
Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 1: Introduction

Pieter Abbeel

UC Berkeley EECS

� http://www.cs.berkeley.edu/~pabbeel/cs287-fa09

� Instructor: Pieter Abbeel

� Lectures: Tuesdays and Thursdays, 12:30pm-2:00pm,

405 Soda Hall

� Office Hours: Thursdays 2:00-3:00pm, and by email

arrangement. In 746 Sutardja Dai Hall

www

Page 2

� Communication:

� Announcements: webpage

� Email: pabbeel@cs.berkeley.edu

� Office hours: Thursday 2-3pm + by email

arrangement, 746 SDH

� Enrollment:

� Undergrads stay after lecture and see me

Announcements

� Prerequisites:

� Familiarity with mathematical proofs, probability, algorithms,

linear algebra, calculus.

� Ability to implement algorithmic ideas in code.

� Strong interest in robotics

� Work and grading

� Four large assignments (4 * 15%)

� One smaller assignment (5%)

� Open-ended final project (35%)

� Collaboration policy: Students may discuss assignments with each

other. However, each student must code up their solutions

independently and write down their answers independently.

Class Details

Page 3

� Learn the issues and techniques underneath state of the

art robotic systems

� Build and experiment with some of the prevalent

algorithms

� Be able to understand research papers in the field

� Main conferences: ICRA, IROS, RSS, ISER, ISRR

� Main journals: IJRR, T-RO, Autonomous Robots

� Try out some ideas / extensions of your own

Class Goals

� Logistics --- questions? [textbook slide forthcoming]

� A few sample robotic success stories

� Outline of topics to be covered

Lecture outline

Page 4

� Darpa Grand Challenge

� First long-distance driverless car competition

� 2004: CMU vehicle drove 7.36 out of 150 miles

� 2005: 5 teams finished, Stanford team won

� Darpa Urban Challenge (2007)

� Urban environment: other vehicles present

� 6 teams finished (CMU won)

� Ernst Dickmanns / Mercedes Benz: autonomous car on European

highways

� Human in car for interventions

� Paris highway and 1758km trip Munich -> Odense, lane

changes at up to 140km/h; longest autonomous stretch: 158km

Driverless cars

Kalman filtering, Lyapunov, LQR, mapping, (terrain & object recognition)

Autonomous Helicopter Flight
[Coates, Abbeel & Ng]

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning

Page 5

Four-legged locomotion

inverse reinforcement learning, hierarchical RL, value iteration, receding
horizon control, motion planning

[Kolter, Abbeel & Ng]

Two-legged locomotion
[Tedrake +al.]

TD learning, policy search, Poincare map, stability

Page 6

Mapping

“baseline” : Raw odometry data + laser range finder scans

[Video from W. Burgard and D. Haehnel]

Mapping

FastSLAM: particle filter + occupancy grid mapping

[Video from W. Burgard and D. Haehnel]

Page 7

Mobile Manipulation

SLAM, localization, motion planning for navigation and grasping, grasp point
selection, (visual category recognition, speech recognition and synthesis)

[Quigley, Gould, Saxena, Ng + al.]

� Control: underactuation, controllability, Lyapunov, dynamic

programming, LQR, feedback linearization, MPC

� Estimation: Bayes filters, KF, EKF, UKF, particle filter, occupancy

grid mapping, EKF slam, GraphSLAM, SEIF, FastSLAM

� Manipulation and grasping: force closure, grasp point selection,

visual servo-ing, more sub-topics tbd

� Reinforcement learning: value iteration, policy iteration, linear

programming, Q learning, TD, value function approximation, Sarsa,

LSTD, LSPI, policy gradient, inverse reinforcement learning, reward

shaping, hierarchical reinforcement learning, inference based

methods, exploration vs. exploitation

� Brief coverage of: system identification, simulation, pomdps, k-

armed bandits, separation principle

� Case studies: autonomous helicopter, Darpa Grand/Urban

Challenge, walking, mobile manipulation.

Outline of Topics

Page 8

� Overarching theme: mathematically capture

� What makes control problems hard

� What techniques do we have available to tackle the

hard problems

� E.g.: “Helicopters have underactuated, non-minimum

phase, highly non-linear and stochastic (within our

modeling capabilities) dynamics.”

� Hard or easy to control?

1. Control

� Under-actuated vs. fully actuated

� Example: acrobot swing-up and balance task

1. Control (ctd)

Page 9

� Other mathematical formalizations of what makes some

control problems easy/hard:

� Linear vs. non-linear

� Minimum-phase vs. non-minimum phase

� Deterministic vs. stochastic

� Solution and proof techniques we will study:

� Lyapunov, dynamic programming, LQR, feedback

linearization, MPC

1. Control (ctd)

� Bayes filters: KF, EKF, UKF, particle filter

� One of the key estimation problems in robotics:

Simultaneous Localization And Mapping (SLAM)

� Essence: compute posterior over robot pose(s) and

environment map given

� (i) Sensor model

� (ii) Robot motion model

� Challenge: Computationally impractical to compute

exact posterior because this is a very high-dimensional

distribution to represent

� [You will benefit from 281A for this part of the course.]

2. Estimation

Page 10

� Extensive mathematical theory on grasping: force

closure, types of contact, robustness of grasp

� Empirical studies showcasing the relatively small

vocabulary of grasps being used by humans (compared

to the number of degrees of freedom in the human

hand)

� Perception: grasp point detection

3. Grasping and Manipulation

� Learning to act, often in discrete state spaces

� value iteration, policy iteration, linear programming, Q

learning, TD, value function approximation, Sarsa,

LSTD, LSPI, policy gradient, inverse reinforcement

learning, reward shaping, hierarchical reinforcement

learning, inference based methods, exploration vs.

exploitation

4. Reinforcement learning

Page 11

� system identification: frequency domain vs. time domain

� Simulation / FEM

� Pomdps

� k-armed bandits

� separation principle

� …

5. Misc. Topics

� Control

� Tedrake lecture notes 6.832:

https://svn.csail.mit.edu/russt_public/6.832/underactuated.pdf

� Estimation

� Probabilistic Robotics, Thrun, Burgard and Fox.

� Manipulation and grasping

� -

� Reinforcement learning

� Sutton and Barto, Reinforcement Learning (free online)

� Misc. topics

� -

Reading materials

Page 12

� Next lecture we will start with our study of control!

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 2: Control 1: Feedforward, feedback, PID, Lyapunov direct method

Pieter Abbeel

UC Berkeley EECS

� Office hours: Thursdays 2-3pm + by email arrangement,

746 SDH

� SDH 7th floor should be unlocked during office hours

on Thursdays

� Questions about last lecture?

Announcements

Page 2

� Control

� Estimation

� Manipulation/Grasping

� Reinforcement Learning

� Misc. Topics

� Case Studies

CS 287 Advanced Robotics

� Overarching goal:

� Understand what makes control problems hard

� What techniques do we have available to tackle the

hard (and the easy) problems

� Any applicability of control outside robotics? Yes, many!

� Process industry, feedback in nature, networks and

computing systems, economics, …
� [See, e.g., Chapter 1 of Astrom and Murray, http://www.cds.caltech.edu/~murray/amwiki/Main_Page, for more

details---_optional_ reading. Fwiw: Astrom and Murray is a great read on mostly classical feedback control
and is freely available at above link.]

� We will not have time to study these application

areas within CS287 [except for perhaps in your final

project!]

Control in CS287

Page 3

� Feedforward vs. feedback

� PID (Proportional Integral Derivative)

� Lyapunov direct method --- a method that can be helpful

in proving guarantees about controllers

� Reading materials:

� Astrom and Murray, 10.3

� Tedrake, 1.2

� Optional: Slotine and Li, Example 3.21.

Today’s lecture

Based on a survey of over eleven thousand controllers in the refining, chemicals

and pulp and paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DM02]. [Quote from Astrom and Murray,

2009]

� Practical result: can build a trajectory controller for a

fully actuated robot arm

� Our abstraction: torque control input to motor, read out

angle [in practice: voltages and encoder values]

Today’s lecture

Page 4

Intermezzo: Unconventional (?) robot arm use

Single link manipulator (aka the simple pendulum)

θ
mg

u

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

l

I = ml2

Page 5

Single link manipulator

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

How to hold arm at θ = 45 degrees?

Single link manipulator

Simulation results:

Iθ̈(t) + cθ̇(t) +mgl sin θ(t) = u(t), u = mgl sin π
4

θ(0) = π
4
, θ̇(0) = 0 θ(0) = 0, θ̇(0) = 0

Can we do better

than this?

The Matlab code that generated all discussed simulations will be posted on www.

Page 6

Feedforward control

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

How to make arm follow a trajectory θ*(t) ?

θ(0) = 0, θ̇(0) = 0

u(t) = Iθ̈∗(t) + cθ̇∗(t) +mgl sin θ∗(t)

Feedforward control

Simulation results:

Iθ̈(t) + cθ̇(t) +mgl sin θ(t) = u(t)

Can we do better

than this?

