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SUMMARY

The motor cortices are active during both movement
and movement preparation. A common assumption
is that preparatory activity constitutes a subthreshold
form of movement activity: a neuron active during
rightward movements becomes modestly active
during preparation of a rightward movement. We
asked whether this pattern of activity is, in fact,
observed. We found that it was not: at the level of
a single neuron,preparatory tuningwasweakly corre-
lated with movement-period tuning. Yet, somewhat
paradoxically, preparatory tuning could be captured
by a preferred direction in an abstract ‘‘space’’ that
described the population-level pattern of movement
activity. In fact, this relationship accounted for prepa-
ratory responses better than did traditional tuning
models. These results are expected if preparatory
activity provides the initial state of a dynamical
system whose evolution produces movement
activity. Our results thus suggest that preparatory
activity may not represent specific factors, and may
instead play a more mechanistic role.

INTRODUCTION

Voluntary movements are prepared before they are generated

(Ghezet al., 1991;Rosenbaum,1980). Similarly, changes in neural

activity occur well beforemovement onset in bothmotor and pre-

motor cortex (Tanji and Evarts, 1976; Weinrich et al., 1984). Such

‘‘preparatory’’ activity likely plays a key role in movement genera-

tion: preparatory activity is predictive of reaction time and move-

ment variability (Bastian et al., 2003; Churchland et al., 2006a;

Churchland and Shenoy, 2007a; Churchland et al., 2006c; Riehle

and Requin, 1993), and its disruption delays movement onset

(Churchland and Shenoy, 2007a). An understanding of prepara-

tory activity is also central to the study of the cognitive processes

preceding movement. For example, an understanding of the

preparatory activity preceding saccades hasmade approachable

the cognitive processes that determine where and when to move
the eyes (Schall and Thompson, 1999; Shadlen and Newsome,

2001). Yet it is still unclear how preparatory activity in motor and

premotor cortex contributes to movement generation.

A common assumption is that preparatory activity constitutes

a subthreshold version of movement activity. If a neuron will

become active during rightward movement, it may be beneficial

for that neuron to be weakly active during preparation of right-

ward movement. Assuming a threshold for producing move-

ment, preparatory activity could advance the system closer to

that threshold. This subthreshold view of preparatory activity

dates to early studies (Tanji and Evarts, 1976), accords with

our understanding of the saccadic system (e.g., Hanes and

Schall, 1996), and is assumed by most models of reach genera-

tion (Bastian et al., 1998; Cisek, 2006a; Erlhagen and Schöner,

2002). A related hypothesis holds that preparatory and move-

ment activities are tuned for different but concordant factors

(e.g., rightward target locations and rightward hand velocity).

An alternative proposal is that preparatory activity functions as

the initial state of a dynamical system and may not explicitly

represent movement parameters (Churchland et al., 2006b;

Churchland et al., 2006c; Cisek, 2006b; Fetz, 1992). Under this

hypothesis, preparatory and movement activity are closely

related (via those dynamics), but that relationship need not be

transparent at the level of the individual cell.

Neural responses consistent with the subthreshold view are

often observed, especially in population averages (Bastian

et al., 1998; Bastian et al., 2003; Cisek, 2006a; Erlhagen et al.,

1999; Georgopoulos et al., 1989; Requin et al., 1988; Riehle

and Requin, 1989). Yet other reports argue that, for individual

neurons, tuning can differ during the two epochs (Crammond

and Kalaska, 2000; Kaufman et al., 2010; Turner, 1991; Wise

et al., 1986) and is in general inconstant with time (Churchland

and Shenoy, 2007b; Fu et al., 1995; Hatsopoulos et al., 2007;

Rickert et al., 2009).

If preparatory activity constitutes a subthreshold precursor of

movement activity, the two should share similar tuning. Yet

under the dynamical systems view there is little reason why

‘‘tuning’’ should be similar for the initial and subsequent states

of the system. Muddying the waters further, preparatory activity

appears tuned for a dizzying variety of factors, including reach

direction and distance (Messier and Kalaska, 2000; Riehle and

Requin, 1989), reach speed (Churchland et al., 2006b), visual

location of the target (Shen and Alexander, 1997), target location
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Figure 1. Illustration of Behavior

(A) Reaches were from a central spot to a target. An

example trajectory is shown.

(B) Task timeline. Upon appearing (T), the target jittered

slightly. Cessation of jitter provided the go cue (G). M indi-

cates movement onset.

(C) Behavior: speed task. Velocity in the target direction for

the seven directions, two distances and two instructed

speeds is shown.

(D) Behavior: maze task. For this example condition, the

reach had to curve over a virtual barrier. In other condi-

tions, reaches avoided different arrangements of barriers

or were straight with no barriers. Reaches lasted �200

to �600 ms (depending on distance/curvature).
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relative to the eye and hand (Batista et al., 2007; Pesaran et al.,

2006), and reach curvature (Hocherman and Wise, 1991). It is

unclear which—if any—of those factors is primary. We are thus

left with two open and fundamental questions: what is prepara-

tory activity tuned for, and how does it relate to movement

activity?

We addressed these questions using four data sets employing

delayed-reach tasks. We found that the tuning of individual

neurons was typically dissimilar during the preparatory and

movement epochs. This finding is inconsistent with a

subthreshold role for preparatory activity. Nevertheless, prepa-

ratory tuning could be captured by a preferred direction in

a ‘‘space’’ describing the population-level movement-period

responses. Remarkably, preferred directions in this unconven-

tional space accounted for preparatory tuning better than did

preferred directions in more traditional spaces (e.g., reach

endpoint or velocity). This result has a simple mechanistic inter-

pretation: it is expected under the hypothesis that preparatory

activity acts as the initial state of a dynamical system.

RESULTS

Behavior and Recordings
Three monkeys performed variants of a delayed-reach task. In

the ‘‘speed task’’ (monkeys A and B), target color instructed

reach speed (28 conditions, Figure 1C). In the ‘‘maze task’’

(monkey J), reacheswere either straight or curved to avoid virtual

barriers (Figure 1D). In the present study, this complex cognitive-

motor task simply provides a way to evokemany different reach-

ing movements (27 and 108 conditions for ‘‘monkey J’’ and

‘‘monkey J-array’’ data sets).

Neural recordings employed single electrodes (monkeys A,

B, and J data sets, 310 total single-unit isolations) and a pair
388 Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc.
of implanted 96-electrode arrays (J-array data

set, 146 single- and multiunit isolations).

