A Short Course on

Spatial Vector Algebra

The Easy Way to do Rigid Body Dynamics

Roy Featherstone
Dept. Information Engineering, RSISE
The Australian National University

Spatial vector algebra is a concise vector notation for describing rigid-body velocity, acceleration, inertia, etc., using 6D vectors and tensors.

- fewer quantities
- fewer equations
- less effort
- fewer mistakes

Mathematical Structure

spatial vectors inhabit two vector spaces:
$M^{6} \quad$ - motion vectors
F^{6} - force vectors
with a scalar product defined between them

$$
\begin{aligned}
\mathbf{m} \cdot \mathbf{f} & =\text { work } \\
\quad & \text { "." }: M^{6} \times F^{6} \mapsto R
\end{aligned}
$$

Bases

A coordinate vector $\underline{\mathbf{m}}=\left[m_{1}, \ldots, m_{6}\right]^{T}$ represents a motion vector \mathbf{m} in a basis $\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{6}\right\}$ on M^{6} if

$$
\mathbf{m}=\sum_{i=1}^{6} m_{i} \mathbf{d}_{i}
$$

Likewise, a coordinate vector $\underline{\mathbf{f}}=\left[f_{1}, \ldots, f_{6}\right]^{T}$ represents a force vector \mathbf{f} in a basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{6}\right\}$ on F^{6} if

$$
\mathbf{f}=\sum_{i=1}^{6} f_{i} \mathbf{e}_{i}
$$

Bases

If $\left\{\mathbf{d}_{1}, \ldots, \mathbf{d}_{6}\right\}$ is an arbitrary basis on M^{6} then there exists a unique reciprocal basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{6}\right\}$ on F^{6} satisfying

$$
\mathbf{d}_{i} \cdot \mathbf{e}_{j}=\left\{\begin{array}{l}
0: i \neq j \\
1: i=j
\end{array}\right.
$$

With these bases, the scalar product of two coordinate vectors is

$$
\mathbf{m} \cdot \mathbf{f}=\underline{\mathbf{m}}^{T} \underline{\mathbf{f}}
$$

Velocity

The velocity of a rigid body can be described by

- choosing a point, P, in the body
- specifying the linear velocity, \mathbf{v}_{P}, of that point
- specifying the angular velocity, ω, of the body as a whole

Velocity

The body is then deemed to be
 translating with a linear velocity \mathbf{v}_{P}
while simultaneously
rotating with an angular velocity ω about an axis passing through P

$$
\begin{aligned}
& \text { Spatial velocity: } \hat{\mathbf{v}}_{o}=\left[\begin{array}{c}
\omega \\
\mathbf{v}_{o}
\end{array}\right]=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z} \\
v_{o_{x}} \\
v_{o_{y}} \\
v_{o_{z}}
\end{array}\right] \\
& \text { These are the Plücker coordinates } \\
& \text { of } \hat{\mathbf{v}} \text { in the frame } O x y z
\end{aligned}
$$

Force

A general force acting on a rigid body is equivalent to the sum of

- a force \mathbf{f} acting along a line passing through a point P, and
- a couple, \mathbf{n}_{P}

Force

general force ($\mathbf{f}, \mathbf{n}_{P}$) at P is equivalent to ($\mathbf{f}, \mathbf{n}_{O}$) at O
where
$\mathbf{n}_{O}=\mathbf{n}_{P}+\overrightarrow{O P} \times \mathbf{f}$

Force

$$
\left.\begin{array}{lll}
& \text { Spatial force: } & \hat{\mathbf{f}}_{o}= \\
\text { These are the Plücker coordinates }
\end{array}\right]=\left[\begin{array}{c}
\mathbf{n}_{0} \\
\mathbf{f}
\end{array}\right]=\left[\begin{array}{c}
n_{o z} \\
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right]
$$ of $\hat{\mathbf{f}}$ in the frame $O x y z$

Plücker Coordinates

A Cartesian coordinate frame $O x y z$ defines twelve basis vectors:
$\mathbf{d}_{O x}, \mathbf{d}_{O y}, \mathbf{d}_{O z}, \mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{z}:$
rotations about the $O x, O y$ and $O z$ axes, translations in the x, y and z directions
$\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}, \mathbf{e}_{O x}, \mathbf{e}_{O y}, \mathbf{e}_{O z}$:
couples in the $y z, z x$ and $x y$ planes, and forces along the $O x, O y$ and $O z$ axes

