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Abstract
Programming-by-example technologies empower end-users to cre-
ate simple programs merely by providing input/output examples.
Existing systems are designed around solvers specialized for a
specific set of data types or domain-specific language (DSL). We
present a program synthesizer which can be parameterized by an ar-
bitrary DSL that may contain conditionals and loops and therefore
is able to synthesize programs in any domain. In order to use our
synthesizer, the user provides a sequence of increasingly sophis-
ticated input/output examples along with an expert-written DSL
definition. These two inputs correspond to the two key ideas that
allow our synthesizer to work in arbitrary domains. First, we devel-
oped a novel iterative synthesis technique inspired by test-driven
development—which also gives our technique the name of test-
driven synthesis—where the input/output examples are consumed
one at a time as the program is refined. Second, the DSL allows
our system to take an efficient component-based approach to enu-
merating possible programs. We present applications of our syn-
thesis methodology to end-user programming for transformations
over strings, XML, and table layouts. We compare our synthesizer
on these applications to state-of-the-art DSL-specific synthesizers
as well to the general purpose synthesizer Sketch.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming—Program synthesis

General Terms Languages, Experimentation

Keywords program synthesis, end-user programming, test driven
development

1. Introduction
Programming-by-example (PBE [4, 20]) empowers end-users with-
out programming experience to automate tasks like normaliz-
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ing table layouts or reformatting strings merely by providing in-
put/output examples. Present PBE technologies are designed for a
specific set of data types usually either by using an SMT solver
or similar technology [30, 33] and being limited to efficiently han-
dling only those data types whose operations map well to the SMT
solver’s theories or by creating a domain-specific language (DSL)
for the task in concert withs a program synthesis algorithm capa-
ble of producing programs in that DSL [8, 11, 18]. LaSy1 instead
is able to synthesize programs in arbitrary domains specified by
an expert-written DSL. In order to efficiently support arbitrary do-
mains, we developed a synthesizer that combines two key ideas.
First, we use a novel iterative synthesis technique inspired by test-
driven development (TDD) [12, 22], giving our methodology the
name of test-driven synthesis (TDS). Second, we have advanced
the state-of-the-art in DSL-based synthesis as our iterative synthe-
sis only shines when paired with a algorithm that can efficiently
improve the program from a previous step.

Iterative synthesis Taking inspiration from the test-driven devel-
opment (TDD) [12, 22] concept of iterating on a program that al-
ways works for the tests written so far, the behavior of functions in
LaSy is constrained by a sequence of increasingly sophisticated ex-
amples like those that might be written by a programmer authoring
a function using the TDD programming methodology or demon-
strating the functionality via examples to another human.

Prior PBE systems take as input a set of representative examples
from which a program is synthesized (they may be consumed one at
a time, but their order is not prioritized). It is desirable that the user
provides representative examples; otherwise the system may end up
over-fitting on a simple example, and would fail to find a common
program that works for all examples [17]. On the other hand, when
describing a task people can easily provide a sequence of examples
of increasing complexity—for example, in a human-readable ex-
planation [26] or in a machine-readable sequence of tests for TDD.
The presentation as a sequence allows for the problem of learning
the task to be broken down into a series of sub-problems of learning
slightly more detail about the task after seeing each new example—
this is one of the key insights of this paper. While this bears some
similarity to genetic programming [23], our system does not rely
on any concept of a function almost or approximately matching an
example. By working in a series of steps where after each step the
result is a program that is correct for a subset of the input space, our
system is able to more effectively narrow down the search space
than prior work.

1 Language for Synthesis, pronounced “lazy”



DSL-based synthesis The underlying synthesis technique, which
we refer to as DBS for DSL-based synthesis, is parameterized by a
DSL allowing it to be specialized to different domains with min-
imal effort. Similar to how a parser generator is given a language
definition to make a parser for that language, our general-purpose
synthesizer is given a DSL definition to make a synthesizer for that
DSL. A DSL primarily consists of a context-free grammar over
DSL-defined functions. Additionally, the DSL may use synthesis
strategies we provide for learning constructs amenable to special
reasoning like conditionals and certain forms of loops. Experts may
provide further extensions, but that is out of scope for this paper
as we focus on the strengths of DBS and our test-driven synthesis
methodology without the complication of additional user-provided
synthesis strategies.

As it is part of an iterative synthesis procedure, DBS is given
a previous program that satisfies some prefix of the examples and
searches for a modification that makes it satisfy all of the exam-
ples. These modifications replace some subexpression of the previ-
ous program with a new expression. The generation of replacement
subexpressions is done by component-based synthesis [15]: DBS
considers the semantically distinct expressions of the DSL, build-
ing them up starting with the atoms in the DSL and the previous
program’s subexpressions. In our DSL-based approach, DBS uses
the grammar of the DSL as opposed to just the types of the ex-
pressions to decide what expressions to build, which significantly
narrows the search space.

Contributions
1. The problem statement of solving a PBE problem given a se-

quence of increasingly sophisticated input/output examples for
each function to be synthesized, reified in our LaSy language
(§3).

2. Our novel test-driven synthesis methodology for solving such
synthesis problems combines iterative synthesis (§4) and DSL-
based synthesis (§5) to be able to synthesize programs with non-
trivial control flow including conditionals, loops, and recursion
in an arbitrary DSL.

3. Being domain-agnostic, our technique has myriad applications,
including significant implications for end-user programming;
we summarize a few possiblities with concrete examples in §2.

4. We run experiments demonstrating the effectiveness of each of
our key ideas and showing the overall effectiveness of our algo-
rithm on important applications including comparing against
state-of-the-art synthesizers in each domain and against the
general purpose synthesizer Sketch [30] (§6). As a source for
more difficult problems for our system, particularly for long se-
quences of examples, we had it play the Pex4Fun programming
game [32] (§6.1.4).

2. Motivating examples
We present examples demonstrating the breadth of programs LaSy
is able to synthesize to highlight its domain-agnostic capabilities.
§6 goes into more detail on evaluating the performance and design
decisions of our synthesizer.

2.1 Automating TDD
To demonstrate iteratively building up a program, we use the exam-
ple of greedy word wrap, whose use as a TDD practice problem in
[22] was the original inspiration for our methodology. Word wrap
inserts newlines into a string so that no line exceeds a given max-
imum line length; the greedy version inserts newlines as late as
possible instead of trying to even out the line lengths.

Fig. 1 shows part of a LaSy program for implementing greedy
word wrap, showing only 1 or 2 of the up to 6 examples under

language strings;

function string WordWrap(string text, int length);

// Single word doesn’t wrap.
require WordWrap("Word", 4) == "Word";

// Two words wrap...
require WordWrap("Extremely longWords", 14) ==

"Extremely\nlongWords";
// ... when longer than line.
require WordWrap("How are", 76) == "How are";

// Wrap as late as possible...
require WordWrap("How are you?", 9) == "How are\nyou?";

// ... but no later.
require WordWrap("Hello, how are you today?", 14) ==

"Hello, how are\nyou today?";
// Wrap in middle of word.
require WordWrap("Abcdef", 5) == "Abcde\nf";

require WordWrap("ThisIsAVeryLongWord a", 15) ==

"ThisIsAVeryLong\nWord a";
// Wrap multiple times (using recursion).
require WordWrap("How are you?", 4) == "How\nare\nyou?";

// Complicated test to ensure program is correct.
require WordWrap("This is a longer test sentence. a bc",

7) == "This is\na\nlonger\ntest\nsentenc\ne. a bc";

Figure 1. Abbreviated LaSy program for greedy word wrap show-
ing a representative subset of the 24 test cases

each comment for space reasons. The LaSy program begins with
a declaration saying to use the “strings” DSL followed by the
function signature for word wrap. Most of the program is the list of
examples that dictate how the function should behave.