Recordings were made from the caudal portion

of dorsal premotor cortex (PMd) and from

surface and sulcal primary motor cortex (M1).

High trial counts (mean trials/neuron = 311,

492, 388, and 2166 for monkeys A, B, J, and

J-array) allowed us to resolve perimovement

responses that were often complex and multi-
phasic (Churchland and Shenoy, 2007b; see also example

PSTHs below).

Neural Responses during Preparation and Movement
Figure 2A illustrates an idealized response pattern consistent

with preparatory activity serving as a subthreshold form ofmove-

ment activity. Preparatory activity shows a preference for one

condition (red, perhaps the preferred direction) over another

(green, perhaps the opposite direction). This preference is main-

tained as the plateau of preparatory activity gives rise to a burst

of perimovement activity (defined as activity immediately before,

during, and just after the movement).

Figure 2B plots the response of a neuron that approximates

the schematic in Figure 2A. Data are for one distance/instructed

speed. Traces (one per condition) are colored based on the level

of preparatory activity in order to allow visual comparison with

the subsequent pattern of perimovement activity. This neuron

‘‘prefers’’ reaches ending up and leftward. This preference is

shared between preparatory and perimovement epochs. This

agreement is not perfect (two green traces surpass the black

trace), but the overall correlation is quite high (r = 0.72; see

section on correlations below for details).

Figures 2C–2E plot responses of three additional neurons

recorded using the speed task. Despite clear preparatory tuning,

preferences are not maintained between the preparatory and

perimovement epochs (color ordering differs between epochs).

Furthermore, perimovement activity was often complex and

multiphasic (Churchland and Shenoy, 2007b; Sergio et al.,

2005). These neurons show negative correlations between

preparatory and perimovement tuning.

Figure 3 plots responses of six neurons recorded using the

maze task. Panels (A)–(D) plot single-electrode recordings

(27 conditions). Panels (E) and (F) plot array-based recordings
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Figure 2. An Idealized Schematic of Neural Activity

and Responses of Example Neurons

(A) Traces are colored red (preferred) and green (nonpre-

ferred). In this conception, preparatory activity is present

during the delay period, rises to a threshold following the

go cue, and produces a burst of perimovement activity.

(B) Firing rate versus time for an example neuron whose

responses resemble the schematic in (A). Responses are

shown for all seven reach directions for the fast instructed

speed and shorter distance. Traces are shaded from red to

green based on the firing rate 50 ms before the go cue.

Data were averaged separately, locked to target onset,

the go cue, and movement onset. To aid viewing, we

have interpolated data across the gaps between these

three epochs. See Figure S4 for a description of the

smoothing used to produce these PSTHs. Inset plots

mean hand trajectory using the same color coding.

(C–E) Similar plots for three more example neurons. Data

have been down selected to a single distance and in-

structed speed (far/fast for these panels). These three

neurons were selected to illustrate the fact that prepara-

tory and perimovement tunings were typically different,

even in the simplest paradigm: straight reaches at one

distance/instructed speed.

Neuron

Cortical Preparatory Activity
(108 conditions). Some neurons maintained similar tuning

between preparatory and perimovement epochs (panel A), but

most did not. Also, althoughmost neurons showed a rough direc-

tional preference during the preparatory period (insets), it was not

uncommonfora few (panelB)orevenmany (panelsEandF)condi-

tions to evoke activity not easily explained by a pure directional

preference.

Perimovement response complexity is not due to noise, but is

instead a real feature of most neural responses (Churchland and

Shenoy, 2007b). Still, in Figure 3, response complexity is partly

a result of the variety of reach paths. Given this, it is worth stress-

ing two things. First, any model regarding how preparatory

activity leads to perimovement activity should work for curved

as well as straight reaches. Second, both perimovement

response complexity and the failure of preparatory tuning to

predict perimovement tuning are quite apparent even for simple

center-out reaches (Figure 2).

Correlations between Preparatory
and Perimovement Tuning
Similar levels of preparatory activity can lead to opposing

patterns of perimovement activity (e.g., middlemost traces in
Neuron 68, 387
Figure 2D and traces near the top of

Figure 3C). Thus, it is not simply that tuning pref-

erences can reverse; tuning is often weakly

correlated between the two epochs (population

analysis in Figures 4A–4D). To compute

correlations, we took the average firing rate

during the preparatory and perimovement

epochs for each condition (Experimental Proce-

dures). A neuron’s tuning in one epoch is then

described by a vector of firing rates, with one

entry per condition. We intentionally chose to

not fit a specific tuning model and instead
simply computed the correlation between epochs. This correla-

tion will be high if a neuron’s preference remains similar. Across

the four data sets, the mean correlation was positive (p = 0.01,

p = 0.01, p = 0.12, p = 0.03), but only very modestly so

(mean r = 0.21, 0.19, 0.06, and 0.13). Nonparametric correlations

were similarly modest (mean Spearman’s r = 0.20, 0.20,

0.06, and 0.11). Thus, preparatory and perimovement tuning

agree weakly on average, and individual neurons span a wide

spectrum.

The example neurons with correlations closest to the popula-

tion mean are shown in Figures 3A, 3C, and 3E. These neurons

illustrate a further point: preparatory and perimovement tuning

often agreed when the latter was assessed �150 ms before

movement onset, but not when assessed close to movement

onset. To examine this time course, wemeasured perimovement

activity at individual time points. The correlation with preparatory

activity began to decline �200 ms prior to movement onset and

reached values near zero by movement onset (Figure 4E).

The above results agree with some prior observations at the

single-neuron level (Churchland and Shenoy, 2007b; Crammond

and Kalaska, 2000; Kaufman et al., 2010; Wise et al., 1986) but

appear to disagree with findings made at the population level
–400, November 4, 2010 ª2010 Elsevier Inc. 389
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Figure 3. Responses of Six Example Neurons, Similar Format to Figure 2

(A–F) Responses are shown for all conditions, including straight and curved reaches. Different conditions, involving different maze configurations, sometimes

evoked similar reach trajectories (although not necessarily with similar velocity profiles). The same 108 conditions were used for the J and J-array data sets.