θ(0) = 0, θ̇(0) = 0

u(t) = Iθ̈∗(t) + cθ̇∗(t) +mgl sin θ∗(t)

Page 7

� Thus far:

� n DOF manipulator: standard manipulator equations

� H : “inertial matrix,” full rank

� B : identity matrix if every joint is actuated

� � Given trajectory q(t), can readily solve for

feedforward controls u(t) for all times t

n DOF (degrees of freedom) manipulator?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

H(q)q̈ + C(q, q̇) +G(q) = B(q)u

� A system is fully actuated when in a certain state (q,\dot{q},t) if, when in that

state, it can be controlled to instantaneously accelerate in any direction.

� Many systems of interest are of the form:

� Defn. Fully actuated: A control system described by Eqn. (1) is fully-actuated

in state (q,\dot{q},t) if it is able to command an instantaneous acceleration in

an arbitrary direction in q:

� Defn. Underactuated: A control system described by Eqn. (1) is

underactuated in configuration (q,\dot{q},t) if it is not able to command an

instantaneous acceleration in an arbitrary direction in q:

� [See also, Tedrake, Section 1.2.]

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u (1)

rankf2(q, q̇, t) = dimq

rankf2(q, q̇, t) < dimq

Page 8

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t)+f2(q, q̇, t)u fully actuated in (q, q̇, t) iff rankf2(q, q̇, t) = dimq.

� Hence, for any fully actuated system, we can follow a trajectory by
simply solving for u(t):

� [We can also transform it into a linear system through a change of
variables from u to v:

The literature on control for linear systems is very extensive and

hence this can be useful. This is an example of feedback

linearization. More on this in future lectures.]

u(t) = f−1
2
(q, q̇, t) (q̈ − f1(q, q̇, t))

u(t) = f−1
2
(q, q̇, t) (v(t)− f1(q, q̇, t))

q̈(t) = v(t)

� n DOF manipulator

� All joints actuated � rank(B) = n � fully actuated

� Only p < n joints actuated � rank(B) = p � underactuated

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t)+f2(q, q̇, t)u fully actuated in (q, q̇, t) iff rankf2(q, q̇, t) = dimq.

H(q)q̈ + C(q, q̇) +G(q) = B(q)u

f2 = H−1B, H full rank, B = I , hence rank(H−1B) = rank(B)

Page 9

� Car

� Cart-pole

Example underactuated systems

� Acrobot

� Helicopter

Fully actuated systems: is our feedforward control
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

Task: hold arm at 45 degrees.

� What if parameters off? --- by 5%, 10%, 20%, …

� What is the effect of perturbations?

Page 10

Fully actuated systems: is our feedforward control
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

Task: hold arm at 45 degrees.

� Mass off by 10%:

� steady-state error

Fully actuated systems: is our feedforward control
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

Task: swing arm up to 180 degrees and hold there

� Perturbation after 1sec:

� Does **not** recover

[θ = 180 is an “unstable”

equilibrium point]

Page 11

� Feedback can provide

� Robustness to model errors

� However, still:

� Overshoot issues --- ignoring momentum/velocity!

� Steady-state error --- simply crank up the gain?

Proportional control

u(t) = ufeedforward(t)

Task: hold arm at 45 degrees

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Proportional control

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Task: swing arm up to 180

degrees and hold there

u(t) = ufeedforward(t)

Page 12

Current status

� Feedback can provide

� Robustness to model errors

� Stabilization around states which are unstable in open-loop

� Overshoot issues --- ignoring momentum/velocity!

� Steady-state error --- simply crank up the gain?

PD control

u(t) = Kp(qdesired(t)− q(t)) +Kd(q̇desired − q̇(t))

Page 13

Eliminate steady state error by cranking up Kp ?

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Task: hold arm at 45 degrees
Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

In steady-state, q̈ = q̇ = 0 and we get:

mgl sin θ = ufeedforward +Kp(θ
∗
− θ)

Using some trigoniometry and assuming θ is close to θ∗ we get:

θ − θ∗ =
ufeedforward −mgl sin θ∗

Kp +mgl cos θ∗

Eliminate steady state error by cranking up Kp ?

u(t+ δt) = Kp(qdesired(t)− q(t))

Page 14

PID

u(t) = Kp(qdesired(t)− q(t))+Kd(q̇desired− q̇(t))+Ki

∫ t
0
(qdesired(τ)− q(τ))dτ

� Zero error in steady-state: [assumes steady-state is achieved!]

q̈ = q̇ = 0, u̇ = 0, hence, taking derivatives of above:

u̇ = Kp(q̇desired − q̇(t)) +Kd(q̈desired − q̈(t)) +Ki(qdesired(t)− q(t))

0 = Kk(qdesired(t)− q(t))

� Given a fully actuated system and a (smooth) target trajectory

� Can solve dynamics equations for required control inputs =

“feedforward controls”

� Feedforward control is insufficient in presence of

� Model inaccuracy

� Perturbations + instability

� Proportional feedback control can alleviate some of the above issues.

� Steady state error reduced by (roughly) factor Kp, but large Kp can be

problematic in presence of delay � Add integral term

� Ignores momentum � Add derivative term

� Remaining questions:

� How to choose PID constants? Aka “tuning”

� Any guarantees?

Recap so far

Page 15

� Typically done by hand (3 numbers to play with) [policy

search should be able to automate this in many settings]

� Ziegler-Nichols method (1940s) provides recipe for

starting point

� Frequency response method

� Step response method

� Recipe results from

� (a) Extensively hand-tuning controllers for many settings

� (b) Fitting a function that maps from easy to measure

parameters to the three gains

[See also Astrom and Murray Section 10.3]

PID tuning

� Set derivative and integral gain to zero

� Drive up the proportional gain until steady oscillation

occurs, record the corresponding gain kc and period Tc

� Use the following table to set the three gains:

PID tuning: Ziegler-Nichols frequency domain method

Notation: KI =
kp
Ti
, KD = kpTd

Page 16

PID tuning: Ziegler-Nichols step response method

1. Record open-loop step-
response characteristics

2. Read gains out from
above table

� Kc = 100;

� Tc = 0.63s;

Frequency domain Ziegler-Nichols for single link

θ
mg

u

l

Page 17

ZN and TLC results

Tyreus-Luyben tuning chart:
Kp = kc/2.2, Ti = 2.2Tc, Td = Tc/6.3
Tends to:
increase robustness,
decrease oscillation.

� Recipe: Stop integrating error when the controls

saturate

� Reason: Otherwise it will take a long time to react in the

opposite direction in the future.

� Matters in practice!

[See also Astrom and Murray, Section 10.4]

Aside: Integrator wind-up

Page 18

� To control a fully actuated system:

� Compute feedforward by solving for u(t)

� However, feedforward is insufficient when:
� Model is imperfect (i.e., always when dealing with real systems)

� System is unstable

� Feedback can address these issues
� Standard feedback: PID

� In practice, often even only feedback (i.e., without feedforward) can

already provide ok results � in these settings, no model needed, which

can be very convenient

� In this lecture no solution provided for underactuated systems

� Note: many underactuated systems do use PID type controllers in their core (e.g.,
helicopter governor, gyro)

Recap of main points

?

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 3: Control 2: Fully actuated wrap-up/recap, Lyapunov direct method,

Optimal control

Pieter Abbeel

UC Berkeley EECS

Page 2

� Given a fully actuated system and a (smooth) target trajectory q*

� Can solve dynamics equations for required control inputs = “feedforward
controls”

� Feedforward control is insufficient in presence of

� Model inaccuracy

� Perturbations + instability

� Proportional feedback control can alleviate some of the above issues.

� Steady state error reduced by (roughly) factor Kp, but large Kp can be problematic in

presence of delay � Add integral term

� Ignores momentum � Add derivative term

� PID constants require tuning: often by hand, Ziegler-Nichols and TLC provide
good starting points, (policy search could automate this)

� If control inputs do not directly relate to the degrees of freedom, we can use
feedback linearization to get that form:

Fully actuated recap

u(t) = uff(t) +Kp(q
∗(t)− q(t)) +Kd(q̇

∗(t)− q̇(t)) +Ki

∫ t
0
(q∗(τ)− q(τ))dτ

q̈ = f1(q, q̇, t)+f2(q, q̇, t)u fully actuated in (q, q̇, t) iff rankf2(q, q̇, t) = dimq.

uff(t) = f
−1

2
(q∗, q̇∗, t) (q̈∗ − f1(q

∗, q̇∗, t))

u(t) = f−1
2

(q, q̇, t) (v(t)− f1(q, q̇, t))q̈(t) = v(t)

θ mg

u
l

� Fully actuated recap [done]

� Aside on integrator wind-up

� Lyapunov direct method --- a method that can be helpful

in proving guarantees about controllers

� Optimal control

Today’s lecture

Page 3

� --

� Optional:

� Tedrake Chapter 3 [optional, nice read on energy pumping

control strategies]

� Slotine and Li, Example 3.21, Global asymptotic stability of a

robot position controller [optional]

Readings for today’s lecture

� Recipe: Stop integrating error when the controls

saturate

� Reason: Otherwise it will take a long time to react in the

opposite direction in the future.