The examples are interspersed with comments that explain how
this sequence iteratively builds up a solution with intermediate
steps where it is easy to describe what subset of the inputs the
program is correct for. Exactly where to break the line is refined
over several examples: first it is just at the space, then at the space
in a string longer than the maximum line length, then at the last
space in a long string, then at the last space before (or at) the
maximum line length, only to be refined further toward the end
to include inserting breaks in the middle of words that do not fit
on a single line. Also, our synthesizer is able to generalize from
inserting a single line break to inserting any number of line breaks
via recursion.

The high number of examples indicates this is a fairly sophis-
ticated program for PBE; it should be noted that full test coverage
for TDD takes a similar number of examples [22]. We include word
wrap to show LaSy is capable of scaling up to that many examples.

2.2 End-user data transformations
Enabling (hundreds of millions of) end-users to construct small
scripts for data manipulation is a very important topic [1, 6]. LaSy
can be used to synthesize useful scripts in this domain that are
beyond the capabilities of leading prior work in this area [6].

String transformations Consider the task of converting bibliog-
raphy entries (represented as strings) from one format to another.
Fig. 2 shows an example of a LaSy program for converting be-
tween two such formats. This program is structured using helper
functions for rewriting the authors list and for mapping venue ab-
breviations to the full venue names used in the target format. Un-
like ConvertName and ConvertList, VenueFullName does not
do any computation (the full name for "POPL 2013" cannot be in-
ferred from the full name for "PLDI 2012" without a web search),
so it is declared as a lookup, meaning the function will just store
the list of input/output examples and look up any inputs in that list
to find the corresponding output.



language strings;

function string ConvertBib(string oldFormat);
function string ConvertName(string fullName);
function string ConvertList(string oldFormat);
lookup string VenueFullName(string abbr);

require ConvertName("John Smith") == "Smith, J.";

require ConvertName("Ann Miller") == "Miller, A.";

require ConvertList("John Smith") == "Smith, J.";

require ConvertList("Donna Jones, John Smith, Ann

Miller") == "Jones, D.; Smith, J.; Miller, A.";

require VenueFullName("PLDI 2012") == "The 33rd ACM
SIGPLAN conference on Programming Language Design and
Implementation, Beijing, June, 2012";
require ConvertBib("Reagents: Expressing and Composing

Fine-grained Concurrency, PLDI 2012, Aaron Turon")
== "Reagents: Expressing and Composing Fine-grained
Concurrency\nTuron, A.\nThe 33rd ACM SIGPLAN conference
on Programming Language Design and Implementation,
Beijing, June, 2012";

require VenueFullName("CACM 2012") == "Communications of
the ACM, 2012";
require ConvertBib("Spreadsheet Data Manipulation using
Examples, CACM 2012, Sumit Gulwani, William Harris,
Rishabh Singh") == "Spreadsheet Data Manipulation
using Examples\nGulwani, S.; Harris, W.; Singh, R.\n
Communications of the ACM, 2012";

Figure 2. LaSy program for converting bibliography entries

oldXml = "<doc><div id="ch1"> <p name="a1">1st
Alinea.</p> <p name="a1.1">Zomaar ertussen.</p> <p
name="a2">2nd Alinea.</p> <p name="a3">3rd Alinea.</p>
</div> <div id="ch2"> <p name="a1">First Para.</p> <p
name="a2">Second Para.</p> <p name="a2.1">Something
added here.</p> <p name="a3">Third Para.</p>
</div></doc>";

language xml;

function XDocument ToTable(XDocument oldXml);
function XElement BuildRow(XDocument oldXml,

string rowName);

require BuildRow(oldXml, "a1.1") == "<tr><td>Zomaar

ertussen.</td><td/></tr>";
require ToTable(oldXml) == "<table>

<tr><td>1st Alinea.</td><td>First Para.</td></tr>
<tr><td>Zomaar ertussen.</td><td/></tr>
<tr><td>2nd Alinea.</td><td>Second Para.</td></tr>
<tr><td/><td>Something added here.</td></tr> <tr><td>3rd
Alinea.</td><td>Third Para.</td></tr> </table>";

Figure 3. LaSy program for converting set of XML lists to a table

XML transformations We show two LaSy programs for XML
transformation tasks found on help forums. Fig. 3 takes a set of
<div>s containing named paragraphs and arranges the data as a
table with a column for each <div> and a row for each name,
so data is lined up in a row if the same name appears in multiple
<div>s. This transformation requires a helper which describes how
a table row is built from a paragraph name. Both functions are
simple enough that they require only a single example. Fig. 4
assigns class attributes to paragraphs without them according to
the class of the nearest previous paragraph (if present), and is
implemented by the synthesizer using a loop.

3. Language
In addition to the LaSy programming by example language demon-
strated in the previous section, which is explained in more detail in

language XML;

function XDocument AddClasses(XDocument oldXml);

require AddClasses("<doc> <p>1</p> </doc>") == "<doc>

<p>1</p> </doc>";
require AddClasses("<doc> <p>1</p> <p class='a'>2</p>

<p>3</p> <p>4</p> <p class='b'>5</p> <p>6</p> <p
class='c'>7</p> </doc>")
== "<doc> <p>1</p> <p class='a'>2</p> <p class='a'>3</p>
<p class='a'>4</p> <p class='b'>5</p> <p class='b'>6</p>
<p class='c'>7</p> </doc>";

Figure 4. LaSy program for adding class attributes

P ::= language I; F ∗ E ∗ (Program)
F ::= function t f((t x, ) ∗ ); (Function declaration)

| lookup t f((t x, ) ∗ ); (Lookup declaration)
E ::= require f((V,) ∗ ) == V; (Example)
V ::= any constant expression (Value)
t ::= I | I<(t,) ∗ > (type name)
f ::= I (function name)
x ::= I (variable name)
I ::= any valid identifier (Identifer)

Figure 5. The LaSy language.

§3.1, we also discuss the language that experts use to define DSLs
for use in LaSy in §3.2.

3.1 LaSy programming by example language
Fig. 5 gives the syntax of LaSy. Note that LaSy relies on a base lan-
guage, C# in our implementation, to provide basic types, functions,
and values, and therefore the precise syntax for values and identi-
fiers is omitted: type references are C# type references and values
are C# expressions.

Programs in LaSy consist of a set of function declarations and a
sequence of examples.

Language All LaSy programs begin with a reference to the DSL
being synthesized over. The language is defined beforehand by an
expert as described below in §3.2.