For the former, a given neuron was recorded using one of four 27-condition subsets. The insets in (A)–(D) thus show different reach patterns, corresponding

to different subsets. In addition to temporal filtering, additional denoising was accomplished via the method in Figure S4. This method removes uncorrelated

noise and thus cannot eliminate noise in the firing rate that is accidentally similar across conditions (e.g., during the delay period in F).
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(Bastian et al., 1998; Bastian et al., 2003; Cisek, 2006a; Georgo-

poulos et al., 1989). This discrepancy can be resolved by noting

that preparatory and perimovement tuning are weakly but posi-

tively correlated on average, especially early in the perimove-

ment epoch (Figure 4). In population averages (see Figure S1

available online), the lack of correlation averages out and the

means are dominated by the weak agreement between prepara-

tory and perimovement tuning. However, such effects grow

dramatically smaller with time. By movement onset, even popu-

lation averages show little relationship with preparatory tuning

(Figure S1).

Our results argue against a common assumption: that prepa-

ratory activity constitutes a subthreshold version of perimove-

ment activity. The cartoon in Figure 2A bears little resemblance
390 Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc.
to the responses of most neurons. Even more disconcertingly,

different neurons showmarkedly different relationships between

preparatory and perimovement activity, with a broad range of

correlations centered near zero. It has been suggested that

neurons with concordant preparatory and perimovement tuning

might prime the desired movement, whereas neurons with

opposing tuning might suppress movement until execution

(Wise et al., 1986). Yet there is little evidence in Figure 4 (except

perhaps weakly in panel B) for one population of concordant

tuning (r z 1) and another of opposing tuning (r z �1). Instead,

most neurons have weakly correlated tuning.

There are at least four possible explanations for the

above findings. First, perhaps preparatory activity is a largely

idiosyncratic phenomenon with no lawful relationship with
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(A–D) Distribution of correlations (measured once per neuron) for the four data

sets. Analysis was restricted to neurons robustly tuned during both epochs

(Experimental Procedures). Red dot indicates the distribution mean.

(E) Average correlation as a function of when perimovement activity was as-

sessed. Perimovement activity was measured at a single time point, after

smoothing with a 20 ms Gaussian kernel. Correlations are initially high,

because preparatory tuning is being correlated with itself.
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perimovement activity. Second, perhaps preparatory and peri-

movement activity code the same thing (e.g., reach direction)

with unrelated preferences (e.g., different preferred directions).

Third, preparatory and perimovement activity may code funda-

mentally different things and do so with unrelated preferences.

The motor system might decode reach endpoint from prepara-

tory activity and then produce perimovement activity represent-

ing the velocity trajectory necessary to reach that endpoint.

Finally, under the dynamical systems view, preparatory activity

may be directly and mechanistically linked with perimovement

activity, but in a manner not obvious at the single-neuron level

(Churchland et al., 2006b; Cisek, 2006b). These possibilities

are addressed below.
Testing Preparatory Tuning in Different
Spaces/Reference Frames
Of the above hypotheses, the first supposes that preparatory

activity is tuned for nothing reliable. The next two suppose that

preparatory activity is tuned for task or movement parameters

(e.g., reach endpoint, trajectory, or speed). The last supposes

that preparatory activity should somehow relate to the popula-

tion-level pattern of perimovement activity. What is preparatory

activity in fact tuned for?

It is worth expanding upon the usual caveat that most exper-

imentally quantifiable variables (reach endpoint, reach velocity,

muscle activity) correlate with one another (Mussa-Ivaldi, 1988;

Sanger, 1994; Scott, 2000; Scott, 2008). This has important

consequences. Suppose preparatory activity truly represents

reach endpoint (i.e., is some straightforward function of reach

endpoint and can be readily decoded to infer endpoint).

Suppose perimovement activity represents reach velocity.

Preparatory activity will then appear tuned not only for reach

endpoint but also for reach velocity and perimovement activity

(all these factors are correlated). Yet reach endpoint does not

correlate perfectly with reach velocity, particularly for the tasks

used here. Preparatory activity (which, in this example, is tuned

for endpoint) would therefore have its strongest relationship with

endpoint and would have somewhat weaker relationships with

the other variables. The central question is thus: what is prepara-

tory activity best tuned for?

To investigate this question, wemeasured howwell a preferred

direction (PD) accounts for preparatory tuning. We asked in what

space that PD best captures tuning. If preparatory activity is

tuned for endpoint, then the PD will capture tuning most effec-

tively when expressed in a ‘‘reach-endpoint space,’’ where the

axes capture horizontal and vertical endpoint. If preparatory

activity is tuned for initial reach velocity, the PD will be most

effective in an ‘‘initial-velocity space.’’ A wide variety of such

spaces is possible. Indeed, a central goal of this field has been

to determine in which space, or reference frame, the PD best

captures tuning.

Figure 5 illustrates, for one example neuron, how the PD can

capture tuning in different spaces. Preparatory activity showed

a clear preference for some conditions (shaded red) over others

(shaded green). Figure 5B illustrates a traditional method for

accounting for such preferences. The 28 conditions (each corre-

sponding to a target location and instructed speed) are located in

a space defined by the horizontal and vertical reach endpoints.

Preparatory firing rate is indicated by symbol size/color. The

PD points toward the most active responses and attempts to

provide a fit according to:

xnzbo +g3S3PD; Equation 1

where xn is a c 3 1 vector containing the neuron’s preparatory

response for the c conditions, bo and g are the firing rate offset

and gain, S is a c 3 k matrix containing the location of each

condition in a k-dimensional space, and the PD is a k 3 1 direc-

tion in that space. The performance of the PD can be gauged by

plotting the true responses (xn) versus the fit provided by the PD

(right-hand side of Equation 1). Doing so (Figure 5D) shows that

the PD in endpoint space captures the pattern of preparatory

activity reasonably well.
Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc. 391
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Figure 5. Example PDs in a Space Based onMove-

ment Endpoints and the ‘‘Perimovement Space’’

(A) Firing rate as a function of time for an example neuron.

All 28 conditions are shown.

(B) Mean reach endpoint for each condition. Red-to-green

shading and symbol size indicate preparatory firing rate

for that condition. Symbol thickness indicates instructed

speed. The PD (arrow) points toward conditions with the

greatest preparatory activity.

(C) The same 28 conditions located in the perimovement

space. Each axis corresponds to a population-level

pattern of perimovement activity (a PC). The subsection

of this pattern coming from a single neuron (A34, chosen

arbitrarily) is plotted at the end of each axis. Thus, the

rightmost red symbol corresponds to a condition in which

the ‘‘PC1 pattern’’ was strongly present.