If $\hat{\mathbf{v}}_{o}=\left[\begin{array}{c}\omega \\ \mathbf{v}_{o}\end{array}\right]$ and $\hat{\mathbf{f}}_{O}=\left[\begin{array}{c}\mathbf{n}_{o} \\ \mathbf{f}\end{array}\right]$ are the Plücker
coordinates of $\hat{\mathbf{v}}$ and $\hat{\mathbf{f}}$ in $O x y z$, then

$$
\begin{aligned}
\hat{\mathbf{v}}= & \omega_{x} \mathbf{d}_{O x}+\omega_{y} \mathbf{d}_{O y}+\omega_{z} \mathbf{d}_{O z}+ \\
& +v_{O x} \mathbf{d}_{x}+v_{O y} \mathbf{d}_{y}+v_{O z} \mathbf{d}_{z} \\
\hat{\mathbf{f}}= & n_{O x} \mathbf{e}_{x}+n_{O y} \mathbf{e}_{y}+n_{O z} \mathbf{e}_{z}+ \\
& +f_{x} \mathbf{e}_{O x}+f_{y} \mathbf{e}_{O y}+f_{z} \mathbf{e}_{O z}
\end{aligned}
$$

and

$$
\hat{\mathbf{v}} \cdot \hat{\mathbf{f}}=\hat{\mathbf{v}}_{O}^{T} \hat{\mathbf{f}}_{O}
$$

Coordinate Transforms

transform from A to B
 for motion vectors:

$$
{ }^{B} \mathbf{X}_{A}=\left[\begin{array}{cc}
\mathbf{E} & \mathbf{0} \\
\mathbf{0} & \mathbf{E}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\tilde{\mathbf{r}}^{T} & \mathbf{1}
\end{array}\right] \quad \text { where } \quad \tilde{\mathbf{r}}=\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right]
$$

corresponding transform for force vectors:

$$
{ }^{B} \mathbf{X}_{A}^{F}=\left({ }^{B} \mathbf{X}_{A}\right)^{-T}
$$

Basic Operations with Spatial Vectors

- Composition of velocities

If $\quad \mathbf{v}_{A}=$ velocity of body A
$\mathbf{v}_{B}=$ velocity of body B
$\mathbf{v}_{B A}=$ relative velocity of B w.r.t. A
Then $\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B A}$

- Scalar multiples

If \mathbf{s} and \dot{q} are a joint motion axis and velocity variable, then the joint velocity is $\mathbf{v}_{J}=\mathbf{s} \dot{q}$

- Composition of forces

If forces \mathbf{f}_{1} and \mathbf{f}_{2} both act on the same body then their resultant is

$$
\mathbf{f}_{t o t}=\mathbf{f}_{1}+\mathbf{f}_{2}
$$

- Action and reaction

If body A exerts a force \mathbf{f} on body B, then body B exerts a force $-\mathbf{f}$ on body A (Newton's 3rd law)

Now try question set A

Spatial Cross Products

There are two cross product operations: one for motion vectors and one for forces

$$
\begin{aligned}
& \hat{\mathbf{v}}_{O} \times \hat{\mathbf{m}}_{O}=\left[\begin{array}{c}
\omega \\
\mathbf{v}_{O}
\end{array}\right] \times\left[\begin{array}{c}
\mathbf{m} \\
\mathbf{m}_{O}
\end{array}\right]=\left[\begin{array}{c}
\omega \times \mathbf{m} \\
\omega \times \mathbf{m}_{O}+\mathbf{v}_{O} \times \mathbf{m}
\end{array}\right] \\
& \hat{\mathbf{v}}_{O} \times \hat{\mathbf{f}}_{O}=\left[\begin{array}{c}
\omega \\
\mathbf{v}_{O}
\end{array}\right] \times\left[\begin{array}{c}
\mathbf{n}_{O} \\
\mathbf{f}
\end{array}\right]=\left[\begin{array}{c}
\omega \times \mathbf{n}_{O}+\mathbf{v}_{O} \times \mathbf{f} \\
\omega \times \mathbf{f}
\end{array}\right]
\end{aligned}
$$

where $\hat{\mathbf{v}}_{O}$ and $\hat{\mathbf{m}}_{o}$ are motion vectors, and $\hat{\mathbf{f}}_{o}$ is a force.

