A Short Course on

Spatial Vector Algebra

The Easy Way to do Rigid Body Dynamics

Roy Featherstone Dept. Information Engineering, RSISE The Australian National University Spatial vector algebra is a concise vector notation for describing rigid–body velocity, acceleration, inertia, etc., using 6D vectors and tensors.

- fewer quantities
- fewer equations
- less effort
- fewer mistakes

Mathematical Structure

spatial vectors inhabit *two* vector spaces:

- M⁶ motion vectors
- **F**⁶ force vectors

with a scalar product defined between them

 $\mathbf{m} \cdot \mathbf{f} = work$ $\cdot \cdot \cdot \cdot \mathbf{M}^6 \times \mathbf{F}^6 \mapsto \mathbf{R}$

Bases

A coordinate vector $\mathbf{m} = [m_1, ..., m_6]^T$ represents a motion vector \mathbf{m} in a basis $\{\mathbf{d}_1, ..., \mathbf{d}_6\}$ on M^6 if

$$\mathbf{m} = \sum_{i=1}^{6} m_i \mathbf{d}_i$$

Likewise, a coordinate vector $\mathbf{f} = [f_1, ..., f_6]^T$ represents a force vector \mathbf{f} in a basis $\{\mathbf{e}_1, ..., \mathbf{e}_6\}$ on \mathbf{F}^6 if $\mathbf{6}$

$$\mathbf{f} = \sum_{i=1}^{6} f_i \, \mathbf{e}_i$$

Bases

If $\{\mathbf{d}_1, ..., \mathbf{d}_6\}$ is an arbitrary basis on M⁶ then there exists a unique *reciprocal basis* $\{\mathbf{e}_1, ..., \mathbf{e}_6\}$ on F⁶ satisfying

$$\mathbf{d}_i \cdot \mathbf{e}_j = \left\{ \begin{array}{ll} 0: \ i \neq j \\ 1: \ i = j \end{array} \right.$$

With these bases, the scalar product of two coordinate vectors is

$$\mathbf{m} \cdot \mathbf{f} = \mathbf{m}^T \, \mathbf{f}$$

Velocity

The velocity of a rigid body can be described by

- choosing a point, **P**, in the body
- specifying the linear velocity, v_P, of that point
- specifying the angular velocity, ω, of the body as a whole

Velocity

The body is then deemed to be translating with a linear velocity \mathbf{v}_P while simultaneously rotating with an angular velocity $\boldsymbol{\omega}$ about an axis passing through P

These are the *Plücker coordinates* of $\hat{\mathbf{v}}$ in the frame *Oxyz*

Force

A general force acting on a rigid body is equivalent to the sum of

- a force **f** acting along a line passing through a point **P**, and
- a couple, n_P

general force $(\mathbf{f}, \mathbf{n}_P)$ at Pis equivalent to $(\mathbf{f}, \mathbf{n}_O)$ at Owhere $\mathbf{n}_O = \mathbf{n}_P + \overrightarrow{OP} \times \mathbf{f}$

These are the *Plücker coordinates* of $\hat{\mathbf{f}}$ in the frame *Oxyz*

Plücker Coordinates

A Cartesian coordinate frame *Oxyz* defines *twelve* basis vectors:

 $\mathbf{d}_{Ox}, \mathbf{d}_{Oy}, \mathbf{d}_{Oz}, \mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{z}$: rotations about the Ox, Oy and Oz axes, translations in the x, y and z directions

 \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z , \mathbf{e}_{Ox} , \mathbf{e}_{Oy} , \mathbf{e}_{Oz} : couples in the *yz*, *zx* and *xy* planes, and forces along the *Ox*, *Oy* and *Oz* axes

If
$$\hat{\mathbf{v}}_o = \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{v}_o \end{bmatrix}$$
 and $\hat{\mathbf{f}}_o = \begin{bmatrix} \mathbf{n}_o \\ \mathbf{f} \end{bmatrix}$ are the Plücker coordinates of $\hat{\mathbf{v}}$ and $\hat{\mathbf{f}}$ in *Oxyz*, then

$$\hat{\mathbf{v}} = \omega_x \, \mathbf{d}_{Ox} + \omega_y \, \mathbf{d}_{Oy} + \omega_z \, \mathbf{d}_{Oz} + v_{Ox} \, \mathbf{d}_x + v_{Oy} \, \mathbf{d}_y + v_{Oz} \, \mathbf{d}_z$$

$$\hat{\mathbf{f}} = n_{Ox} \, \mathbf{e}_x + n_{Oy} \, \mathbf{e}_y + n_{Oz} \, \mathbf{e}_z + f_x \, \mathbf{e}_{Ox} + f_y \, \mathbf{e}_{Oy} + f_z \, \mathbf{e}_{Oz}$$

and

$$\hat{\mathbf{v}} \cdot \hat{\mathbf{f}} = \hat{\mathbf{v}}_O^T \hat{\mathbf{f}}_O$$