(D) Firing rate versus each condition’s projection onto the

PD, using the endpoint space from (B).

(E) Similar to (D), but for the perimovement space.

(F) Same as (D), but for a 4D space defined by reach

endpoint and peak velocity.

(G) Same as (E), but for a 4D perimovement space.
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Might the PD perform better still if expressed in a different

space? Many spaces are possible. For example, to construct

an ‘‘endpoint-and-peak-velocity’’ space, one needs simply to

measure average endpoint and peak velocity for each condition.

Each condition is then described by four numbers (horizontal and

vertical endpoint and peak velocity) and lives in a four-dimen-

sional space. We can then ask how well a PD in this four-dimen-

sional space captures the pattern of preparatory activity
392 Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc.
(Figure 5F). We refer to spaces constructed in

this manner as ‘‘task’’ spaces. Task spaces

are constructed by the experimenter to capture

salient aspects of the task (e.g., target location)

or of performance (e.g., peak velocity). The use

of such task spaces is common in systems

neuroscience. The many studies that ask which

reference frame best captures neural responses

(e.g., Kakei et al., 1999) are asking which task

space is preferable. More generally, whenever

neural responses are posited to depend linearly

on some set of k factors, that relationship can be

formalized via a PD in k-dimensional space.

How well the PD performs is a test of whether

activity truly depends on those k factors. Tradi-

tional ‘‘cosine tuning’’ models fall into the above

category: cosine tuning for velocity is equivalent

to a linear dependence on horizontal and

vertical velocity (Georgopoulos et al., 1982).

Testing Preparatory Tuning
in PCA-Based Spaces
A presumed purpose of preparatory tuning is for

changes in a given neuron’s activity to con-

tribute, in a small but specific way, to changes

in some future aspect of movement. A neuron

tuned for reach endpoint would, through its

firing, contribute some small change to the
eventual reach endpoint. Of course, preparatory activity might

be tuned not for static factors (e.g., endpoint) but for time-

varying parameters (e.g., velocity). A change in preparatory firing

rate would then presumably impact the future temporal profile of

that parameter (perhaps scaling velocity overall). This situation

should still be experimentally tractable. Provided one can

describe, using a small number of parameters, how velocity

varies with condition, then preparatory activity should faithfully
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covary with those parameters (if it is truly tuned for future

velocity). Such parameterizations can be provided by dimen-

sionality reduction techniques such as principal component

analysis (PCA).

This approach can also address the hypothesis that prepara-

tory activity constitutes an initial state that largely determines

(via local and feedback dynamics) the population-level pattern

of perimovement activity. In this view, changes in preparatory

activity produce specific changes in the pattern of perimovement

activity. For a large class of dynamical systems, this relationship

is straightforward: the greater a given neuron’s preparatory rate,

the stronger some subsequent perimovement pattern becomes.

PCA can be used to reduce perimovement activity to a simple set

of component patterns. Under the dynamical systems view,

preparatory activity should be tuned for these component

patterns. If a particular pattern is prominent for a given condition,

then the preparatory rate of a neuron contributing to that pattern

should be high.

The PCA-based approach (Figures 5C, 5E, and 5G; Figure S2)

constructs a low-dimensional space that captures how time-

varying factors (velocity, perimovement activity, etc.) differ

across conditions. To illustrate the necessity of dimensionality

reduction, consider the full-dimensional space describing the

perimovement response. The relevant matrix (call this T) is large:

c 3 nt, where c is the number of conditions, n is the number of

neurons, and t is the number of time points. The c conditions

thus reside in a space with thousands of dimensions. PCA can

reduce this dimensionality from c3 nt to c3 k, with k in the range

of 3–14. The resulting c3 kmatrix, Tred, then conveniently yields

the location of each condition in a k-dimensional space

(Figure S2).

To illustrate, Figure 5C plots the 28 conditions in a two-dimen-

sional (k = 2) perimovement space. The location of each symbol

indicates, for that condition, the strength of the two most prom-

inent perimovement patterns (the first two PCs). The PD captures

preparatory tuning reasonably well (Figures 5C and 5E). In fact,

the PD generally performed adequately regardless of the space

in which it was expressed. As discussed above, this is expected,

given correlations between movement parameters. One thus

wishes to ask in which space the PD best captures the pattern

of preparatory responses. We tested a variety of spaces, falling

into three categories. First, we tested task spaces, constructed

by hand selecting likely important factors (as in Figure 5B).

Second, we tested the perimovement space (Figure 5C). Finally,

PCA was used to produce a kinematics-based space and an

electromyogram (EMG)-based space (substituting time-varying

kinematic variables or EMG records for perimovement activity).

Most tested spaces were greater than two-dimensional.

Figures 5F and 5G plot PD performance in a four-dimensional

task space and a four-dimensional perimovement space. The

improvement in fit (relative to Figures 5D and 5E) is expected.

The use of a PD is equivalent to linear regression; we are now

regressing against four explanatory factors rather than two.

To combat potential overfitting, we computed the PD based on

all but one condition (red circled points in Figures 5D–5G) and

assessed performance for the left-out condition. This cross-

validation procedure was repeated, leaving out each condition

in turn. We define performance as 1 minus the squared error,
averaged across all left-out conditions and normalized appropri-

ately (Experimental Procedures).

PD Performance in a Variety of Spaces
We quantified the ability of the PD, in each space, to account for

preparatory tuning (Figure 6). Points above zero indicate perfor-

mance considerably better than chance. Points below zero indi-

cate that the PD provided a largely spurious fit (or suffered from

overfitting), resulting in poor generalization. For task spaces

(green), performance is plotted against the dimensionality of the

space. Given the lack of agreement regarding the key task vari-

ables, we triedmany candidate spaces. A number of task spaces

performed reasonablywell, including ‘‘targs+ inst. spd.,’’ a three-

dimensional space based on the horizontal and vertical target

location and the instructed speed (speed task only); ‘‘endpoints +

max. spd.,’’ a similar space based on the empirical reach

endpoints and peak speeds; ‘‘segment dirs.,’’ a six-dimensional

space built by dividing the reach trajectory into three vectors; and

‘‘initial vel.,’’ the average horizontal and vertical velocity during

the first 150 ms of the reach. That the PD can perform well in

different task spaces highlights the historical difficulty of deter-

mining which factors activity truly depends upon.

