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Multi-joint dynamics with contact

Continuous-time dynamics (may not have solution):

M (q) dw = n (q, w) dt+ K (q)T f
K (q)w = v

q, w joint position and velocity
f, v contact impulse and velocity
M joint-space inertia matrix
n Coriolis, centripetal, gravitational, applied forces
K contact Jacobian

f, v are related through (an approximation to) the laws of contact and friction

Discrete-time dynamics (always have solution):

Euler discretization with time step ∆ yields dw � wt+∆ �wt,

Mtwt+∆ = Mtwt + ∆nt + KT
t ft+∆

Ktwt+∆ = vt+∆
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LCP formulation of contact

We need to solve

Mw = b+ KTf
Kw = v

Find f, v by solving

Af+ c = v

A = KM�1KT : inverse inertia in
contact space
c = KM�1b : contact velocity in
the absence of contact force

Compute w as

w = M�1
�

b+ KTf
�

f =
�
f N; fF� and v =

�
vN; vF�

should satisfy the constraints

Complementarity

f N � 0, vN � 0, f NvN = 0
vF parallel to fF


vF, fF� � 0,
fF
 � µ f N

The latter constraints are nonlinear,
however the friction cone can be
approximated with a n-sided
pyramid, yielding a linear
complementarity problem (LCP).

Widely used: ODE, PhysX, Havoc...
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Problems with LCP and motivation for our method

The approximation to the friction cone is inaccurate for small n
Large n results in too many auxiliary variables that slow down the solver
Available algorithms are either slow (Lemke) or introduce additional
approximations often resulting in spring-damper-like behavior

The best general-purpose algorithm for solving LCPs is the PATH
algorithm, which replaces the LCP with a nonlinear equation (and solves
it using a non-smooth Newton method)
If we are going to replace the LCP with a nonlinear equation, do we need
the LCP in the first place? Or can we construct a nonlinear equation
directly, without approximating the friction cone and introducing
auxiliary variables? Yes we can.
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Implicit nonlinear complementarity
Instead of solving Af+ c = v under complementarity constraints on f, v,
we design functions f (x) , v (x) such that the constraints are satisfied for all x,
and then solve the (unconstrained) nonlinear equation

Af (x) + c = v (x)

x is a hybrid variable encoding both contact velocities and contact forces.

normal forces and velocities:

x N

f N

0

v N

breakstick / slip

friction forces and velocities:

xF

f F

v F = 0 x Fv F

stick slip

f F

v (x) = f (x) + x, thus the (non-smooth) equation becomes

r (x) , (A� I) f (x)� x+ c = 0
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The functions f and v

normal forces and velocities:

f N (x) = max
�

0, �xN
�

vN (x) = max
�

0, xN
�

friction forces and velocities:

s (x) , min
�

1,
µ f N (x)
kxFk

�
fF (x) = �s (x) xF

vF (x) = xF � s (x) xF

3D forces and velocities:
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Shape of the function f

fF (x) = �min

 
1,

µ max
�
0,�xN�

kxFk

!
xF
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Root-finding via optimization
Solving r (x) = 0 is equivalent to minimizing the objective function

` (x) =
1
2
kr (x)k2

This is a non-linear least squares problem, which (in principle) can be handled
by a Gauss-Newton method:

J (x) =
∂r (x)

∂x
Jacobian/subdifferential of r (x)

J (x)T r (x) gradient of ` (x)

J (x)T J (x) approximate Hessian of ` (x)

The (stabilized) Newton iteration is

x x�
�

J (x)T J (x) + λI
��1

J (x)T r (x)

λ is adapted online in Levenberg-Marquardt fashion.
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Optimization with edge-aware linesearch

Second-order methods avoid the
chattering characteristic of
first-order methods (green):

x

xCauchy
xNewton

Here we use the "dogleg" method
which involves two linesearhes
(red). The Cauchy point is the
minimum along the gradient.

Non-smoothness can still cause
chattering:

We explicitly consider the
intersections of the red lines with
the edges where r (x) is
non-smooth (planes and cones).
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Numerical results
With µ = 1 and nc = 16 contacts the algorithm takes 5 iterations per time step (no
warm start) and accepts the Newton point (without linesearch) on 70% of iterations.