Differentiation

- The derivative of a spatial vector is itself a spatial vector
- in general, $\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{s}=\lim _{\delta t \rightarrow 0} \frac{\mathbf{s}(t+\delta t)-\mathbf{s}(t)}{\delta t}$
- The derivative of a spatial vector that is fixed in a moving body with velocity \mathbf{v} is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{s}=\mathbf{v} \times \mathbf{s}
$$

Differentiation in Moving Coordinates

$$
\underbrace{\left[\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{s}\right]_{0}=}=\underbrace{\begin{array}{l}
\text { componentwise } \\
\text { derivative of coordinate } \\
\text { vector }
\end{array}}_{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{s}_{O}
\end{array}+\underbrace{\mathbf{v}_{O} \times \mathbf{s}_{O}}_{\begin{array}{l}
\text { velocity of coordinate } \\
\text { frame }
\end{array}}}
$$

Acceleration

. . . is the rate of change of velocity:

$$
\hat{\mathbf{a}}=\frac{\mathrm{d}}{\mathrm{~d} t} \hat{\mathbf{v}}=\left[\begin{array}{c}
\dot{\omega} \\
\dot{\mathbf{v}}_{0}
\end{array}\right]
$$

but this is not the linear acceleration of any point in the body!

Classical acceleration is

$\left[\begin{array}{c}\dot{\omega} \\ \dot{\mathbf{v}}_{O}^{\prime}\end{array}\right] \quad \begin{aligned} & \text { where } \dot{\mathbf{v}}_{O}^{\prime} \text { is the derivative of } \mathbf{v}_{O} \\ & \text { taking } O \text { to be fixed in the body }\end{aligned}$

Spatial acceleration is

$\left[\begin{array}{c}\dot{\omega} \\ \dot{\mathbf{v}}_{O}\end{array}\right] \quad \begin{aligned} & \text { where } \dot{\mathbf{v}}_{O} \text { is the derivative of } \mathbf{v}_{O} \\ & \text { taking } O \text { to be fixed in space }\end{aligned}$
What's the difference?
Spatial acceleration is a vector.

Acceleration Example

A body rotates with constant angular velocity ω, so its spatial velocity is constant, so its spatial acceleration is zero; but almost every body-fixed point is accelerating.

Basic Operations with Accelerations

Composition
If $\mathbf{a}_{A}=$ acceleration of body A $\mathbf{a}_{B}=$ acceleration of body B $\mathbf{a}_{B A}=$ acceleration of B w.r.t. A

Then $\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B A}$
Look, no Coriolis term!

Now try question set B

Rigid Body Inertia

spatial inertia tensor: $\hat{\mathbf{I}}_{O}=\left[\begin{array}{cc}\mathbf{I}_{O} & m \widetilde{\mathbf{c}} \\ m \widetilde{\mathbf{c}}^{T} & m \mathbf{1}\end{array}\right]$
where $\mathbf{I}_{O}=\mathbf{I}_{C}-m \tilde{\mathbf{c}} \widetilde{\mathbf{c}}$

Basic Operations with Inertias

- Composition

If two bodies with inertias \mathbf{I}_{A} and \mathbf{I}_{B} are joined together then the inertia of the composite body is

$$
\mathbf{I}_{t o t}=\mathbf{I}_{A}+\mathbf{I}_{B}
$$

- Coordinate transformation formula

$$
\mathbf{I}_{B}={ }^{B} \mathbf{X}_{A}^{F} \mathbf{I}_{A}{ }^{A} \mathbf{X}_{B}=\left({ }^{A} \mathbf{X}_{B}\right)^{T} \mathbf{I}_{A}{ }^{A} \mathbf{X}_{B}
$$

Equation of Motion

$$
\mathbf{f}=\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{I} \mathbf{v})=\mathbf{I} \mathbf{a}+\mathbf{v} \times \mathbf{I} \mathbf{v}
$$

$\mathbf{f}=$ net force acting on a rigid body
I = inertia of rigid body
$\mathbf{v}=$ velocity of rigid body
Iv = momentum of rigid body
$\mathbf{a}=$ acceleration of rigid body

Motion Constraints

If a rigid body's motion is constrained, then its velocity is an element of a subspace, $S \subset \mathrm{M}^{6}$, called the motion subspace
degree of (motion) freedom: $\operatorname{dim}(S)$ degree of constraint:
$6-\operatorname{dim}(S)$
S can vary with time

Matrix Representation

Let \mathbf{S} be any $6 \times \operatorname{dim}(S)$ matrix such that range $(\mathbf{S})=S$, then

- the columns of \mathbf{S} define a basis on S
- any vector $\mathbf{v} \in S$ can be expressed in the form $\mathbf{v}=\mathbf{S} \alpha$, where α is a $\operatorname{dim}(S) \times 1$ vector of coordinates