Performance of the PCA-based spaces is plotted for a range of

dimensionalities (values of k). Performance typically improved

with dimensionality. This increase is nontrivial, because general-

ization performance is being assessed. Still, because the dimen-

sionality of preparatory activity itself is moderately high (at least

7–10 dimensions; Experimental Procedures), performance

should increase with dimensionality, assuming the PD is in

approximately the ‘‘right’’ space. Performance typically declined

at dimensionalities > 10, an indication of overfitting.

The data in Figures 6A–6D lend themselves to many compar-

isons, but one central finding stands out: performance was

nearly always best for the space derived from the population-

level perimovement response. For every data set, the highest

level of performance was achieved—usually for a middle range

of dimensionalities—when PDs were expressed in the perimove-

ment space. Even if we consider each dimensionality individu-

ally, performance was almost always higher for the perimove-

ment space. An exception was that, among three-dimensional

spaces, the ‘‘targs + instr. spd.’’ and ‘‘endpoints + max. spd.’’

performed very well for the data sets collected using the speed

task. The former is undefined for the maze task, but the latter

did not perform well.

We did not test all possible task spaces. Nor is it clear that the

‘‘right’’ space should stay constant across tasks. Still, if we

restrict ourselves to the tested spaces and assume that the

correct tuning model should account for both straight and

curved reaches, then a clear rank order of spaces is present.

Figure 6E summarizes performance across the data sets

(excluding J-array, for which EMG was not recorded). For the

first subpanel, performance was computed for spaces of three

dimensions or less. The other subpanels allow spaces up to 6

and 12 dimensions. For PCA-based spaces, if the best dimen-

sionality was less than the maximum dimensionality allowed,

then the best was used. Performance (averaged across neurons)

was highest when the PD employed the space based on

perimovement neural activity. This performance differential
Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc. 393
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Figure 6. Ability of the PD to Account for Preparatory Tuning

(A–D) Performance of the PD for the four data sets. For PCA-based spaces (perimovement, kinematic, EMG), performance is plotted over a range of tested dimen-

sionalities. Task spaces (green) are plotted versus their respective dimensionalities. Gray line is an estimate of the upper limit on performance, given measure-

ment error (Experimental Procedures).

(E) Summary of performance, spanning data sets from monkeys A, B, and J. We combined only across spaces defined for all data sets (e.g., ‘‘targs + inst. spd.’’

was not included, but ‘‘endpoints + max. spd.’’ was included). Subpanels plot performance for spaces of the indicated dimensionality or less.

Bars plot standard errors. Asterisks indicate performance significantly worse (p < 0.001) than the best space.
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Figure 7. Further Controls and Analyses

(A) Performance of the ‘‘shuffled’’ perimovement spaces, averaged over all the

data sets. During shuffling, either the firing rate for each neuron/condition was

left intact (50% probability) or the perimovement pattern was inverted. This

was done by preserving activity up to 150 ms before movement onset and

reflecting (vertically) all subsequent activity around the firing rate at that time.

(B) Performance (averaged across neurons) versus the start of the perimove-

ment interval. Performance was measured using the best dimensionality for

that data set/start time.

(C) Performance of the perimovement space for subsets of the original data.

Performance was computed for a six-dimensional space, normalized, and

averaged across data sets. Leftmost bar: performance for all data. Gray

bars: performance for sites with AP locations R the median (anterior) or %

the median (posterior). Second black bar: performance when data were

randomly subdivided.

(D) PD consistency for the perimovement space versus that for a variety of

other spaces. Kinematic and EMG spaces were chosen because they had

performed the best overall (after the perimovement space) in the analysis in

Figure 6. ‘‘Targs. + inst. speed’’ and ‘‘segment directions’’ spaces were

chosen because they performed well for the speed and maze tasks, respec-

tively. ‘‘Targs. + inst. speed’’ was undefined for the maze task; the similar

‘‘endpoints + max. spd.’’ space was analyzed instead.
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increased at higher dimensionalities, indicating that the peri-

movement space better captured higher-dimensional aspects

of the data. Although a few task spaces performed well at lower

dimensionalities, no single task space performed consistently

well across data sets. As a result, the task spaces were largely

outcompeted by the PCA-based kinematic and EMG spaces,

which were in turn outperformed by the perimovement space.

Notably, the perimovement space performed well despite the

low correlation between preparatory and perimovement activity

at the single-neuron level (Figure 4).

Controls
Might the perimovement space perform well because it is based

in part on activity (the beginning of the perimovement epoch) that

correlates with preparatory activity? This is unlikely for three

reasons. First, when using a PD to capture a given neuron’s

preparatory activity, the perimovement space was based on

the responses of all the other neurons (Experimental Proce-

dures). Second, because perimovement activity is typically

stronger than preparatory activity, the perimovement space is

unlikely to be dominated by the trailing end of preparatory

activity. To illustrate this, we employed a shuffled control in

which each condition’s perimovement response was randomly

inverted on half the conditions (Figure 7, legend). The PCA-

based ‘‘shuffled space’’ performed poorly (Figure 7A); any

contribution from the trailing end of preparatory activity

(preserved despite shuffling) is insufficient to allow good perfor-

mance. Finally, the start of the perimovement window was

150 ms before movement onset but could be slid later in time

with little decline in performance (Figure 7B). Even when the

window began at movement onset (at which point the correlation

between preparatory and perimovement tuning is almost zero;

Figure 4E), performance was still at 97% (monkey J) and 94%

(monkeys A and B) of its original value.

Might the perimovement space perform well simply because it

is high dimensional? This is unlikely. Regressing against a high-

dimensional space will improve fit, but not generalization perfor-

mance (unless those higher dimensions really are relevant).

For example, the shuffled space is high dimensional but

performed poorly. Also, the high-dimensional task spaces

(including the gratuitously high-dimensional ‘‘kitchen sink’’

space) always underperformed the perimovement space.

Finally, the perimovement space performed well even at the

lower dimensionalities.

A final possible concern is that the perimovement space is

somehow at an advantage because it involves relating neural

activity with other neural activity. This is unlikely for a number

of reasons. First, the analysis in Figure 4 similarly related neural

activity during the two epochs, yet found little consistent rela-

tionship. Second, the measurement of neural activity is noisier

than the measurement of kinematic parameters or of EMG.