� Matters in practice!

[See also Astrom and Murray, Section 10.4]

Aside: Integrator wind-up

u(t) = uff(t) +Kp(q
∗(t)− q(t)) +Kd(q̇

∗(t)− q̇(t)) +Ki

∫ t
0
(q∗(τ)− q(τ))dτ

Page 4

� Lyapunov theory is used to make conclusions about

trajectories of a system without finding the trajectories

(i.e., solving the differential equation)

� A typical Lyapunov theorem has the form:

� if there exists a function V : Rn→ R that satisfies some

conditions on V and \dot{V}

� then, trajectories of system satisfy some property

� If such a function V exists we call it a Lyapunov function

� Lyapunov function V can be thought of as generalized

energy function for system

Lyapunov

Equilibrium state. A state x∗ is an equilibrium state of the system ẋ =
f(x) if f(x∗) = 0.

Stability. The equilibrium state x∗ is said to be stable if, for any R > 0,
there exists r > 0, such that if ‖x(0) − x∗‖ < r, then ‖x(t) − x∗‖ < R for all
t ≥ 0. Otherwise, the equilibrium point is unstable.

Asymptotic stability. An equilibrium point x∗ is asymptotically stable if
it is stable, and if in addition there exists some r > 0 such that ‖x(0)− x∗‖ < r
implies that x(t)→ x∗ as t→∞.

Guarantees?

Page 5

Stability illustration

Simple physical examples

Page 6

� To prove stability, we need to show something about the

solution of a non-linear differential equation for all initial

conditions within a certain radius of the equilibrium

point.

� Challenge: typically no closed form solution to

differential equation!

� How to analyze / prove stability ??

Proving stability

� In late 19th century introduced one of

the most useful and general

approaches for studying stability of

non-linear systems.

� [Lyapunov’s PhD thesis: 1892]

Alexandr Mikhailovich Lyapunov

Page 7

[from Boyd, ee363]

Proof:

[from Boyd, ee363]

Page 8

[from Boyd, ee363]

[from Boyd, ee363]

Proof:

Suppose trajectory x(t) does not converge to zero.
V (x(t)) is decreasing and nonnegative, so it converges to, say, ǫ as t→∞.
Since x(t) does not converge to 0, we must have ǫ > 0, so for all t, ǫ ≤

V (x(t)) ≤ V (x(0)).
C = {z|ǫ ≤ V (z) ≤ V (x(0))} is closed and bounded, hence compact. So

V̇ (assumed continuous) attains its supremum on C, i.e., supz∈C V̇ = −a < 0.

Since V̇ (x(t)) ≤ −a for all t, we have

V (x(T)) = V (x(0)) +

∫ T

0

V̇ (x(t))dt ≤ V (x(0))− aT

which for T > V (x(0))/a implies V (x(T)) < 0, a contradition.
So every trajectory x(t) converges to 0, i.e., ẋ = f(x) is globally asymptoti-

cally stable.

Page 9

Global invariant set Theorem. Assume that

• V (x)→∞ as ‖x‖ → ∞.

• V̇ (x) ≤ 0 over the whole state space.

Let R be the set of all points where ˙V (x) = 0, and letM be the largest invariant
set in R. Then all solutions globally asymptotically converge to M as t→∞.

q̈ + q̇ + sin q = u

u = sin q +Kp(q
∗ − q) +Kd(0− q̇)

Example 1

Page 10

q̈ + q̇ + g(q) = u

u = g(q) +Kd(q
∗ − q) +Kd(0− q̇)

We choose V = 1

2
Kp(q − q

∗)2 + 1

2
q̇2.

This gives for V̇ :

V̇ = Kp(q − q
∗)q̇ + q̇q̈

= Kp(q − q
∗)q̇ + q̇ (Kp(q

∗ − q)−Kdq̇ − q̇))

= −(1 +Kd)q̇

Hence V satisfies: (i) V (q) ≥ 0 and = 0 iff q = q∗, (ii) V̇ ≤ 0. Since the arm
cannot get ”stuck” at any position such that q �= 0 (which can be easily shown
by noting that acceleration is non-zero in such situations), the robot arm must
settle down at q̇ = 0 and q = 0, according to the invariant set theorem. Thus
the system is globally asymptotically stable.

Example 1 (solution)

� (Slotine and Li, Example 3.21.)

Example 2: PD controllers are stable for
fully actuated manipulators

Page 11

[from Boyd, ee363]

[from Boyd, ee363]

Page 12

[from Boyd, ee363]

� Enables providing stability guarantees w/o solving the

differential equations for all possible initial conditions!

� Tricky part: finding a Lyapunov function

� A lot more to it than we can cover in ½ lecture, but this

should provide you with a starting point whenever you

might need something like this in the future

Lyapunov recap

Page 13

� An interesting and representative approach from non-

linear control:

� Energy pumping to swing up:

� Write out energy of system E(q, \dot{q})

� Write out time derivative of energy: \{dot}E (q, \dot{q}, u)

� Choose u as a function of q and \dot{q} such that energy is steered

towards required energy to reach the top

� Local controller to stabilize at top --- we will see this aspect in

detail later.

Intermezzo on energy pumping

Energy pumping nicely described in Tedrake Chapter 3. Enjoy the optional read!

� Optimal control: provides general computational approach

to tackle control problems---both under- and fully actuated.

� Dynamic programming

� Discretization

� Dynamic programming for linear systems

� Extensions to nonlinear settings:

� Local linearization

� Differential dynamic programming

� Feedback linearization

� Model predictive control (MPC)

� Examples:

Forthcoming lectures

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 4: Control 3: Optimal control---discretization (function

approximation)

Pieter Abbeel

UC Berkeley EECS

� Tuesday Sept 15: **no** lecture

Announcement

Page 2

� Optimal control: provides general computational approach

to tackle control problems---both under- and fully actuated.

� Dynamic programming

� Discretization

� Dynamic programming for linear systems

� Extensions to nonlinear settings:

� Local linearization

� Differential dynamic programming

� Feedback linearization

� Model predictive control (MPC)

� Examples:

Today and forthcoming lectures

� Optimal control formalism [Tedrake, Ch. 6, Sutton and Barto Ch.1-4]

� Discrete Markov decision processes (MDPs)

� Solution through value iteration [Tedrake Ch.6, Sutton and Barto Ch.1-4]

� Solution methods for continuous problems:

� HJB equation [[[Tedrake, Ch. 7 (optional)]]]

� Markov chain approximation method [Chow and Tsitsiklis, 1991; Munos and Moore, 2001]

[[[Kushner and Dupuis 2001 (optional)]]]

� Continuous � discrete [Chow and Tsitsiklis, 1991; Munos and Moore, 2001] [[[Kushner
and Dupuis 2001 (optional)]]]

� Error bounds:

� Value function: Chow and Tsitsiklis; Kushner and Dupuis; function approximation [Gordon 1995;

Tsitsiklis and Van Roy, 1996]

� Value function close to optimal � resulting policy good

� Speed-ups and Accuracy/Performance improvements

Today and Thursday

Page 3

Optimal control formulation

Given:
dynamics : ẋ(t) = f(x(t), u(t), t)

cost function : g(x, u, t)

Task: find a policy u(t) = π(x, t) which optimizes:

Jπ(x0) = h(x(T)) +

∫ T

0

g(x(t), u(t), t)dt

Applicability: g and f often easier to specify than π

� Markov decision process (MDP) (S, A, P, H, g)

� S: set of states

� A: set of actions

� P: dynamics model

� H: horizon

� g: S x A � R cost function

� Policy

� Cost-to-go of a policy π:

� Goal: find

Finite horizon discrete time

π = (µ0, µ1, . . . , µH), µk : S → A

Jπ(x) = E[
∑H

t=0 g(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π Jπ

P (xt+1 = x′|xt = x, ut = u)

Page 4

Dynamic programming (aka value iteration)

Let J∗k = minµk,...,µH E[
∑H

t=k g(xt, ut)], then we have:

J∗H(x) = min
u

g(x(H), u(H))

J∗H−1(x) = min
u

g(x, u) +
∑

x′

P (x′|x, u)J∗H(x′)

. . .

J∗k (x) = min
u

g(x, u) +
∑

x′

P (x′|x, u)J∗k+1(x
′)

. . .