Functions The function declarations list the functions to be syn-
thesized. Each function has a name and type signature.

Examples and semantics Each example is a function call with
literals given for its arguments and its required return value. A
function f is considered to satisfy an example f(V1, . . . )==VR if
whenever f is called with arguments that are structurally equivalent
(.Equals() in C#) to V1, . . . , it returns a value that is structurally
equivalent to Vr .

Specifically, the examples are an ordered list dictating a se-
quence of program synthesis operations wherein the function the
example references is modified to satisfy the example without vi-
olating any previous example. At the beginning of the synthesis of
a LaSy program, all functions are empty (and therefore satisfy no
examples). The synthesis process is described in detail in §4.

The semantics of LaSy are naturally quite weak: the only guar-
antee is that if the synthesis succeeds, then the examples will be sat-
isfied. The synthesizer is heavily biased toward smaller programs
with fewer conditionals which tend to be more generalizable, but
does not guarantee it will find the smallest program satisfying all
of the examples. While the synthesizer implementation should act
in a manner predictable enough that the user can trust its programs
to be reasonable, ultimately only the user can determine if the syn-
thesized program actually fulfills the user’s intended purpose.

The result of the synthesizer is C# code which can be compiled
and used in any .NET program, including another LaSy program.



language strings;
assembly flashfill.dll class lasy.FlashFill;
start P;

P ::= CONDITIONAL(b, e);
b ::= ||(d, . . . , d);
d ::= &&(π, . . . , π);
π ::= m | !(m);
m ::= Match(v, r, k) | Match(f, r, k) | <(i, i);
i ::= Length(v) | GetPosition(v, p) | j;
j ::= PARAM;
e ::= Concatenate(f, . . . , f)

| SplitAndMerge(v, s, s, λf:e);
f ::= ConstStr(s) | SubStr(v,p,p) | Loop(λw:e)

| SubStr(f,p,p) | Trim(f)
| LASY FN(f) | RECURSE(f, j);

s ::= CONSTANT;
p ::= Pos(r,r,c) | CPos(k)

| CPos(c) | CPos(j) | RelPos(p,r,c);
c ::= k | k*w+k;
k ::= CONSTANT;
r ::= TokenSeq(T,. . . ,T) | ε;
v ::= PARAM;

rewrite &&(π 0, π 1) ==> &&(π 1, π 0);
rewrite ||(d 0, d 0) ==> d 0;
rewrite 0*w 0+k 0 ==> k 0;
rewrite Trim(Trim(f 0)) ==> f 0;

Figure 6. The extended FlashFill DSL; grammar rules not present
in the original DSL are in bold.

3.2 DSL definition language
An example DSL definition is given in Fig. 6. The DSL gives a
grammar which specifies what programs are possible as well as
what the semantics of those programs are. Additionally, the DSL
optionally provides a few different kinds of hints to the synthesizer
that allow the synthesizer to take advantage of expert knowledge of
the semantics.

Grammar The DSL is given as a context-free grammar. Each line
defines an option for a non-terminal given on the left of the ::=.
For most rules, the right side gives a DSL-defined function and
a list of non-terminals for the arguments to that function. Func-
tions are .NET functions defined in the class specified at the top of
the file. The semantics of the DSL must be functional; that is, all
functions called must be pure. Note that loops can be handled in a
pure way by using lambdas. In general a while loop can be writ-
ten using the function WhileLoop(condition, body, final)
= state => condition(state) ? WhileLoop(condition,
body, final)(body(state)) : final(state).

Rules other than DSL-defined functions are written in all-caps
starting with an underscore to distinguish them. These are used
for a few different purposes. First, some are items that are not
functions like constants, lambda variables, and lambda abstraction.
Some reference items depend on the LaSy program: PARAM corre-
sponds to any parameter of the correct type and LASY FN allows
for a call to another LaSy function. Those starting with a double
underscore are for functions with specialized synthesis strategies.
CONDITIONAL(b, e) means that some number of if...else

if...else branches are allowed where the conditions match the
non-terminal b and the branches match the non-terminal e; this
could be a DSL-defined function except for the fact that the synthe-
sizer is aware of the semantics of conditionals and has specialized
logic for learning them described in §5.2. Similarly, while not used

Algorithm 1: TDS(S, L)
input : sequence of examples S, DSL specification L
output : a program P that satisfies S or FAILURE

1 e← all grammar rules in L;
2 P0 ← ⊥;
3 failuresInARow← 0;
4 foreach i← 0, . . . , |S| − 1 do
5 if Pi(input(Si))=output(Si) then
6 Pi+1 ← Pi;
7 failuresInARow← 0;
8 else
9 contexts← ∅, exprs← e ∪ parameters of Pi;

10 foreach subexpression s of Pi do
11 Add λexpr.Pi[s/expr] to contexts;
12 Add s to exprs;

13 foreach branch B of Pi do
14 foreach subexpression s of B do
15 Add λexpr.B[s/expr] to contexts;

16 Pi+1 ← DBS(contexts, (S0, . . . , Si), exprs,L,
17 num branch(Pi)+failuresInARow);
18 if Pi+1 is TIMEOUT then
19 Pi+1 ← Pi;
20 failuresInARow← failuresInARow+ 1;
21 else
22 failuresInARow← 0;

23 if failuresInARow = 0 then
24 return P|S|;
25 else
26 return FAILURE;

in the example, FOR(i) and FOREACH(arr) have associated
synthesis strategies for certain forms of loops which are described
in §5.3.

Constant value generation The DSL may include code to decide
what constant values may appear in the program which may depend
on the examples (not shown in the figure). The simplest logic a
DSL could use is that any values in the examples may be used
as constants in the program. Other DSLs may have cases like
including only regular expressions from a preset list that match one
of the inputs or, when synthesizing XML, extracting the names of
the tags and attributes in the outputs.

Rewrite rules The rewrite rules allow the DSL designer to
express algebraic identities in their language to help prune the
search space of programs with identical semantics.

4. Test-Driven Synthesis
The Test-Driven Synthesis methodology synthesizes a program by
considering a sequence of examples in order and building up itera-
tively more complicated programs. We will describe the methodol-
ogy for a LaSy program with one function, but it easily generalizes
to multiple functions. §4.1 describes the algorithm in detail. §4.2
details how the iterative nature of the algorithm works. §4.3 dis-
cusses the importance of the order of examples.

4.1 Algorithm
The Test-Driven Synthesis algorithm (TDS in Algorithm 1) synthe-
sizes a program P given a sequence of examples S and a set of



base components. By “program” we mean a single function with a
specified set of input parameters and return type. By “example” we
mean a set of input values for those parameters and the correct out-
put value. By “component” we mean any of the set of expressions
known to the synthesizer which are used as the building blocks for
the synthesized program; the base components are the functions
referenced by the DSL in the LaSy program but components may
also be partially filled-in function calls or larger DSL expressions.