Based on a finite number of neurons, the perimovement space

will, if anything, be at a disadvantage. Third, a given neuron’s

preparatory activity was explained using a space derived from

the perimovement activity of all the other neurons. Finally, one

expects preparatory activity that is tuned for one thing (e.g.,

reach endpoint) to relate to perimovement activity tuned for

another (e.g., reach velocity). Yet any such secondary relation-
ship should be weaker than the direct relationship between

preparatory activity and the factor it is truly tuned for. However,

we found that preparatory activity was best explained in the peri-

movement space.
Comparison of Anterior versus Posterior Sites
A number of response properties—including the prevalence of

preparatory activity—vary with anterior/posterior location within
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and between PMd/M1 (Kalaska et al., 1997; Kalaska et al.,

1998; Weinrich et al., 1984). We similarly found preparatory

activity to be more prevalent at anterior sites (data not shown).

However, with respect to our central results, anterior and poste-

rior sites were similar. The poor correlation between preparatory

and perimovement tuning (at the single-cell level) was equally

prevalent at anterior and posterior sites. Regressing tuning

correlation (as in Figure 4) against AP location yielded little or

no effect: r = �0.05, p = 0.82; r = �0.03, p = 0.85; r = �0.07,

p = 0.52; and r = 0.20, p = 0.27 for the four data sets.

The ability of the perimovement space to capture tuning also

held for both anterior and posterior sites (Figure 7C). Some

caution is required: any division of the data will likely yield poorer

performance, because the perimovement space is impacted

more by sampling noise. To combat this complication, we

normalized performance by its estimated upper limit (e.g., the

gray line in Figures 6A–6D). Performance, after dividing based

on anatomy, was only slightly different than if we down-selected

the data randomly. Performance was slightly better at anterior

sites, though this may occur simply because stronger tuning

can be more accurately measured and thus more accurately

captured by the PD.

Stability of the PD
A common experimental design involves measuring the PD

before and after an imposed manipulation, such as a change

in arm posture or the addition of a load (e.g., Caminiti et al.,

1990; Kakei et al., 1999; Kalaska et al., 1989; Scott et al.,

1997). Often, the manipulation is carefully chosen to be maxi-

mally revealing with respect to the candidate spaces being

considered. However, the central logic holds more generally: if

the PD is expressed in the ‘‘right’’ space, it ought not change

when remeasured in another context. Our data sets employed

many (27–108) conditions, affording the opportunity to perform

a less creative, but not necessarily less effective, version of

this class of experiment. For each neuron, we randomly chose

25 conditions (with replacement) and measured the PD, then

randomly chose another 25 conditions and remeasured the

PD. (This analysis is possible because the PD is computed

via regression, which does not require a uniform arrangement

of conditions.) ‘‘PD consistency’’ was the dot product of the

two PDs.

Figure 7D plots average PD consistency in the perimovement

space versus that in a variety of other spaces. The perimovement

space always employed the same dimensionality as the space

with which it was compared. We chose two task spaces that

had performed well for at least one of the two tasks in the

analysis in Figure 6. For PCA-based kinematic and EMG spaces,

we employed the dimensionality that yielded the highest perfor-

mance for that data set in Figure 6. Thus, the task, kinematic, and

EMG spaces were given the best possible chance to compete

favorably with the perimovement space. Yet for every compar-

ison, and for all four data sets, the PD was most stable when

measured in the perimovement space.

Tuning from a Dynamical Systems Perspective
The finding that the PD performs best in a perimovement space

initially appears paradoxical, given the generally weak correla-
396 Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc.
tion between preparatory and perimovement tuning (Figure 4).

More broadly, what kind of a representation does this finding

imply? How might that representation be decoded? These

issues can be addressed under the interpretation that prepara-

tory activity serves as the initial state of a dynamical system

whose subsequent evolution produces perimovement activity

(Churchland et al., 2006b; Churchland et al., 2010; Cisek,

2006b; Fetz, 1992; Schaffer et al., 2006; Sussillo and Abbott,

2009; Yu et al., 2009). This suggestion is compatible with both

of our basic findings. The critical observation is that the trajectory

of a linear dynamical system is a weighted sum of component

patterns. Changes in the initial state lead to linear changes in

the magnitudes of those component patterns (Figure 8A).

If one knows how strongly each pattern is present, one can infer

the initial state. This will be approximately true for a nonlinear

system, to the degree that it can be approximated by a time-

varying linear system (see Supplemental Experimental

Procedures for a derivation and further illustration).

To illustrate the above, Figure 8 shows simple simulated

dynamics: circular trajectories through state space. We em-

ployed 25 initial states (25 ‘‘conditions’’; Figure 8B). These deter-

mine the phase and amplitude of the subsequent activity. The

system was held at its initial state (a rough analogy with prepara-

tory activity) and then released. At the single-unit level

(Figure 8C), preparatory activity seems to bear little relationship

to perimovement activity. The correlation of preparatory activity

with perimovement activity (averaged over the gray interval) was

0.08. Furthermore, a given preparatory firing rate could lead to

opposing patterns of perimovement activity (asterisks,

Figure 8C), much as was the case for the data (e.g.,

Figure 3C). This occurs because a given firing rate for unit 1

can correspond to different initial states (asterisks, Figure 8B).

Yet hidden in Figure 8C is a straightforward relationship.

When the initial rate of unit 1 is high, the subsequent pattern

contains a strong cosine-shaped modulation for unit 1 and

a strong sine-shaped modulation for unit 2. The orthogonal

activity pattern—a negative sine for unit 1 and a cosine for

unit 2—is completely uncorrelated with the initial state of unit

1 (it relates to the initial state of unit 2). Thus, unit 1 can be

said to have a ‘‘preferred direction’’ that points toward the first

of these population-level patterns and is orthogonal to the

second pattern.

Figure 8D illustrates such a PD (same format as for Figure 5C).

PCA yields a space that captures all activity patterns that are

possible for this system. Traces on each axis plot the pattern

captured by that principal component (black and blue for units

1 and 2). Each symbol’s location is given by the weights required

so that those patterns sum to the actual perimovement pattern

seen for that condition. Symbol size/color indicates the prepara-

tory rate of unit 1 for that condition. The PD points toward the

pattern recruited by the activity of unit 1 (Figure 8A) and

perfectly captures preparatory tuning. This occurs because

the space in Figure 8D is a linear transformation (in this case

a nearly pure rotation) of the space in Figure 8B. Given that there

was a direction in that original space (the horizontal axis) that

captured the initial activity of unit 1, there will also be a direction

(the PD) in the transformed space that captures the initial activity

of unit 1.