J∗0 (x) = min
u

g(x, u) +
∑

x′

P (x′|x, u)J∗1 (x′)

And
µ∗k(x) = arg min

u
g(x, u) +

∑

x′

P (x′|x, u)J∗k+1(x
′);

� Running time: O(|S|2 |A| H) vs. naïve search over all policies would

require evaluation of |A||S|H policies

� Markov decision process (MDP) (S, A, P, γ, g)

� γ: discount factor

� Policy

� Value of a policy π:

� Goal: find

Discounted infinite horizon

π = (µ0, µ1, . . .), µk : S → A

Jπ(x) = E[
∑∞

t=0 γ
tg(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π V π

Page 5

� Dynamic programming (DP) aka Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Facts:

Discounted infinite horizon

J(i+1)(s) ← min
u∈A

∑

s′

P (s′|s, u)
(
g(s, a) + γJ (i)(s′)

)

There is an optimal stationary policy: π∗ = (µ∗, µ∗, . . .) which satisfies:

µ∗(x) = arg min
u

g(x, u) + γ
∑

x′

P (x′|x, u)J∗(x)

J(i) → J∗ for i→∞

� Hamilton-Jacobi-Bellman equation / approach:

� Continuous equivalent of discrete case we already discussed

� We will see 2 slides.

� Variational / Markov chain approximation method:

� Numerically solve a continuous problem by directly

approximating the continuous MDP with a discrete MDP

� We will study this approach in detail.

Continuous time and state-action space

Page 6

Hamilton-Jacobi-Bellman (HJB) [*]

Hamilton-Jacobi-Bellman (HJB) [*]

� Can also derive HJB equation for the stochastic setting. Keywords for

finding out more: Controlled diffusions / diffusion jump processes.

� For special cases, can assist in finding / verifying analytical solutions

� However, for most cases, need to resort to numerical solution methods for

the corresponding PDE --- or directly approximate the control problem with

a Markov chain

� References:

� Tedrake Ch. 7; Bertsekas, “Dynamic Programming and Optimal Control.”

� Oksendal, “Stochastic Differential Equations: An Introduction with

Applications”

� Oksendal and Sulem, “Applied Stochastic Control of Jump Diffusions”

� Michael Steele, “Stochastic Calculus and Financial Applications”

� Markov chain approximations: Kushner and Dupuis, 1992/2001

Page 7

Markov chain approximation (“discretization”)

� Original MDP (S, A, P, R, γ)

� Discretized MDP:

� Grid the state-space: the vertices are the discrete

states.

� Reduce the action space to a finite set.

� Sometimes not needed:

� When Bellman back-up can be computed exactly over

the continuous action space

� When we know only certain controls are part of the

optimal policy (e.g., when we know the problem has a

“bang-bang” optimal solution)

� Transition function remains to be resolved!

ξ

ξ

ξ
ξ ξ ξ

ξ

ξ
ξξ

ξ ξ

s‘
s

Discretization: example 1

Discrete states: { ξ , …, ξ }

P (ξ2|s, a) = pA;

P (ξ3|s, a) = pB ;

P (ξ6|s, a) = pC ;

s.t. s′ = pAξ2 + pBξ3 + pCξ6

a

� Results in discrete MDP, which we know how to solve.

� Policy when in “continuous state”:

� Note: need not be triangular. [See also: Munos and Moore, 2001.]

π(s) = arg mina g(s, a) + γ
∑

s′ P (s′|s, a)
∑

i P (ξi; s
′)J(ξi)

Page 8

Discretization: example 1 (ctd)

� Discretization turns deterministic transitions into

stochastic transitions

� If MDP already stochastic

� Repeat procedure to account for all possible

transitions and weight accordingly

� If a (state, action) pair can results in infinitely many

different next states:

� Sample next states from the next-state distribution

Discretization: example 1 (ctd)

� Discretization results in finite state stochastic MDP,

hence we know value iteration will converge

� Alternative interpretation: the Bellman back-ups in the

finite state MDP are

� (a) back-ups on a subset of the full state space

� (b) use linear interpolation to compute the required

“next-state cost-to-go functions” whenever the next

state is not in the discrete set

= value iteration with function approximation

Page 9

Discretization: example 2

Discrete states: { ξ , …, ξ }

Similarly define transition
probabilities for all ξi

ξ

ξξ

ξξ

ξ

s‘

P (ξ2|s, a) = 1;

a

� Results in discrete MDP, which we know how to solve.

� Policy when in “continuous state”:

� This is nearest neighbor; could also use weighted combination of nearest neighbors.

s

π(s) = arg mina g(s, a) + γ
∑

s′ P (s′|s, a)
∑
i P (ξi; s

′)J(ξi)

Discretization: example 2 (ctd)

� Discretization results in finite state (stochastic) MDP,

hence we know value iteration will converge

� Alternative interpretation: the Bellman back-ups in the

finite state MDP are

� (a) back-ups on a subset of the full state space

� (b) use nearest neighbor interpolation to compute the

required “next-state cost-to-go functions” whenever

the next state is not in the discrete set

= value iteration with function approximation

Page 10

Discretization: example 3

Discrete states: { ξ , …, ξ }
ξ

ξξ

ξξ

ξ

s‘a

[Chow and Tsitsiklis, 1991]

P (ξi|ξj, u) =

∫
s∈ξj

P (s′|s,u)1{s′∈ξi}ds
∫
s∈ξj

P (s′|s,u)ds

s

After entering a region, the state gets uniformly reset to
any state from that region.

Discretization: example 3 (ctd)

� Discretization results in a similar MDP as for example 2

� Main difference: transition probabilities are computed

based upon a region rather than the discrete states

Page 11

� One might want to discretize time in a variable way such that one

discrete time transition roughly corresponds to a transition into

neighboring grid points/regions

� Discounting:

δt depends on the state and action

See, e.g., Munos and Moore, 2001 for details.

Note: Numerical methods research refers to this connection between

time and space as the CFL (Courant Friedrichs Levy) condition.

Googling for this term will give you more background info.

!! 1 nearest neighbor tends to be especially sensitive to having the

correct match [Indeed, with a mismatch between time and space 1

nearest neighbor might end up mapping many states to only

transition to themselves no matter which action is taken.]

Continuous time

exp(−βδt)

� Continuous time:

� Objective: reach origin in minimum time

� Can be solved analytically: optimal policy is bang-bang:

the control system should accelerate maximally towards

the origin until a critical point at which it should hit the

brakes in order to come perfectly to rest at the origin.

This results in:

[See Tedrake 6.6.3 for further details.]

Example: Double integrator---minimum time

q̈ = u, ∀t : u(t) ∈ [−1,+1]

g(q, q̇, u) =

[
0 if q = q̇ = 0
1 otherwise

u =

[
1 if q̇ ≤ −sign(q)

√
2sign(q)q

−1 otherwise

Page 12

Example: Double integrator---minimum
time---optimal solution

Example: Double integrator---minimum time

optimal Kuhn triang., h = 1

Kuhn triang., h = 0.02Kuhn triang., h = 0.1

Page 13

Resulting cost, Kuhn triang.

Green = continuous time optimal policy for mintime problem
For simulation we used: dt = 0.01; and goal area = within .01 of zero for q and \dot{q}.
This results in the continuous time optimal policy not being exactly optimal for the
discrete time case.

� Continuous time:

� In discrete time:

� Cost function:

qt+1 = qt + q̇tδt

q̇t+1 = q̇t + uδt

Example: Double integrator---quadratic cost

q̈ = u

g(q, q̇, u) = q2 + u2

Page 14

Example: Double integrator---quadratic cost

optimal Kuhn triang., h = 1

Kuhn triang., h = 0.02Kuhn triang., h = 0.1

Resulting cost, Kuhn

Page 15

Example: Double integrator---quadratic cost

optimal Nearest neighbor, h = 1

Nearest neighbor, h = 0.02Nearest neighbor, h = 0.1

dt=0.1

Resulting cost, nearest neighbor

Page 16

Nearest neighbor quickly degrades when
time and space scale are mismatched

h = 0.02h = 0.1

dt= 0.1

dt= 0.01

� Typical guarantees:

� Assume: smoothness of cost function, transition

model

� For h � 0, the discretized value function will

approach the true value function

� Combine with:

� Greedy policy w.r.t. value function V which is close to

V* is a policy that attains value close to V*

Discretization guarantees

Page 17

� Chow and Tsitsiklis, 1991:

� Show that one discretized back-up is close to one “complete”

back-up + then show sequence of back-ups is also close

� Kushner and Dupuis, 2001:

� Show that sample paths in discrete stochastic MDP approach

sample paths in continuous (deterministic) MDP [also proofs

for stochastic continuous, bit more complex]

� Function approximation based proof

� Applies more generally to solving large-scale MDPs

� Great descriptions: Gordon, 1995; Tsitsiklis and Van Roy, 1996

Discretization proof techniques

Example result (Chow and Tsitsiklis,1991)

Page 18

� General idea

� Value iteration back-up on some states � Vi+1

� Fit parameterized function to Vi+1

Function approximation

� Nearest neighbor discretization = piecewise constant

� Piecewise linear over “triangles” discretization

Discretization as function approximation

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 5: Control 4: Optimal control / Reinforcement learning--- function

approximation in dynamic programming

Pieter Abbeel

UC Berkeley EECS

� Optimal control/Reinforcement learning provide a general

approach to tackle temporal decision making problems.