In the spirit of TDD, we build P up, a little at a time, to allow
synthesis of larger programs. Pi satisfies the first i examples; its
successor program Pi+1 is built by the DSL-based synthesis (DBS)
algorithm using the first i + 1 examples along with information
from Pi. The previous program Pi is used in three ways:
1. Its subexpressions are added to the component set.
2. Contexts to synthesize in are formed by removing each subex-

pression of Pi one at a time.
3. The number of branches may only exceed the number of

branches in Pi if failuresInARow > 0. New conditionals
are allowed only after failures in order to avoid overfitting to the
examples by creating a separate branch for each one.

EXAMPLE 1 (Walkthrough of TDS). We will use the DSL C ::=
CharAt(S,N)|ToUpper(C), S ::= Word(S,N)| PARAM, N ::=
0|1 where Word(s, n) selects the nth word from the string s
and PARAM is any function parameter and e is the set of all
grammar rules in that DSL to demonstrate synthesizing the function
f(a)⇒ToUpper(CharAt(Word(a, 1), 0)):

i=0: S0 = (a = "Sam Smith", RET = 'S'). exprs = e ∪ {a}
(the whole language plus the parameter a) and contexts =
{◦} (the set containing just the trivial context) because the
previous program P0 = ⊥, so there are no subexpressions
to remove to build contexts out of. The smallest program to
compute 'S' is to select the first character of a, and therefore
P1 = f(a)⇒ CharAt(a, 0).

i=1: S1 = (a = "Amy Smith", RET = 'S'). contexts =
{◦, CharAt(◦, 0), CharAt(a, ◦)} because P1 has two subex-
pressions that can be removed. exprs now also contains the
expression CharAt(a, 0). The simplest program consistent with
both examples selects the second word of a instead of a itself,
so DBS will generate Word(a, 1) to select the second word and
plug it into the second context to generate P2 = f(a) ⇒
CharAt(Word(a, 1), 0).

i=2: S2 = (a = "jane doe", RET = 'D'). contexts=
{◦, CharAt(◦, 0), CharAt(Word(◦, 1), 0), CharAt(Word(a, ◦),
0)}. exprs = e ∪ {a, Word(a, 1), CharAt(Word(a, 1))}. No-
tably, CharAt(a, 0) does not appear in exprs despite it appear-
ing in exprs for the i = 1 step because it is not a subexpres-
sion of P2. It is important that such temporary diversions are
forgotten so time is not wasted on them in later steps. DBS will
output P3 = f(a)⇒ToUpper(CharAt(Word(a, 1), 0))
which takes only a single step because it is the application of
ToUpper to P2 which appears in exprs.
We now discuss a few details of the algorithm to clarify the

description and justify some design choices.

Relation between TDS and DBS DBS is described later in §5. We
separate TDS from DBS both to show explicitly how the previous
program Pi is used when constructing the next program Pi+1 and
to highlight the two key novel ideas in our approach:
1. TDS encapsulates the new idea of treating the examples as a

sequence and using that fact to iteratively build up P by way
of a series of programs which are correct for a subset of the
input space defined by a prefix of the examples.

2. DBS encapsulates the parameterization by a DSL which allows
for the flexibility of the algorithm.

TDS runs DBS repeatedly, each time giving it the next exam-
ple from S along with expressions and contexts from the pro-
gram synthesized in the previous iteration. In other words, it it-
eratively synthesizes Pk for each k ≤ |S| where Pk is synthe-
sized using S0, S1, . . . , Sk−1 and the previous program Pk−1.
In this formulation, P0 is the empty program ⊥, or throw new
NotImplementedException(); in C#.

State As described, the only state kept between iterations is the
program Pi and the failure count. DBS does not maintain state,
and contexts and exprs depend only on Pi. Additionally, DBS
is passed all of the examples up to Si, not just Si. One could
imagine a more general problem definition where arbitrary (or at
least more) state could be kept between invocations of DBS, but
in our experience this tended to be more harmful than helpful:
preserving state essentially corresponds to not forgetting about
failed attempts.

No lookahead Although we have formulated the problem as giv-
ing TDS the sequence of tests, notice it does not look beyond test
Si to generate Pi+1. Hence in an interactive setting the user could
look at Pi+1 or its output when choosing Si+1.

4.2 Contexts and subexpressions
The intuition for the strategy of replacing subexpressions is that
the program generated so far is doing the correct computation
for some subset of the input space and is overspecialized to that
subset. In the example above, after the i = 0 step, we had the
program that returns the first character of the string instead of the
first character of the second word of the string. That program was
overspecialized to inputs where the first and second word start with
same letter. Selecting the first letter was the right computation but
on the wrong input, so filling in the context CharAt(◦, 0) with the
right input gave the desired program.

Each context represents a hypothesis about which part of
the program is correct and correspondingly that the expression
removed is overspecialized. Note that the expression appears in
the set of components, so if a small change is sufficient, the effort
to build it in previous iterations will not be wasted. Also, one such
hypothesis is always that the entire program is wrong and should
be replaced entirely.

Contexts are made out of each branch as well as the entire pro-
gram in order to better support building new conditional structures
(§5.2) using parts of one or more of the existing branches.

This theory does not limit contexts to a single hole, but, empiri-
cally, doing so keeps the number of contexts manageable and seems
to be sufficient in practice. Also, it allows the algorithm to prune
away locations based on whether they are reached when executing a
failing example: modifications elsewhere could not possibly affect
whether such examples are handled correctly. If we allowed multi-
ple modifications, the choice of modification points would have to
be changed after any modification affecting control flow.

4.3 Example order
[22] observes that in TDD the test case order can affect the ability of
the programmer to produce a program through small code changes.
Similarly, our algorithm may fail to synthesize a program if not
given examples in a good order—after all, one of our key insights
is that the ordering of examples is a useful input to the synthesizer.

As a “good” order is defined as being one that results in synthe-
sizing a program satisfying the specification the user has in mind,
it is unclear how to define a “good” order without referencing the
final synthesized program. Needless to say, such a definition cannot
be directly used to guide the generation of a sequence of examples.
This is unsatisfying, but we provide some intuition on what such
orders look like and §6.2 gives evidence that our synthesizer is ro-



bust to small variations in the order of examples. We thus remark
that a human could learn to produce such an ordering just like a
human can learn to produce TDD test cases in an order that easily
results in a correct program. Fundamentally, this is analogous to the
issue of how a human should generate a concise but sufficient set of
black-box tests for a program. Many guidelines exist, but there is no
precise methodology. Nonetheless, black-box testing is successful.

Once the user has covered the entire specification they had
in mind, they have produced a suite of simple test cases for the
algorithm they are synthesizing. As in TDD, to confirm that they
have in fact synthesized the correct procedure, the user should write
a few larger, more comprehensive tests of the procedure.

5. DSL-Based Synthesis
The DSL-Based Synthesis algorithm (DBS in Algorithm 2) is the
part of TDS that actually generates new programs. DBS takes as
input a set of examples S, a set of contexts C which generated
DSL expressions are plugged into to form synthesized programs
matching L, a set of expressions e, a DSL definition L, and a
maximum number of branches m. It outputs a new program P ′

that satisfies all examples in S or TIMEOUT if it is unable to do so.
The algorithm is built on five key concepts:

1. New programs are not generated directly; instead expressions
are generated and plugged into contexts provided as hints to nar-
row the search space. This is used by TDS to indirectly provide
the previous program as a hint (§4.2).