Constraint Forces

- motion constraints are enforced by constraint forces
- constraint forces do no work: if \mathbf{f}_{c} is the constraint force, and \mathbf{S} the motion subspace matrix, then

$$
\mathbf{S}^{T} \mathbf{f}_{c}=\mathbf{0}
$$

- constraint forces occupy a subspace $T \subset \mathrm{~F}^{6}$ satisfying $\operatorname{dim}(S)+\operatorname{dim}(T)=6$ and $\mathbf{S}^{T} \mathbf{T}=\mathbf{0}$

Constrained Motion

A force, \mathbf{f}, is applied to a body with inertia \mathbf{I} that is constrained to a subspace
 $S=$ Range (\mathbf{S}) of M^{6}. Assuming the body is initially at rest, what is its acceleration?
velocity
acceleration
constraint force $\mathbf{S}^{T} \mathbf{f}_{c}=\mathbf{0}$

equation of motion

$$
\begin{aligned}
\mathbf{f}+\mathbf{f}_{c} & =\mathbf{I} \mathbf{a}+\mathbf{v} \times \mathbf{I} \mathbf{v} \\
& =\mathbf{I} \mathbf{a}
\end{aligned}
$$

solution

$$
\begin{aligned}
& \mathbf{f}+\mathbf{f}_{c}=\mathbf{I} \mathbf{S} \dot{\alpha} \\
& \mathbf{S}^{T} \mathbf{f}=\mathbf{S}^{T} \mathbf{I} \mathbf{S} \dot{\alpha} \\
& \dot{\alpha}=\left(\mathbf{S}^{T} \mathbf{I} \mathbf{S}\right)^{-1} \mathbf{S}^{T} \mathbf{f} \\
& \mathbf{a}=\mathbf{S}\left(\mathbf{S}^{T} \mathbf{I} \mathbf{S}\right)^{-1} \mathbf{S}^{T} \mathbf{f}
\end{aligned}
$$

Now try question set C

Inverse Dynamics

$\dot{q}_{i}, \ddot{q}_{i}, \mathbf{s}_{i}$ joint velocity, acceleration \& axis
$\mathbf{v}_{i}, \mathbf{a}_{i} \quad$ link velocity and acceleration
\mathbf{f}_{i} force transmitted from link $i-1$ to i
τ_{i} joint force variable
$\mathbf{I}_{i} \quad$ link inertia

- velocity of link i is the velocity of link $i-1$ plus the velocity across joint i

$$
\mathbf{v}_{i}=\mathbf{v}_{i-1}+\mathbf{s}_{i} \dot{q}_{i}
$$

- acceleration is the derivative of velocity

$$
\mathbf{a}_{i}=\mathbf{a}_{i-1}+\dot{\mathbf{s}}_{i} \dot{q}_{i}+\mathbf{s}_{i} \ddot{q}_{i}
$$

- equation of motion

$$
\mathbf{f}_{i}-\mathbf{f}_{i+1}=\mathbf{I}_{i} \mathbf{a}_{i}+\mathbf{v}_{i} \times \mathbf{I}_{i} \mathbf{v}_{i}
$$

- active joint force

$$
\tau_{i}=\mathbf{s}_{i}^{T} \mathbf{f}_{i}
$$

The Recursive Newton-Euler Algorithm

(Calculate the joint torques τ_{i} that will produce the desired joint accelerations \ddot{q}_{i}.)

$$
\begin{array}{ll}
\mathbf{v}_{i}=\mathbf{v}_{i-1}+\mathbf{s}_{i} \dot{q}_{i} & \left(\mathbf{v}_{0}=\mathbf{0}\right) \\
\mathbf{a}_{i}=\mathbf{a}_{i-1}+\dot{\mathbf{s}}_{i} \dot{q}_{i}+\mathbf{s}_{i} \ddot{q}_{i} & \left(\mathbf{a}_{0}=\mathbf{0}\right) \\
\mathbf{f}_{i}=\mathbf{f}_{i+1}+\mathbf{I}_{i} \mathbf{a}_{i}+\mathbf{v}_{i} \times \mathbf{I}_{i} \mathbf{v}_{i} & \left(\mathbf{f}_{n+1}=\mathbf{f}_{e e}\right) \\
\tau_{i}=\mathbf{s}_{i}^{T} \mathbf{f}_{i} &
\end{array}
$$