� Often the state space is too large to perform exact Dynamic

Programming (DP) / Value Iteration (VI)

� Today: Dynamic programming with function approximation

Great references:

Gordon, 1995, “Stable function approximation in dynamic programming”

Tsitsiklis and Van Roy, 1996, “Feature based methods for large scale

dynamic programming”

Bertsekas and Tsitsiklis, “Neuro-dynamic programming,” Chap. 6

Today

Page 2

� Markov decision process (MDP) (S, A, P, γ, g)

� γ: discount factor

� Policy

� Value of a policy π:

� Goal: find

Recall: Discounted infinite horizon

π = (µ0, µ1, . . .), µk : S → A

Jπ(x) = E[
∑∞

t=0 γ
tg(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π V
π

� Dynamic programming (DP) aka Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Facts:

� Issue in practice: Bellman’s curse of dimensionality: number of

states grows exponentially in the dimensionality of the state space

Recall: Discounted infinite horizon

J (i+1)(s) ← min
u∈A
g(s, u) + γ

∑

s′

P (s′|s, u)J (i)(s′)

There is an optimal stationary policy: π∗ = (µ∗, µ∗, . . .) which satisfies:

µ∗(s) = arg min
u
g(s, u) + γ

∑

s′

P (s′|s, u)J∗(s)

J(i) → J∗ for i→∞

Page 3

DP/VI with function approximation

Pick some S′ ⊆ S [typically the idea is that |S ′| << |S|].
Iterate for i = 0, 1, 2, . . .:

back-ups:∀s ∈ S′ : J̄ (i+1)(s) ← min
u∈A
g(s, u) + γ

∑

s′

P (s′|s, u)Ĵθ(i)(s
′)

projection: find some θ(i+1) such that ∀s ∈ S′ Ĵθ(i+1)(s) ≈ J̄
(i+1)(s)

Projection enables generalization to , which in

turn enables the Bellman back-ups in the next iteration.

θ parameterizes the class of functions used for

approximation of the cost-to-go function

s ∈ S \ S′

� Piecewise linear over triangles (tetrahedrons, etc.)

� Piecewise constant over sets of states (=nearest

neighbor, often called state aggregation)

� Fit a neural net to

� Least squares fit to

� Bezier patches (=particular choice of convex weighting)

� [[TODO: work out examples in more detail.]]

Function approximation examples

θ(i+1) = arg minθ
∑

s∈S′(J̄
(i+1)(s)− φ(s)⊤θ)2

θ(i+1) = arg minθ
∑

s∈S′ loss(J̄ (i+1)(s)− fθ(s))

J̄

J̄

Page 4

� If we have bounded error during function approximation

in each iteration, i.e.,

can we provide any guarantees?

� If we have a function approximation architecture that

can capture the true cost-to-go function within some

approximation error, i.e.,

can we provide any guarantees?

Potential guarantees?

∀i : ‖J̄(i) − Ĵθ(i)‖ ≤ ǫ

∃θ∗ : floss(J
∗, Ĵθ∗) ≤ ǫ

Simple example

Function approximator: [1 2] * θ

θ θ

Page 5

Simple example

J̄θ =

[
1
2

]
θ

J̄ (1)(x1) = 0 + γĴθ(0)(x2) = 2γθ(0)

J̄ (1)(x2) = 0 + γĴθ(0)(x2) = 2γθ(0)

Function approximation with least squares fit:

[
1
2

]
θ(1) ≈

[
2γθ(0)

2γθ(0)

]

Least squares fit results in:

θ(1) =
6

5
γθ(0)

Repeated back-ups and function approximations result in:

θ(i) =

(
6

5
γ

)i
θ(0)

which diverges if γ > 5
6 even though the function approximation class can

represent the true value function.]

� Dynamic programming (DP) aka Value iteration (VI):

Set J(0) = 0

For i=0,1, …

For all s ∈ S

� Bellman operator TTTT

� Hence running value iteration can be compactly written as:

� Note: TTTT is a non-linear operator (b/c of the min).

Bellman operator

J(i+1)(s) ← min
u∈A

∑

s′

P (s′|s, u)
(
g(s, a) + γJ (i)(s′)

)

T : ℜ|S| → ℜ|S| is defined as:

(TJ)(s) = min
u∈A
g(s, a) + γ

∑

s′

P (s′|s, u)J(s′)

Set J = 0
Repeat J ← TJ .

Page 6

Definition. The operator F is a α-contraction w.r.t. some norm ‖ · ‖ if

∀X,X : ‖FX − FX‖ ≤ α‖X −X‖

Theorem 1. The sequence X,FX,F 2X, ... converges for every X.

Theorem 2. F has a unique fixed point X∗ which satisfies FX∗ = X∗ and all
sequences X,FX,F 2X, ... converge to this unique fixed point X∗.

Contractions

Useful fact.

Cauchy sequences: If for x0, x1, x2, . . ., we have that

∀ǫ, ∃K : ‖xM − xN‖ < ǫ for M,N > K

then we call x0, x1, x2, ... a Cauchy sequence.
If x0, x1, x2, . . . is a Cauchy sequence, and xi ∈ ℜ

n, then there exists x∗ ∈ ℜn

such that limi→∞ xi = x∗.
Proof.

Assume N > M .

‖FMX − FNX‖ = ‖
∑N−1

i=M(F iX − F i+1X)‖

≤
∑N−1
i=M ‖F

iX − F i+1X‖

≤
∑N−1

i=M α
i‖X − FX‖

= ‖X − FX‖
∑N−1
i=M α

i

= ‖X − FX‖ α
M

1−α .

As ‖X − FX‖ α
M

1−α goes to zero for M going to infnity, we have that for any

ǫ > 0 for ‖FMX − FNX‖ ≤ ǫ to hold for all M,N > K, it suffices to pick K
large enough.

Hence X,FX, . . . is a Cauchy sequence and converges.

Proof of Theorem 1

Page 7

Suppose F has two fixed points. Let’s say

FX1 = X1,

FX2 = X2,

this implies,
‖FX1 − FX2‖ = ‖X1 −X2‖.

At the same time we have from the contractive property of F

‖FX1 − FX2‖ ≤ α‖X1 −X2‖.

Combining both gives us

‖X1 −X2‖ ≤ α‖X1 −X2‖.

Hence,
X1 = X2.

Therefore, the fixed point of F is unique.

Proof of uniqueness of fixed point

The Bellman operator is a contraction

Fact. The Bellman operator T is a γ-contraction with respect to the infinity
norm, i.e.,

‖TJ1 − TJ2‖∞ ≤ γ‖J1 − J2‖∞

Definition. The infinity norm of a vector x ∈ ℜn is defined as

‖x‖∞ = max
i
|xi|

Corollary. From any starting point, value iteration/Dynamic programming
converges to a unique fixed point J∗ which satisfies J∗ = TJ∗.

Page 8

Proof Bellman operator is a contraction

� Gauss-Seidel value iteration

For i=1, 2, …

for s=1,…,|S|

Compare to regular value iteration:

Exercise: Show that Gauss-Seidel value iteration converges to J*. [Hint:

proceed by showing the combined operator which does the sequential

update for all states s=1,…,|S| is a infinity norm contraction.]

Value iteration variations

J(s) ← min
u∈A
g(s, u) + γ

∑

s′

P (s′|s, u)J(s′)

J (i+1)(s) ← min
u∈A
g(s, u) + γ

∑

s′

P (s′|s, u)J (i)(s′)

Page 9

� Asynchronous value iteration

Exercise: Show that asynchronous value iteration

converges to J*.

Value iteration variations

Pick an infinite sequence of states,

s(0), s(1), s(2), ...

such that every state s ∈ S occurs infinitely often. Define the operators Ts(k) as
follows:

(Ts(k)J)(s) =

[
(TJ)(s), if s(k) = s
J(s), otherwise

Asynchronous value iteration initializes J and then applies, in sequence,
Ts(0) , Ts(1) ,

� New notation: projection operator Π maps from ℜn into the subset

of ℜn which can be represented by the function approximator class

� While theoretical convergence analysis does not depend on this,
the projection operator Π has to operate based upon only knowing

J at the points s ∈ S’ , otherwise not practically feasible for large

scale problems

DP/VI with function approximation

Pick some S′ ⊆ S [typically the idea is that |S ′| << |S|].
Iterate for i = 0, 1, 2, . . .:

back-ups:∀s ∈ S′ : J̄ (i+1)(s) ← min
u∈A

∑

s′

P (s′|s, u)
(
g(s, u) + γĴθ(i)(s

′)
)

projection: find some θ(i+1) such that ∀s ∈ S′ Ĵθ(i+1)(s) ≈ J̄
(i+1)(s)

J̄(i+1) ← ΠT J̄ (i)

Page 10

� Definition. An operator G is a non-expansion with

respect to a norm || . || if

� Fact. If the operator F is a γ contraction with respect to

a norm || . || and the operator G is a non-expansion with

respect to the same norm, then the sequential
application of the operators G and F is a γ-contraction,

i.e.,

� Corollary. The operator ΠT is a γ-contraction w.r.t. the

infinity norm if Π is a non-expansion w.r.t. the infinity

norm.