2. New expressions are formed from all compositions of expres-
sions according to the DSL L. To produce all smaller expres-
sions before generating larger ones, DBS runs as a series of iter-
ations, where, in each iteration, only expressions from previous
iterations are composed into new expressions. §5.1 discusses
generation of new expressions (and important optimizations).

3. A new branching structure will be synthesized if no generated
program satisfies all examples in S and m> 1. Only programs
containing at most m branches will be synthesized in order to
avoid over-specializing to the examples. Synthesis of condition-
als is discussed in detail in §5.2.

4. If the algorithm times out before a solution is found, it will re-
turn a special failure value TIMEOUT. In TDS, this case incre-
ments m allowing for more branches in the next run of DBS.

5. The search space can be reduced even further using specialized
strategies for some functions. We demonstrate this by describing
strategies we defined for a couple common loop forms in §5.3.

5.1 Choosing new expressions
New expressions to use in the contexts are generated by component-
based synthesis [14]. In component-based synthesis, a set of com-
ponents (expressions and methods) are provided as input and it-
eratively combined to produce expressions in order of increasing
size until an expression is generated that matches the specification.
In our case, the “specification” is the examples. As opposed to
previous component-based synthesis work, the generation of new
expressions is guided by a DSL L and instead of testing the ex-
pressions against the specification, they are used to fill in contexts
producing larger programs which are then tested.

In our system, all components are expressions marked with
which non-terminal in the grammar defined them. Methods are
represented as curried functions. The synthesizer generates new
expressions by taking one curried function and applying it to an
expression marked with the correct non-terminal. Each iteration of
the synthesizer does so for every valid combination of previously
generated expressions in order to generate programs of increasing
size. Representing methods as anonymous functions also simplifies

Algorithm 2: DBS(C, S, e, L, m)
input : set of contexts C, set of examples S, set of

expressions e to build new expressions from, DSL
specification L, maximum number of branches m

output : a program P ′ that satisfies S or TIMEOUT
/* Try generates one or more programs and if

one satisfies S, DBS returns it. */

1 Try loop strategies in a separate thread (§5.3);
2 allExprs← e;
3 while not timed out do
4 foreach c← C do
5 foreach expr ← allExprs do
6 Try c(expr);

7 Try conditional solutions up to m branches (§5.2);
8 allExprs← generate new expressions (§5.1);

9 return TIMEOUT;

handling methods that themselves take functions as arguments,
which are common in higher-order functions like map and fold.

As the number of components generated after k iterations is
exponential with the base being the number of grammar rules (i.e.,
functions and constants in the DSL) in the worst case, a DSL that is
too large will cause DBS to run out of time or memory before finding
a solution. In practice, around 40–50 grammar rules seems to be the
limit for DBS, but it depends greatly on the structure of the DSL. An
earlier version of DBS without the optimizations described below
could not handle more than around 20–30 grammar rules. Further
optimizations to better prune the search space could possibly allow
for even larger DSLs.

Optimizations
Minimizing the number of generated expressions is important for
performance. Redundant expressions are eliminated in two ways:
the first is syntactic and hence it is fast and always valid, while
the second is semantic and valid only when an expression does not
take on multiple values in a single execution (e.g., if the program is
recursive).

Syntactic All expressions constructed are rewritten into canonical
forms according to the rewrite rules in the DSL and duplicates
are discarded. For example, x+y and y+x are written differently
but can be rewritten into the same form so one will be discarded.
DBS will only accept sets of rewrite rules which are acyclic
(once commutativity and other easily broken cycles are removed)
to ensure there is a canonical form. Related to this, constant folding
is applied where possible, so, for example, 2*5 and 5+5 would both
be constant folded to 10, further reducing the search space.

Semantic The vast majority of the time, an expression takes on
only a single value for each example input. In other words, the ex-
pression is equivalent to a lookup table from the example being
executed to its value on that example. Only expressions with dis-
tinct values are interesting, so, for example x*x and 2+x would be
considered identical if the only example inputs were x = 2 and
x = -1. This is similar to the redundant expression elimination in
version space algebras [18]. The exceptions are if the expression
is part of a recursive program or lambda expression, in which case
this optimization is not used.

5.2 Conditionals
So far we have not considered synthesizing programs containing
conditionals, which are of course necessary for most programs. We



consider first synthesizing programs where a single cascading se-
quence of if...else if...else expressions occur at the top-
level of the function body, with each branch not containing condi-
tionals. Then the goal is to have as few branches in the one top-level
conditional as possible. The problem is to partition the examples
into which-branch-handles-them to achieve this goal.

For every program p DBS tries, the set of examples it handles
correctly is recorded and called T (p). If T (p) = S (all examples
handled), p is a correct solution and can be returned. Otherwise,
each set of programs Q (where |Q| ≤ m) whose union of handled
examples

⋃
p∈Q T (p) equals S is a candidate for a solution with

appropriate conditionals. To be a solution,Q also needs guards that
lead examples to a branch that is valid for them; to simplify this,
whenever a boolean expression g is generated, the set of examples
it returns true for, B(g), is recorded. The sets Q are considered in
order of increasing size, so if there are multiple solutions, the one
with the fewest branches will be chosen.

If the conditional does not appear at the top-level, then it must
appear as the argument to some function. To handle this case, we
note that if every branch of the conditional generated as described
already happens to contain a call to a function f with different
arguments, then it could be rewritten such that the call to f occurs
outside of the conditional if that is allowed by the DSL. In that case,
we can say that all of the branches match the context f(◦).

In the algorithm, for each non-terminal the DSL allows for
conditionals at, each program p is put into zero or more buckets
labeled with the context that non-terminal appears in. For example,
if the argument of f may be a conditional and p = f(f(x)) then p
would be put in the buckets for f(◦) and f(f(◦)). Then the same
algorithm as above is run for each bucket with the conditionals
being rewritten to appear inside the context. Inserting multiple
conditionals just involves following this logic multiple times.

5.3 Loops
The primary way DBS handles loops is to simply not do anything
special at all: recursion and calling higher-order functions like map
and fold are handled by the algorithm as described so far. As
described in §3.2, a general WhileLoop higher-order function can
be used to express arbitrary loops that DBS may synthesize like any
other DSL-defined function. On the other hand, the use of loops
in code often corresponds to patterns in the input/output examples.
This section discusses two such common patterns we have written
strategies for; experts designing DSLs may additionally define their
own strategies for other forms of loops.

These can be used in a DSL via the FOREACH(E) or FOR(E)
rules where E is the non-terminal for the body of the loop.

Foreach The “foreach” loop strategy’s hypothesis is that there is
a 1-to-1 correspondence between an input array and an output array.
Assuming that hypothesis, the examples can be split into one exam-
ple for each element where i is the index, current is the element
at that index, and acc is the array of outputs for previous indexes:
(in = {3, 5, 4}, RET = {9, 25, 16}) would become the examples
(in = {3, 5, 4}, i = 0, current = 3, acc = {}, RET = 9),
(in = {3, 5, 4}, i = 1, current = 5, acc = {3}, RET = 25),
and (in = {3, 5, 4}, i = 2, current = 4, acc = {9, 25}, RET =
16). Those examples could be used to synthesize the loop body
current*current using TDS. The strategy includes the boiler-
plate code to take the loop body current*current and output
a foreach loop over the input array.

