distance is large, we can more easily amortize the
cost of dependence checks.

We find that our more conservative assumption of adding
“fake” dependencies5 into and out of runtime calls did not
strongly affect our parallelism measures. Figure 11 shows that
although the potential speedups increased slightly from 2.31 to
2.40 for google and from 45.46 to 45.89 for googleWave
without the assumption of runtime dependencies, these num-
bers are not significantly larger from their more conservative
counterparts. This is also encouraging because tracking de-
pendencies via the internal state of the runtime system may
be expensive; we can use conservative assumptions without
hurting parallelism much.

D. Case Study: googleWave

Finally, we inspected the maximum speedup outlier,
googleWave, in more detail to better understand what makes
the program so parallelizable. We first graphed a Cumulative
Distribution Function (CDF) illustrating the frequency of
speedup levels of for all events, weighted by serial event
length, in Figure 12. We see that 75% of all events weighted
by execution time have a speedup of 45x or higher, and 50%
of all events have a potential speedup of 90x or higher. If we
create a similar CDF without weighting events by execution
time, we find that 46% of all events have a speedup of 1x
and therefore cannot be parallelized. This data indicates that
googleWave has a large number of very short events that

5Since we could not track dependencies called in native code.
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0 50 100 150 200 250 300 350
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 a

ll 
Ev

en
ts

Fig. 12. CDF illustrating the fraction of events that that have a given amount
of speedup in the googleWave benchmark, weighted by the length of the
events. 50% of all events, weighted by event length, have a speedup between
90x and 357x.

will not benefit from parallelization, but a significant number
of long running events that are very parallelizable.

We then created a CDF of the size of tasks over the entire
program. In Figure 13 we find that 52% of the tasks contain
6 opcodes (180 cycles) or more, and it has a very long
tail; the largest task contains 10k opcodes. Today, most web
developers are limited by performance reasons from producing
applications as JavaScript intensive as googleWave.

It should also be noted that googleWave is the only
benchmark we investigated written using the Google Web
Toolkit (GWT). As mentioned in the introduction, this tool
compiles Java into optimized JavaScript. It is possible that the

1 10 100
Task Size (opcodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 a

ll 
Ta

sk
s

10000

Fig. 13. CDF of task size (in opcodes) in Google Wave. We find over forty
percent of all tasks observed in Google Wave are 10 opcodes or more. The
largest task in this benchmark contains 10096 opcodes.

coding style of Java lends itself to more short function calls
(such as accessor methods in Java) than in JavaScript (which
might instead use a hashtable lookup), or GWT automatically
generates more parallelizable JavaScript.

Although googleWave is something of an outlier amongst
other current uses of JavaScript, we believe that in the
future we will see a greater number of applications with
similar characteristics and similar parallelism opportunities to
googleWave. There has been a recent trend toward browser-
based applications (such as Google Docs, Microsoft’s new
web-based Office applications, and Chrome OS). To provide a
desktop-like experience on the web, such applications would
benefit from multi-threading and more performance that could
be gained from parallelization.

V. RELATED WORK

JavaScript and its behavior on the web has only recently
become a more widely explored topic. Several researchers
have explored the behavior of JavaScript from a higher-level
language perspective.

Lebresne et al. examined JavaScript objects, how frequently
their properties and data are modified, and the length of their
prototype chains in the SunSpider benchmarks and a small set
of real web pages [17]. This higher-level analysis focused on
objects and their modification in order to ultimately provide
a type system for JavaScript. Their analysis indicates that the
average lengths of object prototype chains across the bench-
marks (and also maximum chain lengths for websites) were
relatively similar and short, supporting our decision to select
the minimum observed cycle value for op_put_by_val and
op_get_by_val.

Ratanaworabhan et al. very extensively measured the usage
of JavaScript on the web compared to the V8 and SunSpider
benchmarks by instrumenting Internet Explorer 8 and char-



acterizing the behavior of functions, heap-allocated objects
and data, and events and handlers [15]. They conclude that
the behavior of the “standard” benchmarks is significantly
different from actual web pages. Their web page traces were
generally based on short web page interactions (e.g., sign in,
do one small task, sign out) in comparison to our study’s
longer running logs. Their results corroborate ours in that in
web pages there are a small number of longer-running “hot”
functions (that may be worthy of parallelism).