Coordinate Transforms

transform from A to B for motion vectors:

$${}^{B}\mathbf{X}_{A} = \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{\tilde{r}}^{T} & \mathbf{1} \end{bmatrix} \text{ where } \mathbf{\tilde{r}} = \begin{bmatrix} \mathbf{0} & -r_{z} & r_{y} \\ r_{z} & \mathbf{0} & -r_{x} \\ -r_{y} & r_{x} & \mathbf{0} \end{bmatrix}$$

corresponding transform for force vectors:

$${}^{B}\mathbf{X}_{A}^{F} = ({}^{B}\mathbf{X}_{A})^{-T}$$

r

A

R

E

Basic Operations with Spatial Vectors

Composition of velocities

If $\mathbf{v}_A = \text{velocity of body A}$ $\mathbf{v}_B = \text{velocity of body B}$ $\mathbf{v}_{BA} = \text{relative velocity of B w.r.t. A}$ Then $\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{BA}$

• Scalar multiples

If **s** and \dot{q} are a joint motion axis and velocity variable, then the joint velocity is $\mathbf{v}_J = \mathbf{s} \, \dot{q}$

Composition of forces

If forces \mathbf{f}_1 and \mathbf{f}_2 both act on the same body then their resultant is

 $\mathbf{f}_{tot} = \mathbf{f}_1 + \mathbf{f}_2$

Action and reaction

If body A exerts a force f on body B, then body B exerts a force -f on body A(Newton's 3rd law)

Now try question set A

Spatial Cross Products

There are *two* cross product operations: one for motion vectors and one for forces

$$\hat{\mathbf{v}}_{O} \times \hat{\mathbf{m}}_{O} = \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{v}_{O} \end{bmatrix} \times \begin{bmatrix} \mathbf{m} \\ \mathbf{m}_{O} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega} \times \mathbf{m} \\ \boldsymbol{\omega} \times \mathbf{m}_{O} + \mathbf{v}_{O} \times \mathbf{m} \end{bmatrix}$$
$$\hat{\mathbf{v}}_{O} \times \hat{\mathbf{f}}_{O} = \begin{bmatrix} \boldsymbol{\omega} \\ \mathbf{v}_{O} \end{bmatrix} \times \begin{bmatrix} \mathbf{n}_{O} \\ \mathbf{f} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega} \times \mathbf{n}_{O} + \mathbf{v}_{O} \times \mathbf{f} \\ \boldsymbol{\omega} \times \mathbf{f} \end{bmatrix}$$

where $\hat{\mathbf{v}}_{o}$ and $\hat{\mathbf{m}}_{o}$ are motion vectors, and $\hat{\mathbf{f}}_{o}$ is a force.

Differentiation

 The derivative of a spatial vector is itself a spatial vector

• in general,
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s} = \lim_{\delta t \to 0} \frac{\mathbf{s}(t+\delta t) - \mathbf{s}(t)}{\delta t}$$

• The derivative of a spatial vector that is fixed in a moving body with velocity **v** is $\frac{d}{dt}\mathbf{s} = \mathbf{v} \times \mathbf{s}$

Differentiation in Moving Coordinates

Acceleration

... is the rate of change of velocity:

$$\hat{\mathbf{a}} = \frac{\mathrm{d}}{\mathrm{d}t}\hat{\mathbf{v}} = \begin{bmatrix} \dot{\boldsymbol{\omega}} \\ \dot{\mathbf{v}}_O \end{bmatrix}$$

– but this is *not* the linear acceleration of any point in the body!

Classical acceleration is

 $\dot{\mathbf{\omega}}$ where $\dot{\mathbf{v}}_0'$ is the derivative of \mathbf{v}_0 $\dot{\mathbf{v}}_0'$ taking O to be fixed in the body

Spatial acceleration is

 $\dot{\mathbf{w}}$ where $\dot{\mathbf{v}}_{o}$ is the derivative of \mathbf{v}_{o} $\dot{\mathbf{v}}_{o}$ taking O to be fixed in space

What's the difference?

Spatial acceleration is a vector.

A body rotates with constant angular velocity o, so its spatial velocity is constant, so its spatial acceleration is zero; but almost every body–fixed point is accelerating.

Basic Operations with Accelerations

- Composition
 - If $\mathbf{a}_A = \text{acceleration of body A}$ $\mathbf{a}_B = \text{acceleration of body B}$ $\mathbf{a}_{BA} = \text{acceleration of B w.r.t. A}$ Then $\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{BA}$

Look, no Coriolis term!