That example is overly simple as such a computation could eas-
ily be captured by a map. However, loop strategies also allow for
loops that are not as easily expressed with higher-order functions.
For example, the loop bodies examples could also include the val-
ues computed so far: (in = {5, 2, 3}, RET = {5, 7, 10}) would be-
come (in = {5, 2, 3}, i = 0, current = 5, acc = {}, RET = 5),

(in = {5, 2, 3}, i = 1, current = 2, acc = {5}, RET = 7), and
(in = {5, 2, 3}, i = 2, current = 3, acc = {5, 7}, RET = 10).
Then the synthesized loop body would be acc.Length > 0 ?
current + acc.Last() : current, which could be rewritten
into a loop computing the cumulative sum of in.

For Patterns may also show up across examples. For instance,
given the examples (in = 0, RET = 0), (in = 1, RET = 1), (in =
2, RET = 3), (in = 3, RET = 6) we can see, looking across ex-
amples, that for each input value the result should be the result
for the previous input value plus the new input (which is an in-
direct way of saying “sum the numbers up to in”). In terms of
loop strategies, the hypothesis is that pairs of examples where the
input in differ by one correspond to adjacent loop iterations so
by combining those pairs we can get examples for the loop body
where i is current value of the loop iterator and acc is the re-
turn value of the i − 1 iteration: (i = 1, acc = 0, RET = 1),
(i = 2, acc = 1, RET = 3), and (i = 3, acc = 3, RET = 6).
Then TDS will give i + acc for the loop body. The loop strategy
will identify that (in = 0, RET = 0) indicates that the loop iterator
should start at 0 and the accumulator should start at 0 and produce a
for loop for(int i = 1; i <= in; i++) acc = i + acc;.

Other strategies Different loop strategies can give different in-
formation like including the index in a foreach or giving acc cor-
responding to going in reverse order. Furthermore, the concept of
spliting up arrays by element to find patterns can also be applied to
splitting strings (by length or delimiters), XML nodes, or whatever
other structured data may be in the target domain.

5.4 Conditionals and loops, a general theory
DSL definitions contain rules with and without specialized strate-
gies. Most rules, including all DSL-defined functions, do not have
specialized strategies so expressions using those rules are built us-
ing the default strategy of searching through the semantically dis-
tinct expressions (using the example inputs to decide which expres-
sions are distinguishable). On other other hand, we have defined
strategies for conditionals and loops that use the example outputs
as well as the inputs to power more directed approaches to learning
those constructs. While we referenced the output values directly in
the explanation of the strategies for loops, the discussion of condi-
tionals only referenced them indirectly by keeping track of which
examples a program was correct for.

The strategies for conditionals and loops should be considered
as just different instances of the same concept. While condition-
als merely select a subset of the examples for each branch, loops
do larger rewrites of the examples used in the recursive calls to
the synthesizer. Theoretically, a DSL designer could include other
strategies like inverses of DSL-defined functions or a polynomial
solver for synthesizing arithmetic. We presently omit such func-
tionality because we believe it places undue burden on the DSL
designer but intend to investigate it in future work.

6. Evaluation
Our evaluation demonstrates that TDS is sufficiently powerful and
general to synthesize non-trivial—albeit small—programs in mul-
tiple domains from small sequences of real world examples ob-
tained from help forums. We also compare TDS to to Sketch [30],
the present state-of-the-art in domain-agnostic program synthesis,
and to state-of-the-art specialized synthesizers where applicable.

Furthermore, we explored how sensitive our iterative synthesis
technique actually is to the precise ordering of examples, showing
that example order is significant to speed or ability to synthesize
on a non-trivial proportion of the examples, especially on larger
programs. We also validated some of our design decisions by se-
lectively disabling parts of our algorithm.



All experiments were run on a machine with a quad core Intel
Xeon W3520 2.66GHz processor and 6GB of RAM.

§6.1 describes the benchmarks used in our experiment and our
success in synthesizing them and compares TDS to prior specialized
synthesizers where applicable. §6.2 investigates the effect of exam-
ple ordering to our synthesizer’s performance. §6.3 breaks down
the usefulness of the different parts of our algorithm. §6.4 evaluates
performance for our synthesizer and validates our timeout choice.

6.1 Benchmarks
We evaluate our technique in four domains: §6.1.1 compares our
technique to a state-of-the-art specialized programming by example
system for string transformations, §6.1.2 compares our technique
to a start-of-the-art specialized programming by example system
for table transformations, §6.1.3 discusses using our system for the
novel domain of XML transformations, while finally §6.1.4 shows
our technique is able to automate coding in TDD for introductory
programming problems.

For the first three, the example sequences used and output of our
synthesizer can be found at https://homes.cs.washington.
edu/~perelman/publications/pldi14-tds.zip; the last sec-
tion’s programs are not public.

6.1.1 String transformations
String transformation programs take as input one or more strings
and output a string constructed from the input using mainly sub-
string and concatenation operations.

Strings are a natural format for input/output examples that often
appear in real-world end-user programming tasks as recent work
by Gulwani et al. [6] has shown: their work became the FlashFill
feature in Excel 2013 [1]. Unlike FlashFill, TDS does not use careful
reasoning about the domain of strings, but it is still able to quickly
synthesize many of the same examples as well as some similar
programs that the prior work (i.e., FlashFill) cannot synthesize.

Benchmarks To compare against FlashFill, we first defined ex-
actly the FlashFill DSL in our DSL definition language and ran
our synthesizer on the examples which appear in [6] to confirm we
could synthesize them. Then we made a few modifications to the
DSL which are shown in Fig. 6 to make it more general; specif-
ically, we allowed nested substring operations, substring indexes
dependent on the loop variable, and calls to other LaSy functions.

In addition to WordWrap and the examples from [6] we wrote
test case sequences for 7 simple real world string manipulation ex-
amples outside of the scope of FlashFill but handled by our ex-
tended DSL including selecting the two digit year from a date (re-
quires nested substrings), reversing a string (requires substring in-
dexes dependent on the loop variable), and bibliography examples
like the one in Fig. 2 (requires a user-defined lookup).

Results Each of the 15 example sequences contains 1–8 examples
except for word wrap which uses 24 examples. 5 of the examples
can be synthesized in under a second. 6 take more than 1 second
but under 5 seconds, while the other 4 finish in under 25 seconds.
FlashFill synthesizes all of the examples it can handle in well under
a second. Simply by specifying the DSL, our domain-agnostic syn-
thesis technique nears the performance of a state-of-the-art special-
ized synthesis technique while maintaining the ability to generate
more complicated control flow structures.

We coded all examples using the corresponding DSLs in Sketch
and none of them completed within 10 minutes.

6.1.2 Table transformations
Table transformations convert spreadsheet tables between different
formats by rearranging and copying a table’s cells.

Benchmarks [11] gives a DSL and synthesis algorithm for these
transformations along with a collection of benchmarks the authors
found on online help forums. We defined their DSL for our synthe-
sizer and ran it on their benchmarks.

