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Abstract

We describe an algorithm for segmenting a novel image based on the
available segmentation of another image. The algorithm consists of
two stages. In the first stage we construct a locally connected graph
to represent the novel image. This graph is obtained by inheriting
local connectivity between pixels based on the similarity of small
neighborhoods in the two images. In the second stage a graph par-
ititioning algorithm is used to partition the graph and recover the
resulting segments in the image. We present experimental results
on synthetic and real images and conclude with a discussion of the
strengths and limitations of the method.

1 Introduction

One of the dominant views in the study of perceptual grouping comes from the
Gestalt school of thought which proposes a set of cues that aid and direct the
visual system in organizing the visual field. This process can be divided into three
stages: feature extraction, cue integration and grouping. Examples of features
include brightness, local color histograms, oriented filter responses, etc. In the cue
integration stage, similarities between the features are computed and combined to
produce affinities between all pairs of pixels. Finally, the set of pairwise affinities
are fed to a grouping engine which attempts to partition the pixels in an optimal
manner, e.g. by maximizing within-group affinity and minimizing between-group
affinity.

While significant progress has been made in feature extraction and grouping, the
problem of cue combination remains unsolved1. What makes cue integration diffi-
cult is that the cues very often contradict one another, and there is no single correct
solution. At one level, there are the obvious ambiguities, e.g. whether polka dots
should be grouped as a region or as individual elements. At another level, however,
are the less obvious problems, e.g. a texture cue acting on a brightness boundary
to produce a spurious long, thin group [8, 4].

One general approach to this problem is that of precomputing several cues in parallel
followed by solving for optimal combination weights or “cue gatings.” Poggio et al.

1As Palmer notes in [7], “the visual system clearly integrates over many grouping
factors, but we do not yet understand how it does so.”
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Figure 1: Illustration of the shred representation: (a) example image shown with
two sample image shreds outlined in gray, (b) partition image reresenting the hand-
labelled segmentation, (c) zoomed-in shred pairs. Each shred pair consists of an
image shred, shown at top, and its associated segment shred, shown at bottom,
which indicates the pixels belonging to the same segment as the pixel at the center.

[9] present a solution based on a Markov Random Field with line processes driven by
brightness edges. Malik et al. [4] demonstrate the use of a number of hand designed
rules for cue gating based on local measures such as “texturedness.” Meilă and Shi
[5] adopt a learning framework based on hand labelled segmentations in which cue
weightings are tuned by gradient descent.

The problem that arises in such approaches is that the predefined cues are imper-
fect and can lead to unrecoverable segmentation errors downstream. This is not
to say that certain ad hoc rules are totally ineffective – to be certain, what suc-
cess has been attained thus far in automatic image segmentation is due in a large
part to heuristics based on ecological statistics that are “right most of the time.”
In this paper, however, we depart from this general strategy and explore an ap-
proach that makes active use of hand-labelled segmentations of example images in
a non-parametric fashion. Using a graph-theoretic framework, we show how local
connections between pixels in novel images can be “inherited” from labelled exam-
ples based on a simple measure of similarity of image neighborhoods between the
novel and example images. We then show how this locally connected graph can be
partitioned to obtain a segmentation of the image.

The organization of this paper is as follows. In Section 2 we discuss our approach
to segmentation by example, with the two key stages of matching and assembly.
Experimental results appear in Section 3, followed by a discussion on related work
in Section 4. Finally we conclude and discuss open issues in Section 5.

2 Our Approach

Our algorithm is based on assembling a segmentation of an image by matching
parts of a novel image (the test image) to parts of a collection of pre-segmented
images (the training images). We refer to these parts as shreds. Given an image
and its segmentation2, a sliding window of radius r is used to break the image
and its segmentation into a collection of paired shreds consisting of an image shred
and a segment shred, denoted by the pair [Ii, Si] for the ith pixel. Each pixel is
identified with the shred pair centered on it. The segment shred, which originally
contains integer segment labels to indicate the segment membership of each pixel,
is simplified into a {0/1} map indicating whether a pixel belongs to the the same
segment as the center pixel or not; see Figure 1. In the case where we only want

2The segmentation is represented by a partition image, which is an integer-valued image
indicating to which segment each pixel belongs.
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Figure 2: Illustration of shred matching: (a) test image with sample shred outlined
in gray, (b) zoomed-in image shred I ′i; the question mark denotes its corresponding
segment shred S′

i that we wish to find, (c-e) a few representative image/segment
shred pairs from the training image. The best matching image shred in this case is
(e).

to separate the foreground from the background, this representation reduces to the
one used by Borenstein and Ullman [1]. However in the more general case of an
image containing multiple segments, we will show that this representation can also
be considered as a connectivity pattern in a graph.

The process of segmentation for a test image subsequently breaks down into two
stages: matching and assembly.