Figure 8. Illustration of the Behavior of

a Simple Linear Dynamical System: A

Harmonic Oscillator

(A) Changes in the initial state produce a linear

scaling of the subsequent activity pattern. In this

case, the larger the initial state of unit 1, the greater

the amplitude of the oscillation.

(B) State space containing 25 randomly chosen

initial states (25 ‘‘conditions’’). Symbol size/color

indicates the initial firing rate of unit 1. For the

simulations below, activity evolved counterclock-

wise from the initial state: x(t+1) = Wx(t), where x

is the two-dimensional vector of unit activities,

and the matrix W = [1 � 2p/360; 2p/360 � 1].

Thus, the state rotates 1� with each time step.

(C) Activity of unit 1 versus time for the initial states

shown in (B). The initial state was at first held

constant (as if W were the identity matrix) to

emulate preparatory activity. The dynamics were

then released to produce sinusoidal perimove-

ment activity. Asterisks indicate the same two

conditions as in (B).

(D) The pattern of initial states (the ‘‘preparatory

tuning’’) from (C) is captured by a PD in perimove-

ment space. Analysis and format are the same as

for Figure 5C. Traces on each axis plot the time-

evolving pattern corresponding to that PC (black

and blue traces for units 1 and 2). The pattern at

the end of the arrow is the weighted sum of the

two PCs, with weights corresponding to the PD.
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DISCUSSION

Preparatory activity—along with related forms of delay/memory-

period activity—has ranked among themost heavily studied vari-

eties of neural activity. This is not accidental: preparatory activity

potentially provides a critical link between mechanisms related

to cognition and those related to movement. Yet in motor and

premotor cortex, the nature of the link between preparatory

and movement activity has remained unclear.

We found that preparatory and perimovement tunings are typi-

cally dissimilar. This finding argues against models in which

preparatory activity constitutes a subthreshold version of peri-

movement activity. This finding might initially appear to rule out

any straightforward relationship between preparatory and

perimovement activity. However, even simple mechanistic

models (Figure 8) can reproduce two key features of the data.

First, such models reproduce the poor correlation between

preparatory and perimovement tuning at the single-neuron level.

Second, such models reproduce a deeper relationship: prepara-

tory tuning is captured by a PD in the space describing

perimovement activity.

Thus, one interpretation of our data is that preparatory activity

exists not to represent specific movement features but to

initialize a dynamical system whose evolution will produce peri-

movement activity (Churchland et al., 2006b; Cisek, 2006b; Fetz,
1992; Schaffer et al., 2006; Sussillo and Abbott, 2009). Consis-

tent with this interpretation, recent studies (Churchland and She-

noy, 2007a; Churchland et al., 2006c; Rickert et al., 2009; Yu

et al., 2009) suggest that preparatory activity is optimized to

a state appropriate to drive the movement. In this perspective,

delay-period activity is truly preparatory in the causal sense of

setting up the conditions that will permit the generation of appro-

priate perimovement activity. Preparatory activity is tuned for

parameters such as direction and distance only in an indirect

way via its relationship with perimovement activity. In this view,

the two central questions—‘‘What is preparatory activity tuned

for?’’ and ‘‘How do preparatory and movement activity

relate?’’—are in fact the same question. This presents a possible

escape (Cisek, 2006b) from the unresolved debate regarding

what preparatory activity represents. It has been similarly sug-

gested (Churchland and Shenoy, 2007b; Fetz, 1992; Scott

et al., 2001; Todorov, 2000) that perimovement activity is best

understood via its mechanistic role in producing movement.

Still, it remains possible that preparatory and perimovement

activity represent unknown parameters and that they do so

with tuning that is largely unrelated between preparation and

movement. Preparatory activity may represent complex biome-

chanical features of the upcoming reach (features not currently

measured or guessed at), and perimovement activity may repre-

sent similar features in a different way. If so, a space based on
Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc. 397
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perimovement activity would likely outperform all other tested

spaces if none involved an accurate guess regarding the right

features. In this view, the success of the perimovement space

underscores our ignorance regarding the true factors being rep-

resented.

The ‘‘representational’’ and ‘‘dynamical systems’’ views are

not necessarily at odds. Even if we accept the representational

view, the dynamical systems perspective in some sense has to

be true. Suppose preparatory activity represents reach endpoint

and perimovement activity represents muscle activity. There

must exist lawful and quantifiable dynamics that convert the

former representation into the latter. However, such dynamics

would need to be fairly complex and nonlinear. Preparatory

activity would probably not be readily explained by a PD in

perimovement space. Such a PD would certainly underperform

the PD in the correct (endpoint) space. Under the representa-

tional perspective, if one can identify the correct factors, the

PD should perform best in that space. Under the dynamical

systems perspective, so long as the dynamics are even approx-

imately linear, the perimovement space should outperform all

traditional spaces.

A caveat under either interpretation is that, although the peri-

movement space performed better on average, there were indi-

vidual neurons whose activity was better captured in one of the

other spaces. It seems plausible that some neurons do truly

‘‘represent’’ known task parameters (e.g., visual target location)

even if others play a different role. In particular, responses in

rostral premotor cortex (from which we did not record) seem

more closely tied to visual aspects of the task (Pesaran et al.,

2006; Shen and Alexander, 1997).

In summary, we found that the preparatory tuning of an M1/

PMd neuron was typically weakly related to its subsequent peri-

movement tuning. We then asked which set of variables (which

‘‘reference frame’’) best explained preparatory tuning. The most

successful reference frame was a space built to capture the

population-level patterns of movement-related activity. These

findings are consistent with the view that preparatory tuning

serves not to represent specific factors but to initialize a dynam-

ical system whose future evolution will produce movement.
EXPERIMENTAL PROCEDURES

Task Design and Behavior

Animal protocols were approved by the Stanford University Institutional Animal

Care and Use Committee. Our basic methods have been described previously

(Churchland et al., 2006c). Briefly, monkeys performed delayed reaches on

a frontoparallel screen. Delays ranged from 0 to 1000 ms (the exact range

varied by monkey). To allow sufficient preparatory activity, we analyzed only

trials with delays >400 ms. Fixation was enforced (at the central spot) during

the delay for monkey J only.