For additional benchmarks not handled by [11] we added more
predicates to the grammar to allow it to handle a wider range
of real world normalization scenarios. For example, our extended
grammar can support converting various non-standard spreadsheets
with subheaders into normalized relational tables.

Results Each of the 8 benchmarks uses 1–6 examples. TDS syn-
thesizes most of them in under 10 seconds; 2 take 30 seconds and
one takes a full minute.

[11] says Sketch was unable to synthesize their benchmarks so
we did not attempt to run the benchmarks using Sketch.

6.1.3 XML transformations
XML transformations involve some combination of modifying an
XML tree structure and tag attributes and string transformations on
the content of the XML nodes.

Benchmarks We selected 10 different real world examples from
online help forums and constructed a DSL able to express the
operations necessary to synthesize programs for all of them. Two
of the examples appear in §2.2.

One transformation involved putting a tag around every word,
even when words had tags within them, which was easiest to ex-
press treating the words as strings instead of as XML. Making
the string and XML DSLs work together required simply putting
the functions to convert between the two in the DSL. This kind
of cross-domain computation shows the strength of our domain-
agnostic approach.

Results Most of the benchmarks used a single example while
the rest used no more than 3. TDS synthesizes all but two of the
benchmarks in under 10 seconds and the remaining two in under
20 seconds.

We also implemented the DSL and benchmarks in Sketch,
which was unable to synthesize any of them within 10 minutes.

6.1.4 Pex4Fun programming game
Motivation Although we believe our end-user programming sce-
narios are compelling, we wanted to test our synthesizer in a sce-
nario closer to the TDD programming style it was inspired by and
get a source for some more challenging functions to synthesize. To
that end, we had our synthesizer play the Pex4Fun [32] program-
ming game where a player is challenged to implement an unknown
function given only a few examples. Each time the player thinks
they have a solution, the Pex [31] test generation tool uses dynamic
symbolic execution to compare the player’s code to a secret refer-
ence solution and generates a distinguishing input if the player’s
code does not match the specification. Pex provides the test for
the test step of the TDD while the player is performing the pro-
gramming step without full knowledge of the specification they are
coding for. This is a more “pure” form of TDD as the player is not
biased in their coding by knowing the specification, giving a closer
parallel to our synthesizer which does not have knowledge of the
specification of the function it is synthesizing.

Experiment description We use a single DSL with a set of 40
simple string and int functions which may be combined in any
type-safe way to show that while a carefully constructed DSL can
be given to our synthesizer to make it perform especially well in a
given domain, it can still successfully synthesize programs using
a less specialized DSL capable of describing a wider range of
programs. Note that our DSL was written without looking at the

https://homes.cs.washington.edu/~perelman/publications/pldi14-tds.zip
https://homes.cs.washington.edu/~perelman/publications/pldi14-tds.zip
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Pex4Fun puzzles and therefore ended up missing some functions
necessary for some puzzles like bitwise operations.

For each puzzle in the Pex4Fun data, we had our algorithm play
Pex4Fun for a maximum of 7 iterations, after which the synthesizer
was considered to have failed if it still had not produced a solution.
This may seem like too few iterations, but it is more calls to Pex
than most users used for any of the puzzles.

For some of the puzzles, using Pex to generate test cases failed
to generate a solution despite manual inspection determining that
the puzzles were well within the capabilities of the synthesizer and
the DSL used. In such cases, a sequence of test cases was generated
manually to synthesize solutions to those puzzles.

Benchmarks The puzzles our synthesizer could synthesize in-
cluded, among many others, factorial, swapping elements of an ar-
ray, and summing numbers in a string delimited by delimiter spec-
ified on the first line of the string and some more trivial examples
like concatenating the first and last element of a string array.

The remaining unsynthesized puzzles either involved looping
structures not covered by our strategies (e.g., count the number
of steps of the 3n + 1 problem2 needed to reach 1), components
not in our component set (e.g. compute bitwise or), or arithmetic
expressions too large to construct using component-based synthesis
(e.g. compute the value of a specific cubic polynomial).

Results We ran our experiment across 172 randomly selected
puzzles from Pex4Fun. The synthesizer found solutions for 72 of
those. For 60 of those, the test cases generated by Pex were suffi-
cient, but for another 12 the test cases had to be written manually.

6.2 Example ordering
We hypothesized that example ordering is useful and TDS is robust
to small variations in example order. For the vast majority of our
benchmarks, the number of examples is small and their order is
unimportant; the use of contexts and subexpressions from the pre-
vious program is important (when not synthesizing from a single

2 https://en.wikipedia.org/wiki/Collatz_conjecture
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example) as is shown in §6.3 by disabling them, but the specific
order of the examples is not. On the other hand, the 12 Pex4Fun
puzzles which required manually written example sequences were
difficult enough for TDS that the ordering of examples was in fact
valuable to the algorithm. To give an idea of how important the or-
dering actually was, we ran TDS on randomly reordered copies of
those example sequences.

Fig. 7 shows the timing results for the example sequences
that were successfully synthesized. Each circle is one example
sequence, and the line shows geometric mean of circles.

The x-coordinate measures how far from the optimal example
sequence it was where 0 is the optimal sequence and 1 is the reverse
of the optimal sequence. Specifically, the value is the number of
inversions3 between the two sequences divided by the maximum
possible number of inversions (n(n−1)

2
for a sequence of length n).

The y-coordinate is the time it took to synthesize the solution using
the random sequence measured in the time it took to synthesize
using the optimal sequence. Note that the y-axis is a log scale.

Fig. 8 shows for how many of the reorderings the program
was not successfully synthesized. The x-axis is the same; each
bar corresponds to a range of normalized inversion counts. The
bar heights are the proportion of sequences for which a program
could not be synthesized, and the numbers above the bars are the
absolute counts. There are more examples toward the middle as the
sequences were selected uniformly at random, and there are more
possible sequences in the middle.

The charts show two important properties of TDS. First, it does
in fact depend on example ordering: large changes to the example
ordering make it take much longer to find a solution or fail to find
a solution at all. Second, it is robust to small changes in the
example ordering: for normalized inversion counts less than 0.3,
fewer than half the reorderings failed and those that succeeded took
on average less than three times as long as the optimal ordering.

Those 12 examples show the worst case for our synthesizer. For
the other 60 Pex4Fun puzzles with test cases sequences from Pex,

3 # of example pairs that have different order in the two lists

https://en.wikipedia.org/wiki/Collatz_conjecture


51 of them were also successfully synthesized with those test cases
in reverse order. For the rest of the examples, nearly all could be
synthesized with the examples sequence in reverse order, at worst
slowed down by a factor of 3. This indicates that the sensitivity
to test case ordering is affected by how complicated the program
being synthesized is.

6.3 Significance of various parts of algorithm
In order to evaluate the usefulness of the different parts of our
algorithm, we ran our benchmarks with parts of it disabled. Fig. 9
shows how many of the benchmarks were synthesized under each
limited version of the algorithm.