2.1 Matching

In the matching stage, for every test image shred I ′i we seek a segment shred S′
i

that best segments it. This is done by finding a shred pair [Ij , Sj ] that minimizes
a distance function d(·, ·) over all shred pairs in the training dataset and the image
shred I ′i. Naively minimizing the distance d(I ′i, Ij) will not work since this would
require that all possible adjacent surfaces that are present in the novel image be
present in the training dataset. This is an unreasonable requirement, and it has a
simple solution. Since the only portion of a shred we are interested in is the set of
pixels that will belong to the same segment as the pixel at the center, we perform
the minimization over the pixels labelled 1 in the corresponding segment shred Sj .
This is done by using the segment shred as a mask:

S′
i = arg min

Sj

d(I ′i ◦ Sj , Ij ◦ Sj) (1)

Here ◦ denotes pixelwise multiplication. This process is illustrated in Figure 2.

In our experiments we use a simple sum-of-squared-differences (SSD) distance func-
tion normalized by mask area:

d(I ′i ◦ Sj , Ij ◦ Sj) =

∑
x,y Sj(x, y) [I ′i(x, y)− Ij(x, y)]2[∑

x,y Sj(x, y)
]α (2)

The real valued parameter α > 1 is used to bias the search in favor of matches with
larger mask area. We set α = 1.7 in all of our experiments.

2.2 Assembly

Once we have associated a segment shred with each image shred in the test image,
we need to put these pieces together to come up with a segmentation. If we now
consider the pixels in the image as vertices of a graph, the segment shred S′

i can be
interpreted as local connectivity information for pixel i as illustrated in Figure 3.
Using this information we can now construct a sparse directed graph Gd with the the
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Figure 3: Illustration of local graph connectivity: (a) example of 3 × 3 segment
shred, (b) representation as a 3× 3 matrix, (c) induced directed graph.

property that there is an edge from vertex i to vertex j iff the pixel corresponding to
j has value 1 in the segment shred S′

i. This connectivity is asymmetric; we reduce
the graph Gd to an undirected graph G by keeping only the edges between pairs of
pixels that have a pair of edges running both ways.

In an ideal world this would be sufficent, since if we knew the correct connectivity
pattern for each pixel, the graph G would contain a connected component corre-
sponding to each segment in the image and our problem would be solved. However,
this is not so. Since there are spurious edges present in the graph (due to bad
matches, or neighborhoods not present in the training data precisely) we end up
with a graph that has a number of distinct clumps of vertices loosely connected to
each other. Hence we need to partition this graph into components in a manner that
captures as much of the connectivity of the graph as possible. The problem reduces
to one of graph partitioning, a task for which several algorithms are available. In
our experiments we use Normalized Cuts [12].

2.2.1 Normalized Cut

The minimum Normalized Cut is a vertex partitioning of a graph G(V,E) into two
disjoint subsets that maximizes the separation between the two sets of vertices while
maximizing the connectivity within the sets. Formally, we want to find A ∪ B =
V,A ∩B = ∅ to minimize

NCut(A,B) .= Cut(A,B)
(

1
Vol(A)

+
1

Vol(B)

)
(3)

where
Cut(A,B) .=

∑
u∈A,v∈B

w(u, v), Vol(A) .=
∑

u∈A,v∈V

w(u, v)

and w(u, v) denotes the weight on the edge connecting the vertices u and v. In our
case it is 1 if u and v are connected else it is 0.

Solving for the exact minimum of the above objective function is an NP-Hard prob-
lem. The second eigenvector of the generalized eigenvalue problem Wx = λDx
approximates the optimal partition, where W is the connectivity matrix for the
graph and D is a diagonal matrix of row sums of W : Duu =

∑
v∈V w(u, v).

The above formulation can be extended to a k-partitioning of the graph by using
additional eigenvectors [11, 4, 6]. We do so by stacking the 2nd to the kth eigen-
vectors columnwise, normalizing the rows of the resulting matrix, and performing
k-means clustering on them. The only parameter that the algorithm needs is the
number of partitions. Despite the large number of vertices, the eigenvalue problem
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Figure 4: Illustration of segmentation by example: (a) training image, (b) hand-
labelled segmentation containing 3 groups, (c) test image (the Kanizsa rectangle),
(d) computed segmentation, using r = 5 and k = 4. The image dimensions are
64× 64.

is not computationally hard, since the matrix W is sparse, and efficient methods
for calculating eigenvectors of sparse matrices are readily available.

We do not deal with the problem of choosing k in this paper. The problem can
attacked by looking at the eigengap in the spectrum of D−1W . A large eigengap
between the kth and the k + 1st eigenvalues is indicative of a good clustering into
k clusters.

3 Experiments

We demonstrate the performance of our algorithm on two example images. The first
experiment was done on a pair of synthetic images. Figure 4 shows the results. The
training image contains an instance of a closed contour and a region of pinstripe
texture. The test image (the Kanizsa rectangle) is composed of the same basic
content in a different spatial arrangement. The computed segmentation of the
testing image is consistent with the segmentation of the training image.