Composing operators

‖GJ1 −GJ2‖ ≤ ‖J1 − J2‖

‖GFJ1 −GFJ2‖ ≤ γ‖J1 − J2‖

� Examples:

� nearest neighbor (aka state aggregation)

� linear interpolation over triangles (tetrahedrons, …)

Averager function approximators
are non-expansions

Page 11

Theorem. The mapping Π associated with any averaging method is a nonex-
pansion in the infinity norm.

Averager function approximators
are non-expansions

Proof: Let J1 and J2 be two vectors in ℜn. Consider a particular entry s of
ΠJ1 and ΠJ2:

|(ΠJ1)(s)− (ΠJ2)(s)| = |βs0 +
∑

s′

βss′J1(s
′)− βs0 +

∑

s′

βss′J2(s
′)|

= |
∑

s′

βss′(J1(s
′) − J2(s

′))|

≤ max
s′
|J1(s

′)− J2(s
′)|

= ‖J1 − J2‖∞

This holds true for all s, hence we have

‖ΠJ1 −ΠJ2‖∞ ≤ ‖J1 − J2‖∞

[Example taken from Gordon, 1995.]

Linear regression �

Page 12

� I.e., if we pick a non-expansion function approximator

which can approximate J* well, then we obtain a good

value function estimate.

� To apply to discretization: use continuity assumptions to

show that J* can be approximated well by chosen

discretization scheme

Theorem. Let J∗ be the optimal value function for a finite MDP with discount
factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity
norm and let J̃ be any fixed point of Π. Suppose ‖J̃ − J∗‖∞ ≤ ǫ. Then ΠT
converges to a value function J̄ such that:

‖J̄ − J∗‖ ≤ 2ǫ+
2γǫ

1− γ

Guarantees for fixed point

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 5: Control 4: Optimal control / Reinforcement learning--- function

approximation in dynamic programming

Pieter Abbeel

UC Berkeley EECS

� Recap + continuation of value iteration with function approximation

� Performance boosts

� Speed-ups

� Intermezzo: Extremely crude outline of (part of) the reinforcement learning

field [as it might assist when reading some of the references]

Great references:

Gordon, 1995, “Stable function approximation in dynamic programming”

Tsitsiklis and Van Roy, 1996, “Feature based methods for large scale dynamic programming”

Bertsekas and Tsitsiklis, “Neuro-dynamic programming,” Chap. 6

Today

Page 2

� Markov decision process (MDP) (S, A, P, γ, g)

� γ: discount factor

� Policy

� Value of a policy π:

� Goal: find

Recall: Discounted infinite horizon

π = (µ0, µ1, . . .), µk : S → A

Jπ(x) = E[
∑

∞

t=0 γtg(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π Jπ

� Dynamic programming (DP) aka Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Facts:

� Issue in practice: Bellman’s curse of dimensionality: number of

states grows exponentially in the dimensionality of the state space

Recall: Discounted infinite horizon

J (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

There is an optimal stationary policy: π∗ = (µ∗, µ∗, . . .) which satisfies:

µ∗(s) = arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J∗(s)

J(i) → J∗ for i →∞

Page 3

DP/VI with function approximation

Pick some S′ ⊆ S [typically the idea is that |S′| << |S|].
Iterate for i = 0, 1, 2, . . .:

back-ups:∀s ∈ S′ : J̄ (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)Ĵθ(i)(s
′)

projection: find some θ(i+1) such that ∀s ∈ S′ Ĵθ(i+1)(s) = (ΠJ̄ (i+1))(s) ≈ J̄ (i+1)(s)

Projection enables generalization to , which in

turn enables the Bellman back-ups in the next iteration.

θ parameterizes the class of functions used for

approximation of the cost-to-go function

s ∈ S \ S′

“abstract”

Example --- piecewise linear

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

actual computation

back-up

back-up

project

project

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

x
x x x

x

xx

xx
x

x x
xx x x

Interpolate to

successor

states of S’

Interpolate to

successor

states of S’

back-up for
s ∈∈∈∈ S’

back-up for
s ∈∈∈∈ S’

xx xx x

x

Page 4

Recall: VI with function approximation need not converge!

P(x2|x1,u) = 1; P(x2|x2,u) = 1
g(x1,u) = 0; g(x2,u) = 0;

Function approximator: [1 2] * θ

VI w/ least squares function approximation
diverges for γ > 5/6 [see last lecture for details]

θ θ

� Fact. The Bellman operator, T, is a γ -contraction w.r.t.

the infinity norm, i.e.,

� Theorem. The Bellman operator has a unique fixed

point J* = TJ* and for all J we have that T(k)J converges
to J* for k going to infinity.

� Note:

Contractions

∀J1, J2 : ‖TJ1 − TJ2‖∞ ≤ γ‖J1 − J2‖∞

‖T (k)J − J∗‖∞ = ‖T (k)J − T (k)J∗‖∞

≤ γ‖T (k−1)J − T (k−1)J∗‖∞

≤ γk‖J − J∗‖∞

I.e., with every back-up, the infinity norm distance to J∗ decreases.

Page 5

Theorem. Let J∗ be the optimal value function for a finite MDP with discount
factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity
norm and let J̃ be any fixed point of Π. Suppose ‖J̃ − J∗‖∞ ≤ ǫ. Then ΠT
converges to a value function J̄ such that:

‖J̄ − J∗‖ ≤
2ǫ

1− γ

Guarantees for fixed point

[See also Gordon 1995]

Proof

Page 6

Fact. Assume we have some Ĵ for which we have that ‖Ĵ − T Ĵ‖∞ ≤ ǫ. Then
we have that ‖Ĵ − J∗‖∞ ≤ ǫ

1−γ
.

Proof:

‖Ĵ − J∗‖∞ = ‖Ĵ − T Ĵ + T Ĵ − T 2Ĵ + T 2Ĵ − T 3Ĵ + ...− J∗‖∞

≤ ‖Ĵ − T Ĵ‖∞ + ‖T Ĵ − T 2Ĵ‖∞ + ‖T 2Ĵ − T 3Ĵ‖∞ + ... + ‖T∞Ĵ − J∗‖∞

≤ ǫ + γǫ + γ2ǫ + ...

=
ǫ

1− γ

Can we generally verify goodness of some
estimate J despite not having access to J*

� Of course, in most (perhaps all) large scale settings in

which function approximation is desirable, it will be hard

to compute the bound on the infinity norm …

� Assume Π only introduces a little bit of noise, i.e.,

Or, more generally, we have a noisy sequence of back-ups:

What if the projection fails to be a non-expansion

∀ iterations i : ‖T J̄(i) −ΠT J̄(i)‖∞ ≤ ǫ

J (i+1) ← TJ (i) + w(i) with the noise w(i) satisfying: ‖w(i)‖∞ ≤ ǫ

Fact. ‖J (i)−T iJ‖ ≤ ǫ(1+γ+. . .+γi−1) and as a consequence lim supi→∞ ‖J
(i)−

J∗‖ ≤ ǫ
1−γ .

Proof by induction:

Base case: We have ‖J (1) − TJ (0)‖∞ ≤ ǫ.
Induction: We also have for any i > 1:

‖T iJ (0) − J (i)‖∞ = ‖TT i−1J (0) − TJ (i−1) − w(i−1)‖∞

≤ ǫ + γ‖T i−1J (0) − J (i−1)‖∞

≤ ǫ + γ(ǫ(1 + γ + γ2 + . . . + γ(i−2)))

Page 7

[See also Bertsekas and Ttsitsiklis, 6.1.1]

Guarantees for greedy policy w.r.t.
approximate value function

Fact. Suppose that J satisfies ‖J − J∗‖∞ ≤ ǫ. If µ is a greedy policy based on
J , then

‖Jµ − J∗‖∞ ≤
2γǫ

1− γ

Definition. µ is the greedy policy w.r.t. J if for all states s:

µ(s) ∈ arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J(s′)

Here Jµ = E[
∑
∞

t=0 γtg(st, µ(st))].

Recall:
(TJ)(s) = min

u
g(s, u) + γ

∑

s′

P (s′|s, u)J(s′)

Similarly define:

(TµJ)(s) = g(s, µ(s)) + γ
∑

s′

P (s′|s, µ(s))J(s′)

We have TJ∗ = J∗ and (same result for MDP with only 1 policy available)
TµJµ = Jµ.

A very typical proof follows, with the main ingredients adding and subtract-
ing the same terms to make terms pairwise easier to compare/bound:

‖Jµ − J∗‖∞ = ‖TµJµ − J∗‖∞

≤ ‖TµJµ − TµJ‖∞+ ‖TµJ − J∗‖∞

≤ γ‖Jµ − J‖∞ + ‖TJ − J ∗ ‖∞

≤ γ‖Jµ − J∗‖∞ + γ‖J∗ − J‖∞ + γ‖J − J∗‖∞

= γ‖Jµ − J∗‖∞ + 2γǫ,

and the result follows.