Iterative synthesis The iterative synthesis strategy employed by
TDS is implemented by passing contexts and subexpressions from
the previous program to DBS. We disabled these two pieces of infor-
mation individually and together. The Pex4Fun and table transfor-
mation benchmarks were most affected by the removal of features
from TDS due to working with larger programs. Notably, we see
that either the subexpressions or contexts alone is helpful, but
when combined they are significantly more powerful.

DSL-based synthesis We also disabled the use of the DSL when
generating components in DBS, so it instead would be limited only
by the types of expressions. There are no “no DSL” bars for the
Pex4Fun benchmarks because the Pex4Fun DSL already only used
the types, so that configuration is identical to the “full” configura-
tion. Many of the other programs were synthesized from just a sin-
gle example, so the weakening of TDS did not have a large effect,
but this success was achieved due to the power DBS gained from
the DSL as can be seen from the fact that very few of the end-user
benchmarks could be synthesized without access to the DSL.

6.4 Performance
Fig. 10 shows a CDF of all execution times of all of the DBS runs
used in our experiments. This chart shows that DBS is quite effi-
cient with a median running time of approximately 2 seconds
and running in under 10 seconds around 75% of the time.

Timeout Throughout the experiments, we used a 3 minute time-
out. Only very rarely in our experiments did DBS ever run for any-
where near 3 minutes without timing out. There is a visible bump
around 60–70 seconds after which the line is almost flat, indicating
that it is very unlikely that giving DBS a small amount of additional
time would have made any noticeable difference in our results. This
is further verified by ad-hoc experience that without a timeout, DBS
runs for over 30 minutes without a result or runs out of memory.

7. Related Work
Programming by example Programming by example (PBE) [7],
or inductive programming [16], is a subfield of program synthe-
sis covering many different techniques where a program is incom-
pletely specified by examples (inputs paired with explicit outputs or
a quality function for results). In all of the prior work, all of the ex-
amples are given at once, although much of it uses some variant of
genetic programming [23] where programs are built and iteratively
mutated toward a solution or CEGIS [30] where new programs are
constructed until a solver fails to provide a counterexample, similar
to how our synthesizer was used with Pex in the Pex4Fun experi-
ment. A key idea in the recent prior work is reducing the search
space using version space algebras [6, 8, 11, 18, 28, 29], which we
avoid in order to maintain generality as they must be constructed
for a given domain.

TDS is most similar to prior work on component-based synthesis
and genetic programming.

Component-based synthesis Component-based synthesis is a
family of techniques that perform program synthesis by starting
with a set of “components”—that is, expressions and functions—
and considering actual programs constructed from combining these
components (as opposed to the version space algebra approach
where the actual program is merely an artifact that can be recov-
ered after the main synthesis algorithm is complete). Component-
based synthesis has been successfully applied to a wide variety
of domains including bit-vector algorithms [9], string transforma-
tions [24], peephole optimizations [5], type convertors [21, 27],
deobfuscation [13], and geometry constructions [10].

The actual search is performed in different ways dictated by
the information required be known about the components. For
example, Gulwani et al. [9] used an SMT solver because their
components are standard bitwise arithmetic operators, so they have
easily expressible logical specifications. Also, this is the prior work
we found with the largest program synthesized by component-
based synthesis at 16 lines of code, which took around an hour to
synthesize. In comparison, our algorithm can synthesize programs
of up to 20 lines of code within 400 seconds consisting of arbitrary
user-defined functions.

The prior work most similar to our DBS is by Katayama [15].
Like our algorithm, any function can be a component and it main-
tains an explicit list of the components generated so far and uses
them when generating components on the next step. It finds and
prunes redundant components by evaluating every component on a
subset of the examples and only keeping components that evaluate
to different values on some example. This is similar to the pruning
done by DBS except that DBS uses all examples seen so far.

Genetic programming Genetic programming [23] synthesizes
programs by performing a genetic search which involves using
previous candidate programs to produce new candidate programs.
The primary difference between our work and genetic program-
ming is that genetic programming is directed by a quality function
that tells how well a given program performs at the desired task and
relies on that quality function being well-behaved while our search
is only given a boolean failure or success on each test case.

ADATE [25] takes as input a set of test inputs and quality
functions for their outputs and performs a genetic search where
programs are mutated and only programs that improve or maintain
the sum of the quality function values are kept. This formulation
means that ADATE has to choose which test case to improve next,
unlike in our system where the first k test cases must pass before
the synthesizer considers test case k + 1.

Template-based synthesis Program sketching [30] is a form of
program synthesis where the programmer writes a sketch, i.e., a
partial program with holes, and provides a specification the solution
must satisfy. LaSy can be seen as a less precise sketch with a DSL
instead of partial bodies: in fact, we ported our LaSy programs to
Sketch in order to do a comparison for our evaluation. However, the
search strategy is very different: our synthesizer fills in the holes
using component-based synthesis (as opposed to using SAT/SMT
solvers) and checks against input/output examples (instead of a
more complete specification).

Syntax-guided synthesis Our DSL-based approach is similar to
the syntax-guided synthesis idea proposed in [2], but is more flexi-
ble by allowing for a DSL that uses arbitrary .NET functions. That
work [2] only presents simple prototype synthesizers which lack
the power of TDS. SyGuS’s use of constraints instead of examples
makes a direct comparison of synthesizer technologies difficult.

Rosette [33] is an extension to the Racket programming lan-
guage which allows easy access to a solver for applications includ-
ing synthesis over DSLs embedded in Racket. While the program-
mer experience is much sleeker than with SyGuS or LaSy, the syn-



thesis engine suffers similar limitations to Sketch: it cannot effi-
ciently handle types that don’t map to an SMT solver.

Automated program repair In automated program repair [19, 34,
35], many passing and failing test cases are given along with a
buggy human-written program to repair. This is a different task
because the automated program repair systems are not expected to
add new functionality, only fix existing functionality. As a result,
the existing code can be effectively used to guide many repairs.

In angelic debugging [3], expressions that are likely to be the
right place to make a change are identified. For each expression,
it determines if it is a possible repair point by taking a set of
passing and failing test cases and checking if for each test case,
there is some alternative value for that expression that makes the
test case pass. Angelic debugging does not attempt to synthesize
new expressions; it only identifies the possible locations for fixes.
Like our algorithm, angelic debugging assumes that a program can
be repaired by changing only a single expression. In fact, angelic
debugging could be used as a preprocessing step in our algorithm to
prune the choices for modification points or determine that a simple
modification is unlikely to work.

8. Conclusions and Future Work
Our synthesis technique advances the state-of-the-art in component-
based synthesis which has been restricted to synthesis of straight-
line code fragments over a given set of components. Our overall
test-driven synthesis methodology enables synthesis of programs
containing conditionals and loops over a given set of components.
As future work, we intend to explore including information about
function inverses in the DSL, expanding the range of control flow
structures supported by our synthesizer, use the synthesizer to gen-
erate feedback for the Pex4Fun game and introductory program-
ming assignments, create an interface for performing end-user pro-
gramming tasks with LaSy, and explore other applications for TDS
utilizing its incremental nature including updating sythesized code
as a specification changes or fixing code from another synthesizer
that generates approximate or incomplete solutions.
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