For single-electrode recordings using the maze task, we employed four sets

of 27 mazes each. Each neuron was recorded for one or more of these, but

rarely for all. The monkey J data set thus consists of four smaller data sets

of �53 neurons each. Population-level analyses were performed at the level

of these smaller data sets and then averaged. For the monkey J-array data

set, all 108 conditions were interleaved in the standard way.

Neural Recordings and Data Sets

Penetrations were guided by stereotaxic criteria, the known response proper-

ties of M1 and PMd, and the effects of microstimulation. Recordings were
398 Neuron 68, 387–400, November 4, 2010 ª2010 Elsevier Inc.
medial to the arcuate spur and lateral to—or, in a few instances, within the

lateral bank of—the precentral dimple. Few, if any, recordings were made

within rostral PMd, near the arcuate sulcus. Analysis of preparatory responses

was restricted to neurons with at least 10 spikes/s of preparatory tuning.

Electrode arrays were implanted in PMd and surface M1 (Figure S3). The re-

sulting data set involved simultaneous recordings and much larger trial counts

per neuron (2155). However, isolations were only occasionally of the same high

isolation quality as for the single-electrode recordings. Many array recordings

were of contaminated single-unit isolations or isolations of two or more

neurons. Still, some array-based isolations were of high quality, including

those in Figures 3E and 3F. Firing rate modulation was typically lower for the

array recordings, presumably because of the lack of selection bias. We thus

used a lower inclusion criterion: >5 spikes/s of preparatory tuning, which

was acceptable given the higher signal-to-noise ratio provided by the higher

trial count.

Correlations between Preparatory and Perimovement Tuning

For the preparatory epoch, firing rate was averaged from 200 ms before the go

cue until 100 ms after. For the perimovement epoch, activity was averaged

from 100 ms before movement onset until 350 ms after. The vector of prepa-

ratory rates (one per condition) was correlated with the vector of perimove-

ment rates. Analysis was restricted to neurons with robust perimovement

tuning (at least 1.5 times as strong as preparatory tuning). For all other analyses

(e.g., those in Figure 5, Figure 6, and Figure 7), neurons were analyzed regard-

less of the strength of perimovement activity.

Using a PD to Capture Preparatory Tuning

Activity during the preparatory epoch was fit using the model xn z bo + Sb,

where xn is a c 3 1 vector of preparatory firing rates (one for each of the c

conditions) for neuron n, S is a c 3 k matrix containing the location of every

condition in a k-dimensional space, bo is a scalar firing rate offset, and b is

a k 3 1 vector of coefficients. b and bo were found using linear regression

(Matlab, Mathworks). E.g., if S describes the location of each condition in

the space of horizontal and vertical target locations, b might be [1;0] for

a neuron with a rightward preference. The matrix S is the same for every

neuron, but all other variables differ. The vector b can be represented as

g 3 PD: a gain times a preferred direction of unit length.

Task Spaces

The ‘‘targets + instructed speed’’ space was three-dimensional: horizontal and

vertical target location plus instructed speed (1 for slow, 2 for fast). A similar

space, ‘‘endpoints + maximum speed,’’ was constructed based on the actual

reach endpoints and peak speed. Other task spaces were ‘‘initial velocity’’

(2D), the average horizontal and vertical velocity during the first 150 ms of

the reach; ‘‘endpoints + orthogonal excursion’’ (3D), the horizontal and vertical

endpoints and themaximum excursion from a straight reach (positive for coun-

terclockwise); ‘‘endpoints + viapoint’’ (4D), the horizontal and vertical

endpoints and the horizontal and vertical coordinates of the maximum depar-

ture from a straight reach; ‘‘endpoints +maximum velocity’’ (4D), the horizontal

and vertical endpoints and peak horizontal and vertical velocities; ‘‘endpoints +

halfpoint’’ (4D), the horizontal and vertical endpoints and horizontal and

vertical coordinates of the point halfway along the reach trajectory; ‘‘segment

directions’’ (6D), the individual horizontal and vertical displacements after

dividing the reach trajectory into three segments; and ‘‘kitchen sink’’ (9D and

11D for the speed and maze tasks). This last space was designed primarily

as a control for whether high dimensionality alone is sufficient to yield good

performance. It included the segment directions, the maximum counterclock-

wise excursion from a straight line, and the horizontal and vertical location of

that maximum excursion. For monkey J, it also included whether any barriers

were present (0 or 1) and whether distractor targets were present (0 or 1).

PCA-Based Spaces

To illustrate this approach, consider that reaches for different conditions differ

in velocity at most times. To fully characterize such differences, we can create

a c 3 2t matrix T, in which each row corresponds to a condition and contains

horizontal and vertical reach velocities for all t times. We can then use PCA to

reduce dimensionality from c 3 2t to c 3 k. The resulting matrix, Tred, then
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captures the differences between conditions in a k-dimensional space. Note

that PCA ismore commonly applied to amatrix in which each row corresponds

to a time and each column to a neuron. Dimensionality reduction is then used

to denoise and visualize responses (for review, see Churchland et al., 2007).

Here PCA is used to parameterize key differences between conditions, rather

as one could have done by hand picking k features such as peak velocity. See

Figure S2 for further illustration.

The perimovement T matrix contained data from 150 ms before movement

onset until 400 ms (speed task) or 800 ms (maze task) after onset. Each row

contained data from all neurons except the neuron whose preparatory activity

wewere trying to capture. Responses were not normalized; neuronswith weak

perimovement activity were included but had little impact on Tred.

Each row of the kinematic T matrix included horizontal and vertical position,

velocity, and acceleration (150 ms before movement onset until after the

reach), normalized to have unity range across times/conditions. Each neuron

contributed one kinematic variable (so that the T matrix was of similar size to

that for perimovement activity).

Each row of the EMG Tmatrix contained activity for multiple muscles (same

time window as for the neural data). Each muscle’s activity was normalized to

have a unity range across times/conditions (a necessity, given the arbitrary

units of EMG).

PD Performance

Performance was assessed using leave-one-out cross validation. One condi-

tion was left out, and we found the PD that best captured tuning for the remain-

ing conditions. We then computed the error between the left-out preparatory

firing rate and that predicted by thePD. Performancewas quantified as 1minus

the mean squared error (averaged across all conditions, each left out in turn)

normalized by the variance of the data. Thus, performance equal to 1 indicates

that the PD generalized perfectly. Performance equal to 0 indicates that one

could have done similarly well by ignoring the PD and predicting every condi-

tion’s firing rate to be the mean firing rate. Performance below 0 typically

indicates overfitting.
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