Proof

Page 8

� DP/VI with function approximation:

� Iterate: J � Π T J

� Need not converge!

� Guarantees when:

� The projection is an infinity norm non-expansion

� Bounded error in each projection/function

approximation step

� In later lectures we will also study the policy iteration

and linear programming approaches

Recap function approximation

� Exact methods w/full model available (e.g. Value

iteration/DP, policy iteration, LP)

� Approximate DP w/model available

� Sample states:

� Use all sampled data in batch � often reducible to

“exact methods” on an approximate transition model

� Use incremental updates � stochastic approximation

techniques might prove convergence to desired

solution

Reinforcement learning---very crude map

Page 9

1. Multi-stage lookahead aka Receding/Moving horizon

� Rather than using greedy policy µ w.r.t. approximate value

function, with

� Two-stage lookahead:

� At time t perform back-ups for all s’ which are successor states of st

� Then use these backed up values to perform the back-up for st

� N stage lookahead: similarly,perform back-ups to N-stages of

successor states of st backward in time

� Can’t guarantee N-stage lookahead provides better

performance [Can guarantee tighter infinity norm bound on

attained value function estimates by N-stage lookahead.]

� Example application areas in which it has improved

performance chess, backgammon

Improving performance with a given value function

µ(st) = arg minu g(s, u) + γ
∑

s′ P (s′|s, u)Ĵθ(s
′)

See also Bertsekas and Tsitsiklis, 6.1.2

2. Roll-out policies

� Given a policy π, choose the current action u by

evaluating the cost encurred by taking action u
followed by executing the policy π from then onwards

� Guaranteed to perform better than the baseline policy

on top of which it builds (thanks to general

guarantees of policy iteration algorithm)

� Baseline policy could be obtained with any method

� Practicalities

� Todo --- fill in

Improving performance with a given value function

See also Bertsekas and Tsitsiklis, 6.1.3

Page 10

� Parallelization

� VI lends itself to parallellization

� Multi-grid, Coarse-to-fine grid, Variable resolution grid

� Prioritized sweeping

� Richardson extrapolation

� Kuhn triangulation

Speed-ups

Prioritized sweeping

� Dynamic programming (DP) / Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Prioritized sweeping idea: focus updates on states for which the update is

expected to be most significant

� Place states into priority queue and perform updates accordingly

� For every Bellman update: compute the difference J^{(i+1)} – J^{(i)}

� Then update the priority of the states s’ from which one could transition into s

based upon the above difference and the transition probability of

transitioning into s’

� For details: See Moore and Atkeson, 1993, “Prioritized sweeping: RL with less

data and less real time”

J (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

Page 11

� Generic method to improve the rate of convergence of a sequence

� Assume h is the grid-size parameter in a discretization scheme

� Assume we can approximate J(h)(x) as follows:

� Similarly:

� Then we can get rid of the order h error term by using the following

approximation which combines both:

Richardson extrapolation

J (h)(x) = J(x) + J1(x)h + o(h)

J (h/2)(x) = J(x) + J1(x)h/2 + o(h)

2J (h/2)(x)− J (h)(x) = J(x) + o(h)

� Allows efficient computation of the vertices participating in

a point’s barycentric coordinate system and of the convex

interpolation weights (aka the barycentric coordinates)

� See Munos and Moore, 2001 for further details.

Kuhn triangulation

Page 12

Kuhn triangulation (from Munos and Moore)

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 5: Control 4: Optimal control / Reinforcement learning--- function

approximation in dynamic programming

Pieter Abbeel

UC Berkeley EECS

� Recap + continuation of value iteration with function approximation

� Performance boosts

� Speed-ups

� Intermezzo: Extremely crude outline of (part of) the reinforcement learning

field [as it might assist when reading some of the references]

Great references:

Gordon, 1995, “Stable function approximation in dynamic programming”

Tsitsiklis and Van Roy, 1996, “Feature based methods for large scale dynamic programming”

Bertsekas and Tsitsiklis, “Neuro-dynamic programming,” Chap. 6

Today

Page 2

� Markov decision process (MDP) (S, A, P, γ, g)

� γ: discount factor

� Policy

� Value of a policy π:

� Goal: find

Recall: Discounted infinite horizon

π = (µ0, µ1, . . .), µk : S → A

Jπ(x) = E[
∑

∞

t=0 γtg(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π Jπ

� Dynamic programming (DP) aka Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Facts:

� Issue in practice: Bellman’s curse of dimensionality: number of

states grows exponentially in the dimensionality of the state space

Recall: Discounted infinite horizon

J (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

There is an optimal stationary policy: π∗ = (µ∗, µ∗, . . .) which satisfies:

µ∗(s) = arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J∗(s)

J(i) → J∗ for i →∞

Page 3

DP/VI with function approximation

Pick some S′ ⊆ S [typically the idea is that |S′| << |S|].
Iterate for i = 0, 1, 2, . . .:

back-ups:∀s ∈ S′ : J̄ (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)Ĵθ(i)(s
′)

projection: find some θ(i+1) such that ∀s ∈ S′ Ĵθ(i+1)(s) = (ΠJ̄ (i+1))(s) ≈ J̄ (i+1)(s)

Projection enables generalization to , which in

turn enables the Bellman back-ups in the next iteration.

θ parameterizes the class of functions used for

approximation of the cost-to-go function

s ∈ S \ S′

“abstract”

Example --- piecewise linear

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

actual computation

back-up

back-up

project

project

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

x
x x x

x

xx

xx
x

x x
xx x x

Interpolate to

successor

states of S’

Interpolate to

successor

states of S’

back-up for
s ∈∈∈∈ S’

back-up for
s ∈∈∈∈ S’

xx xx x

x

Page 4

Recall: VI with function approximation need not converge!

P(x2|x1,u) = 1; P(x2|x2,u) = 1
g(x1,u) = 0; g(x2,u) = 0;

Function approximator: [1 2] * θ

VI w/ least squares function approximation
diverges for γ > 5/6 [see last lecture for details]

θ θ

� Fact. The Bellman operator, T, is a γ -contraction w.r.t.

the infinity norm, i.e.,

� Theorem. The Bellman operator has a unique fixed

point J* = TJ* and for all J we have that T(k)J converges
to J* for k going to infinity.

� Note:

Contractions

∀J1, J2 : ‖TJ1 − TJ2‖∞ ≤ γ‖J1 − J2‖∞

‖T (k)J − J∗‖∞ = ‖T (k)J − T (k)J∗‖∞

≤ γ‖T (k−1)J − T (k−1)J∗‖∞

≤ γk‖J − J∗‖∞

I.e., with every back-up, the infinity norm distance to J∗ decreases.

Page 5

Theorem. Let J∗ be the optimal value function for a finite MDP with discount
factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity
norm and let J̃ be any fixed point of Π. Suppose ‖J̃ − J∗‖∞ ≤ ǫ. Then ΠT
converges to a value function J̄ such that:

‖J̄ − J∗‖ ≤
2ǫ

1− γ

Guarantees for fixed point

[See also Gordon 1995]

Proof

Page 6

Fact. Assume we have some Ĵ for which we have that ‖Ĵ − T Ĵ‖∞ ≤ ǫ. Then
we have that ‖Ĵ − J∗‖∞ ≤ ǫ

1−γ
.

Proof:

‖Ĵ − J∗‖∞ = ‖Ĵ − T Ĵ + T Ĵ − T 2Ĵ + T 2Ĵ − T 3Ĵ + ...− J∗‖∞

≤ ‖Ĵ − T Ĵ‖∞ + ‖T Ĵ − T 2Ĵ‖∞ + ‖T 2Ĵ − T 3Ĵ‖∞ + ... + ‖T∞Ĵ − J∗‖∞

≤ ǫ + γǫ + γ2ǫ + ...

=
ǫ

1− γ

Can we generally verify goodness of some
estimate J despite not having access to J*

� Of course, in most (perhaps all) large scale settings in

which function approximation is desirable, it will be hard

to compute the bound on the infinity norm …

� Assume Π only introduces a little bit of noise, i.e.,

Or, more generally, we have a noisy sequence of back-ups:

What if the projection fails to be a non-expansion

∀ iterations i : ‖T J̄(i) −ΠT J̄(i)‖∞ ≤ ǫ

J (i+1) ← TJ (i) + w(i) with the noise w(i) satisfying: ‖w(i)‖∞ ≤ ǫ

Fact. ‖J (i)−T iJ‖ ≤ ǫ(1+γ+. . .+γi−1) and as a consequence lim supi→∞ ‖J
(i)−

J∗‖ ≤ ǫ
1−γ .