Now try question set B

spatial inertia tensor: $\hat{\mathbf{I}}_{O} = \begin{bmatrix} \mathbf{I}_{O} & m \, \tilde{\mathbf{c}} \\ m \, \tilde{\mathbf{c}}^{T} & m \, \mathbf{l} \end{bmatrix}$ where $\mathbf{I}_{O} = \mathbf{I}_{C} - m \, \tilde{\mathbf{c}} \, \tilde{\mathbf{c}}$

Basic Operations with Inertias

Composition

If two bodies with inertias I_A and I_B are joined together then the inertia of the composite body is

 $\mathbf{I}_{tot} = \mathbf{I}_A + \mathbf{I}_B$

Coordinate transformation formula

$$\mathbf{I}_{B} = {}^{B}\mathbf{X}_{A}^{F}\mathbf{I}_{A}^{A}\mathbf{X}_{B} = ({}^{A}\mathbf{X}_{B})^{T}\mathbf{I}_{A}^{A}\mathbf{X}_{B}$$

Equation of Motion

$$\mathbf{f} = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{I}\mathbf{v}) = \mathbf{I}\mathbf{a} + \mathbf{v} \times \mathbf{I}\mathbf{v}$$

- **f** = net force acting on a rigid body
- **I** = inertia of rigid body
- v = velocity of rigid body
- $\mathbf{I}\mathbf{v}$ = momentum of rigid body
- **a** = acceleration of rigid body

Motion Constraints

If a rigid body's motion is constrained, then its velocity is an element of a subspace, $S \subset M^6$, called the *motion subspace*

degree of (motion) freedom:dim(S)degree of constraint:6 - dim(S)

S can vary with time

Matrix Representation

Let **S** be any $6 \times \dim(S)$ matrix such that range(**S**) = *S*, then

• the columns of \mathbf{S} define a basis on \mathbf{S}

 any vector v∈S can be expressed in the form v = Sα, where α is a dim(S) ×1 vector of coordinates

Constraint Forces

- motion constraints are enforced by constraint forces
- constraint forces do no work: if f_c is the constraint force, and S the motion subspace matrix, then

$$\mathbf{S}^T \mathbf{f}_c = \mathbf{0}$$

• constraint forces occupy a subspace $T \subset F^6$ satisfying dim(S) + dim(T) = 6 and $S^T T = 0$

Constrained Motion

A force, **f**, is applied to a body with inertia **I** that is constrained to a subspace S = Range(S) of M⁶. Assuming the body is initially at rest, what is its acceleration?

velocity $\mathbf{v} = \mathbf{S} \alpha = \mathbf{0}$ acceleration $\mathbf{a} = \mathbf{S} \dot{\alpha} + \dot{\mathbf{S}} \alpha = \mathbf{S} \dot{\alpha}$ constraint force $\mathbf{S}^T \mathbf{f}_c = \mathbf{0}$

a

equation of motion

 $f + f_c = I a + v \times I v$ = I a

solution

 $f + f_c = IS\dot{\alpha}$ $S^T f = S^T IS\dot{\alpha}$ $\dot{\alpha} = (S^T IS)^{-1}S^T f$ $a = S(S^T IS)^{-1}S^T f$

apparent inverse inertia

Now try question set C

Inverse Dynamics

- $\dot{q}_i, \ddot{q}_i, \mathbf{s}_i$ joint velocity, acceleration & axis
- $\mathbf{v}_i, \mathbf{a}_i$ link velocity and acceleration
- **f**_{*i*} force transmitted from link i-1 to i
- τ_i joint force variable
- Iink inertia

 velocity of link *i* is the velocity of link *i*-1 plus the velocity across joint *i*

 $\mathbf{v}_i = \mathbf{v}_{i-1} + \mathbf{s}_i \, \dot{q}_i$

- acceleration is the derivative of velocity $\mathbf{a}_i = \mathbf{a}_{i-1} + \dot{\mathbf{s}}_i \dot{q}_i + \mathbf{s}_i \ddot{q}_i$
- equation of motion

$$\mathbf{f}_i - \mathbf{f}_{i+1} = \mathbf{I}_i \ \mathbf{a}_i + \mathbf{v}_i \times \mathbf{I}_i \ \mathbf{v}_i$$

active joint force

$$\tau_i = \mathbf{s}_i^T \mathbf{f}_i$$

The Recursive Newton–Euler Algorithm

(Calculate the joint torques τ_i that will produce the desired joint accelerations \ddot{q}_i .)

$\mathbf{v}_i = \mathbf{v}_{i-1} + \mathbf{s}_i \dot{q}_i$	$(\mathbf{v}_0 = 0)$
$\mathbf{a}_i = \mathbf{a}_{i-1} + \dot{\mathbf{s}}_i \dot{q}_i + \mathbf{s}_i \ddot{q}_i$	$(\mathbf{a}_0 = 0)$
$\mathbf{f}_i = \mathbf{f}_{i+1} + \mathbf{I}_i \ \mathbf{a}_i + \mathbf{v}_i \times \mathbf{I}_i \ \mathbf{v}_i$	$(\mathbf{f}_{n+1} = \mathbf{f}_{ee})$
$\tau_i = \mathbf{s}_i^T \mathbf{f}_i$	