The second experiment, shown in Figure 5, uses a pair of photographs of a cell
phone and a piece of wire. The first image was hand-segmented and used as a
training example. The algorithm correctly interprets the black wire as a contour
boundary and partitioned the test image correctly.

In both examples, the window size was set to 11 × 11 (r = 5). The number of
components k for clustering was set to 4 and 7, respectively.

4 Related Work

Most closely related to our approach is the recent work of Borenstein and Ullman [1]
which uses hand-labelled image fragments to stitch together figure/ground maps for
images of horses. Their work, however, does not generalize to more than two seg-
ments (foreground/background) and they use a greedy algorithm to resolve conflicts
between the labels in overlapping fragments.

The inspiration for our approach comes from the work on texture synthesis and
transfer by Efros and Leung [2] and Hertzmann et al. [3] In this regard we are
performing non-parametric sampling for the segment label in the neighborhood of
each pixel. Since the segment labels are only meaningful in a relative (as opposed to
absolute) sense, we require an additional step to resolve all of the local neighborhood
relationships into a globally consistent segmentation.
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Figure 5: Segmentation by example for a cell phone and a piece of wire: (a) train-
ing image, (b) hand-labelled segmentation containing 8 groups, (c) test image, (d)
computed segmentation, using r = 5 and k = 7. The image dimensions are 96×128.

5 Discussion

5.1 Choice of Parameters

The system has a number of parameters; the first and the most important parameter
is the set of training images that are used for segmenting a new image. Even
though we only used one image as a training image, it is easy to see that the
system can use any number of training images simultaneously. The structure of the
training set expresses a bias for particular interpretations of a novel image. Figure 6
demonstrates the result of using vertical and horizontal brightness edges to segment
an image with a serrated boundary. The system tries to approximate the jagged
edges without success. One can argue that various kinds of invariances (e.g. rotation
or affine) be incorporated into the matching stage. An alternative view is that the
search be guided by the content present in the training data.

The second most important parameter in the system is the choice of the distance
function d(·, ·). In this system we used a very simples distance measure – sum of
squared differences – though more sophisticated distance measures will be needed
for capturing the similarity between patches of stochastic texture, e.g. histograms
of filterbank outputs [10, 4].

The value of the parameter r decides the scale sensitivity of the method. The smaller
the scale of matching, the less sensitive it is to large scale structure in the image. For
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Figure 6: Illustration of segmentation by example for a serrated square, illustrating
the effect of bias in the training image: (a) training image (of size 64 × 64), (b)
hand-labelled segmentation, (c) test image, (d) computed segmentation, using r = 3
and k = 2. In this case, the training image contains only straight edges, and the
extrapolated segmentation is not able to capture the details of the boundary.

example, if the patch radius is too small while segmenting the Kanizsa rectangle,
it will cause the texture to break up into individual line segments. The choice of
an optimal scale for matching is a difficult decision, but it need not necessarily be
made by the user. Since we have segmented data available to us a priori, one can in
principle analyze each of the segments and determine (by performing a self match)
the smallest value of r required for recovering the segmentation. The choice of a
scale parameter for images that require different scales of interpretation in different
parts of the image remains an open question.

5.2 Future Work

The system as it stands is extremely inefficent and slow due to the nearest neighbor
search. The nearest neighbor search is one of the many ways in which a segment
shred can be associated with an image shred. We chose to use a nearest neighbor
classifier for its simplicity. There are a number of ways in which this search can be
made more efficient.

Borenstein and Ullman [1] propose a statistical method for reducing the set of shreds
to a much smaller number based on their informativeness with respect to their
associated segmentations. This can result in sizeable performance improvements
since the image shreds contain a large number of duplicates and redundant examples.

There are a number of domains where additional information is available that can
aid in narrowing down the search significantly. Two such domains are video seg-
mentation and stereo. Given a segmentation of a few key frames, an estimate of
optical flow from one frame to another can be used for transferring the segmenta-
tion from one frame to the next. Similarly, given the segmentation of one view and
an estimate of the epipolar geometry, the search can be constrained along epipolar
lines.

5.3 Limitations of the method

This work represents some initial steps in example based segmentation and a number
of issues remain open. By itself, the method we have presented does not solve the
problem of perceptual grouping. What we have proposed is a way of using labelled
data to drive low-level image segmentation. The Kanizsa triangle shown in Figure 7
illustrates the key limitation of our method. Purely local matching cannot recover
the illusory triangle. Therefore to handle figures such as this properly, one must



Figure 7: Kanizsa triangle: a purely local image-based approach cannot segment
this figure properly; higher level knowledge is necessary.

find a way to incorporate high level knowledge into the system.
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