Each iteration here is faster than an iteration of an LCP solver because we are
factorizing smaller matrices: 3nc -by- 3nc as opposed to, say, 10nc -by- 10nc.

nb = 5 nb = 10 nb = 15
µ nc = 7 nc = 16 nc = 27

0.1 3.8
99 %

4.8
98 %

6.5
90 %

0.5 2.6
95 %

5.3
85 %

7.5
73 %

1.0 2.8
90 %

4.9
71 %

10.2
60 %

2.0 2.9
88 %

4.6
71 %

16.2
55 %
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Trajectory optimization 

Trajectory optimization via forward dynamics 
 
jointly optimize  q1 … qT  and  u0 … uT-1  subject to the dynamics constraints 

- double the dimensionality 
- non-linear equality constraints 

 
optimize  u0 … uT-1 , define  q1 … qT  by integrating the forward dynamics 

- dense Hessian (each control affects all future positions) 
- small time step needed (for stable integration) 

( )tttt uqqfq ,,1  =+

Trajectory optimization via inverse dynamics 
 
optimize  q1 … qT , define  u0 … uT-1  from the inverse dynamics 

- minimal representation (no equality constraints) 
- large time steps can be used (no stability concerns) 
- the Hessian of the trajectory cost is sparse 

( )1
1 ,, +
−= tttt qqqfu 

( ) ( ) ( )( )∑ −

= +−−=
1

1 1110 ,,,,,T
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Inverse dynamics with contact 

The inverse is not well-defined because contact makes it possible to apply forces that do 
not affect the position (e.g. pushing against the ground) 
 
 
Resolving this indeterminacy in an adhoc way generally results in inverse dynamics that 
are discontinuous, and thus unsuitable for optimization 
 
 
Contacts could be modeled with springs (which are invertible), but springs are a poor 
model of contact and have been largely abandoned in favor of implicit solvers (e.g. LCP) 
 
 
None of the existing implicit solvers are invertible 
 
 
Here we develop the first implicit solver that is invertible (and furthermore convex). 
 
An inverse implies that any force causes displacement (resembling a spring), 
nevertheless the resulting contacts are “hard”, i.e. there is no penetration 



Review of implicit contact modeling 
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M inertia matrix 

n passive forces 

B actuation matrix 

h time step 

K contact Jacobian 

f contact impulse 

v contact velocity 

A contact inverse inertia 

c contact bias velocity 
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( ) ( )1,, +→ tttt vfcA

( ) ( )tttt cfvA ,, 1 →+

forward dynamics: 
 
inverse dynamics: 

A f + c  = v  has twice as many unknowns as equality constraints. 
 
However it can be solved by taking into account 
additional constraints on f and v. 
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vf
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vf

µ

Here we will relax the complementarity constraint 



Our forward dynamics model 
The contact impulse f minimizes kinetic energy in contact space: 
 
 
 
subject to     for each contact 

( ) ( ) constcfAffcAfAcAfvAv TTTTT ++=++= −−

2
1

2
1

2
1 11

0,0,0 ≥−≥≥ TNNN ffvf µ

We define f as the solution obtained by a primal interior-point method, 
which finds the (unconstrained) minimum of the convex function 
 
 
 
where 
 
 
 
 
The solution depends on R, κ  
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TT ++++
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0

10

dV

dV

To find a feasible solution, start with 
a quadratic in v instead of log-barrier.  

2,1,5.0,1.0=κ



The forward dynamics are sensible 

The complementarity constraint (which we ignored) is softly enforced by the 
regularized kinetic energy cost, because violating complementarity tends to 
increase both the kinetic energy and the (R-norm of the) contact force. 
 
 
Ball-drop test:    Interactive test: 
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The forward dynamics solution  (f, v)  is at the minimum of the convex function 
 
 
 
We will recover (f, c) from (A, v)  using the fact that the gradient at the minimum is 0: 
 
 
 
Using  A f + c = v  yields 
 
 
 
Key observation: the unknown c vanished (it was absorbed in the known v) 
 
The above equation can be solved by minimizing the convex function 
 
 
 
 
where the new constant is 

inverse: 

forward: 

Our inverse dynamics model 
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Performance of the inverse contact solver 
3 GHz Intel processor, single thread, 18-dof humanoid 
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