
Numerical Optimization and
Neural NetworksNeural Networks

Emo Todorov

Applied MathematicsApplied Mathematics
Computer Science and Engineering

University of Washingtony g

Error and gradient for a single unit 2

Error:Architecture:Input: kx

n

k kz x w

2

2

1

2

1

k k

k

E y h z

w1x

2x
1w

2w y

Error:Architecture:Input:

Activation:

Desired output:
 ky

h

1
i i

i

z x w

 1

2
kk

i i
k i

y h x w

nx nw

2w

yActivation:

 ky h zOutput:

h

 ' 'k k k k k k k kE
y h x w h x w x y h z h z x

w

The slope of the error function along axis p (partial derivative with respect to wp):

 i i i i p p
k i i kp

y h x w h x w x y h z h z x
w

Gradient of error function:
does not depend on p

Delta rule!

1/

'

/

k k k k

k

n

E w

E y h z h z

E w

w

w x

w

Delta rule! / nw w

Inputdesired –
actual output

scalar

Arbitrary feed-forward networks 3

Preliminaries:Preliminaries:

• Fix one of the inputs to 1, connect it
to each unit that has a bias…
no need to worry about biases anymore!

1

2

6

7

6,1w
7,6w

1y
1x

2xno need to worry about biases anymore!

• For each input line, introduce a fake unit
that simply copies the corresponding input

hidde
input output

3
4

5

8 2y
2

3x

• Enumerate all units, starting with the inputs
and ending with the outputs, so that all arrows
point from the smaller to the larger number

 6 1,4 6 7In Out

hidde
n

point from the smaller to the larger number
(this guarantees that the network has no loops)

Notation:

jiwWeight from unit i to unit j: Output of unit j (note: o = x for input units):
jig j

Internal activation of unit j:

 j j jo h zSet of units that provide input to j: In j

Set of units that j sends output to: Out j

j i ji

i In j

z o w

 j

Transfer function for non-fake units: .jh

Gradients 4

Error function and its gradient:

 2 21 1
;

2 2
k k k k

k k

E D

 w y y x y y x

compute the gradient
for each data point,
then add up the results

Suppress data index k for clarity:

 2 21 1
; ;

2 2 i iE y y y y x w x w
2 2 i

How does changing one weight affect the error?
i

…j
1yjiw

2y
...

/

j i ji

j ji i

z o w

z w o

j
i

ji j ji j

zE E E
o

w z w z

 j
j z

E

If we somehow compute
all s, we are done! /E E

 w

The gradient is simply
the list of all

 / ji j iE E w o

w

 j io

Back-propagation 5

Wh t i f t t it?

 'j
j s j j j

j j j

doE E
y o h z

z o dz

since j j jo h z and 21

2 s jE y o =

What is for a non-output unit?

The Error depends on only through the
activations of the units in the set

j

 Out j
jz

j… …

p

q

Using the multivariate chain rule, we get:

 j

 , , ,p q r p q r
E z z z z z zE E E

j… q

r

In general, we have to sum over all units

 p q p q r
j

j p j q j r jz z z z z z z

 Out j

 i Out j

ji i
j i

i j j ji Out j

doz zE

z z o dz

'
j j j i ij

i Out j

h z w

Error Back-propagation

Recall that:

 '

/

/

i ij j i j ij

j j j j j j j

z w o z o w

o h z o z h z

 i Out j

Properties of back-propagation 6

 z .h o
o

Forward pass:
compute z o h’

Backward pass:
compute

xwxw

o

 x 'h z

compute z, o, h compute

xwxw

 j
Both the forward and backward pass use the same connections

 Out j In j j

The algorithm is computationally efficient, i.e. it avoids re-computing
quantities that are already computed (a bit like dynamic programming)

Each weight is adapted on the basis of local information only: E
oEach weight is adapted on the basis of local information only:

Biologically realistic: synapses in the brain adapt as a function
of pre- and post-synaptic activity

j i
ji

o
w

Biologically unrealistic: neurons in the brain have no mechanism
for propagating -like quantities backwards

Unfolding recurrent networks 7

h d i h

1
W 2,1

1 1 1

shared weights

W

2

3
W 2,3

W 3,2

W 3,1

2 2 2

W 2,1 W 2,1

W 2,3

3 3 33

time (iterations)

Neuro-animator 8

send controls u(t) to the dynamical system, observe resulting states x(t)
i l k h di h d itrain a recurrent neural network that predicts the system dynamics…

States
The network computes the next state
given the current state and control.given the current state and control.

The same network is then replicated
over time, using weight sharing.

Successful applications:
Reaching, Parking, Landing,

Time

Controls

Swimming
Time

Given a desired final state, “invert” the network
to get the appropriate control signalsto get the appropriate control signals.

This is done by gradient descent, where the
weight are fixed and the unknown controls u
are treated as the parameters to be optimized

8

are treated as the parameters to be optimized.

It is straightforward to modify
back-propagation to do this.

Control of a 2-link 6-muscle arm 9

(Huh and Todorov)()

goal