Richards et al. also performed a more extensive analysis
of the dynamic behavior of JavaScript usage on the web and
compared it to that of standard industry JavaScript benchmarks
as well as the conventional wisdom of how JavaScript is
used [26]. Whereas Ratanaworabhan et al. used short web
interactions, the Richards et al. study recorded longer running
traces when other users used the instrumented browser as their
default browser. The study investigated, among many things,
the frequency of eval, the frequency that properties were
added to an object after initialization, the variance of the
prototype hierarchy, and the frequency of variadic functions.
They concluded that the behavior on the web and usage of
JavaScript language constructs differed significantly from the
prevailing opinion as well as that of the standard benchmarks.
While our study analyzes the dynamic behavior of JavaScript
on the web and benchmarks arising from low level data
dependencies in JavaScript opcodes in order to characterize
the potential speedup through parallelization, Richards et al.
focuses the analysis primarily at the higher level syntactic layer
of JavaScript, with a nod to applications of their results to type
systems.

Meyerovich and Bodı́k find that at least 40% of Safari’s
time is spent in page layout tasks [16]. They also break down
the length of time for several websites spent on various tasks
during page loads, of which JavaScript is a relatively small
component (15%-20% of page load time). Given these results,
they detail several algorithms to enable fast web page layout
in parallel. However, after page load time, the proportion
of time spent executing JavaScript and making XML HTTP
requests increases. Indeed, if Meyerovich and Bodı́k succeed
in dramatically reducing the amount of time spent in page
loads, then the time spent after page loads, and therefore in
JavaScript would increasingly dominate the execution time.

Mickens et al. developed the Crom framework in JavaScript
that allows developers to hide latency on web pages by
speculatively executing and fetching content that will then be
readily available should it be needed [28]. Developers mark
specific JavaScript event handlers as speculable, and then the
system fetches data speculatively while waiting on the user,
reducing the perceived latency of the page.

Meanwhile, some work has been done on the compiler
end to improve the execution of JavaScript. Gal et al. im-
plemented TraceMonkey, to identify hot traces for the Just-
In-Time (JIT) compiler, as opposed to the standard method-
based JIT [14]. However, they found that a trace must be
executed at least 270 times before they break even from the
additional JIT’ing of traces that they do during execution. As

we saw in the benchmarks in our study, half of all loops
executed in JavaScript programs only execute at most for two
iterations. Ha et al. alleviated the performance problem in
[14] by building another trace-based Just-In-Time compiler
that does its hot trace compilation work in a separate thread
so that code execution need not halt to compile a code trace
[13]. Martinsen and Grahn have investigated implementing
thread level speculation for scripting languages, particularly,
JavaScript [12]. Their algorithm achieves near linear speedup
for their for-loop intensive test programs. However, as we
found in our study, JavaScript as currently used on the web is
not written in such a way that its iterations are independent.

VI. CONCLUSION

Our study is the first exploration of the limits of parallelism
within JavaScript applications. We used a collection of traces
from popular websites and the V8 benchmarks to observe the
data and user-limited dependences in JavaScript. In summary,
we found:

a) JavaScript programs on the web hold promise for
parallelization: Even without allowing parallelization between
JavaScript events, the speedups ranged from 2.19x up to
45.46x, with an average of 8.91x. These numbers are great
news for automatic parallelization efforts.

b) Programs are best parallelized within or between
functions, not between loop iterations: Most JavaScript loops
on the web today do not iterate frequently enough, and
iterations are generally not independent enough to be par-
allelized. Instead, parallelization opportunities arise between
tasks formed based on functions. These tasks are large enough
to amortize reasonable overheads.

c) The vast majority of data dependences come from
virtual registers, and the length of these dependences are
shorter than hash-table lookup dependences: This finding
makes static analysis conceivable and argues that disambigua-
tion for parallelization can likely be made low cost.

These results suggest that JavaScript holds significant
promise for parallelization, reducing execution time and im-
proving responsiveness. Parallelizing JavaScript would enable
us to make better use of lower-power multi-core processors
on mobile devices, improving power usage and battery life.
Additionally, faster JavaScript execution may enable future
programmers to write more compute intensive, richer appli-
cations.
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