Proof by induction:

Base case: We have ‖J (1) − TJ (0)‖∞ ≤ ǫ.
Induction: We also have for any i > 1:

‖T iJ (0) − J (i)‖∞ = ‖TT i−1J (0) − TJ (i−1) − w(i−1)‖∞

≤ ǫ + γ‖T i−1J (0) − J (i−1)‖∞

≤ ǫ + γ(ǫ(1 + γ + γ2 + . . . + γ(i−2)))

Page 7

[See also Bertsekas and Ttsitsiklis, 6.1.1]

Guarantees for greedy policy w.r.t.
approximate value function

Fact. Suppose that J satisfies ‖J − J∗‖∞ ≤ ǫ. If µ is a greedy policy based on
J , then

‖Jµ − J∗‖∞ ≤
2γǫ

1− γ

Definition. µ is the greedy policy w.r.t. J if for all states s:

µ(s) ∈ arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J(s′)

Here Jµ = E[
∑
∞

t=0 γtg(st, µ(st))].

Recall:
(TJ)(s) = min

u
g(s, u) + γ

∑

s′

P (s′|s, u)J(s′)

Similarly define:

(TµJ)(s) = g(s, µ(s)) + γ
∑

s′

P (s′|s, µ(s))J(s′)

We have TJ∗ = J∗ and (same result for MDP with only 1 policy available)
TµJµ = Jµ.

A very typical proof follows, with the main ingredients adding and subtract-
ing the same terms to make terms pairwise easier to compare/bound:

‖Jµ − J∗‖∞ = ‖TµJµ − J∗‖∞

≤ ‖TµJµ − TµJ‖∞+ ‖TµJ − J∗‖∞

≤ γ‖Jµ − J‖∞ + ‖TJ − J ∗ ‖∞

≤ γ‖Jµ − J∗‖∞ + γ‖J∗ − J‖∞ + γ‖J − J∗‖∞

= γ‖Jµ − J∗‖∞ + 2γǫ,

and the result follows.

Proof

Page 8

� DP/VI with function approximation:

� Iterate: J � Π T J

� Need not converge!

� Guarantees when:

� The projection is an infinity norm non-expansion

� Bounded error in each projection/function

approximation step

� In later lectures we will also study the policy iteration

and linear programming approaches

Recap function approximation

� Exact methods w/full model available (e.g. Value

iteration/DP, policy iteration, LP)

� Approximate DP w/model available

� Sample states:

� Use all sampled data in batch � often reducible to

“exact methods” on an approximate transition model

� Use incremental updates � stochastic approximation

techniques might prove convergence to desired

solution

Reinforcement learning---very crude map

Page 9

1. Multi-stage lookahead aka Receding/Moving horizon

� Rather than using greedy policy µ w.r.t. approximate value

function, with

� Two-stage lookahead:

� At time t perform back-ups for all s’ which are successor states of st

� Then use these backed up values to perform the back-up for st

� N stage lookahead: similarly,perform back-ups to N-stages of

successor states of st backward in time

� Can’t guarantee N-stage lookahead provides better

performance [Can guarantee tighter infinity norm bound on

attained value function estimates by N-stage lookahead.]

� Example application areas in which it has improved

performance chess, backgammon

Improving performance with a given value function

µ(st) = arg minu g(s, u) + γ
∑

s′ P (s′|s, u)Ĵθ(s
′)

See also Bertsekas and Tsitsiklis, 6.1.2

2. Roll-out policies

� Given a policy π, choose the current action u by

evaluating the cost encurred by taking action u
followed by executing the policy π from then onwards

� Guaranteed to perform better than the baseline policy

on top of which it builds (thanks to general

guarantees of policy iteration algorithm)

� Baseline policy could be obtained with any method

� Practicalities

� Todo --- fill in

Improving performance with a given value function

See also Bertsekas and Tsitsiklis, 6.1.3

Page 10

� Parallelization

� VI lends itself to parallellization

� Multi-grid, Coarse-to-fine grid, Variable resolution grid

� Prioritized sweeping

� Richardson extrapolation

� Kuhn triangulation

Speed-ups

Prioritized sweeping

� Dynamic programming (DP) / Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Prioritized sweeping idea: focus updates on states for which the update is

expected to be most significant

� Place states into priority queue and perform updates accordingly

� For every Bellman update: compute the difference J^{(i+1)} – J^{(i)}

� Then update the priority of the states s’ from which one could transition into s

based upon the above difference and the transition probability of

transitioning into s’

� For details: See Moore and Atkeson, 1993, “Prioritized sweeping: RL with less

data and less real time”

J (i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

Page 11

� Generic method to improve the rate of convergence of a sequence

� Assume h is the grid-size parameter in a discretization scheme

� Assume we can approximate J(h)(x) as follows:

� Similarly:

� Then we can get rid of the order h error term by using the following

approximation which combines both:

Richardson extrapolation

J (h)(x) = J(x) + J1(x)h + o(h)

J (h/2)(x) = J(x) + J1(x)h/2 + o(h)

2J (h/2)(x)− J (h)(x) = J(x) + o(h)

� Allows efficient computation of the vertices participating in

a point’s barycentric coordinate system and of the convex

interpolation weights (aka the barycentric coordinates)

� See Munos and Moore, 2001 for further details.

Kuhn triangulation

Page 12

Kuhn triangulation (from Munos and Moore)

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 6: Control 5: Optimal control --- [Function approximation in dynamic

programming---special case: quadratic]

Pieter Abbeel

UC Berkeley EECS

PHD

Page 2

� Will there be lecture this Thursday (Sept 24)?

� Yes.

� No office hours this Thursday (as I am examining

students for prelims).

� Feel free to schedule an appointment by email instead.

Announcements

� Final project contents:

� Original investigation into an area that relates sufficiently closely to

the course.

� Could be algorithmic/theoretical idea

� Could be application of existing algorithm(s) to a platform or domain in

which these algorithms carry promise but have not been applied

� Alternatively: Significant improvement for an existing (or new)

assignment for this course or for an existing (or new) assignment for

188 which has close ties to this course.

� Ideally: we are able to identify a topic that relates both to your on-

going PhD research and the course.

� You are very welcome to come up with your own project ideas, yet

make sure to pass them by me **before** you submit your abstract.

� Feel free to stop by office hours or set an appointment (via email) to

discuss potential projects.

Announcements

Page 3

� Final project logistics:

� Final result: 6-8 page paper.

� Should be structured like a conference paper, i.e., focus on the

problem setting, why it matters, what is interesting/unsolved about it,

your approach, results, analysis, and so forth. Cite and briefly survey

prior work as appropriate, but don’t re-write prior work when not

directly relevant to understand your approach.

� Milestones:

� Oct. 9th, 23:59: **Approved-by-me** abstracts due: 1 page description

of project + goals for milestone. Make sure to sync up with me before

then!

� Nov 9th, 23:59: 1 page milestone report due

� Dec 3rd, In-class project presentations [tentatively]

� Dec 11th, 23:59: Final paper due

� 1 or 2 students/project. If you are two students on 1 final project,

I will expect twice as much research effort has gone into it!

Announcements

Bellman’s curse of dimensionality

� n-dimensional state space

� Number of states grows exponentially in n

� In practice

� Discretization is considered only computationally

feasible up to 5 or 6 dimensional state spaces even

when using

� Variable resolution discretization

� Very fast implementations

Page 4

� Linear Quadratic (LQ) setting --- special case: can solve continuous

optimal control problem exactly

Great reference:

[optional] Anderson and Moore, Linear Quadratic Methods --- standard reference for LQ
setting

Today

Linear Quadratic Regulator (LQR)

The LQR setting assumes a linear dynamical system:

xt+1 = Axt + But,

xt: state at time t
ut: input at time t
It assumes a quadratic cost function:

g(xt, ut) = x⊤t Qxt + u⊤t Rut

with Q ≻ 0, R ≻ 0.
For a square matrix X we have X ≻ 0 if and only if for all vectors z we

have z⊤Xz > 0. Hence there is a non-zero cost for any state different from the
all-zeros state, and any input different from the all-zeros input.

Page 5

While LQ assumptions might seem very restrictive,
we will see the method can be made applicable
for non-linear systems, e.g., helicopter.

Value iteration

� Back-up step for i+1 steps to go:

� LQR:

= min
u

[
x⊤Qx + u⊤Ru + γ Ji(Ax + Bu)

]

Page 6

LQR value iteration: J1

Initialize J0(x) = x⊤P0x.

J1(x) = min
u

[
x⊤Qx + u⊤Ru + J0(Ax+ Bu)

]

= min
u

[
x⊤Qx + u⊤Ru + (Ax + Bu)⊤P0(Ax+ Bu)

]
(1)

To find the minimum over u, we set the gradient w.r.t. u equal to zero:

∇u [. . .] = 2Ru + 2B⊤P0(Ax+ Bu) = 0,

hence: u = −(R + B⊤P0B)−1B⊤P0Ax (2)

(2) into (1): J1(x) = x⊤P1x

for: P1 = Q + K⊤

1 RK1 + (A + BK1)
⊤P0(A + BK1)

K1 = −(R + B⊤P0B)−1B⊤P0A.

LQR value iteration: J1 (ctd)

� In summary:

� J1(x) is quadratic, just like J0(x).

�Value iteration update is the same for all times and can be done

in closed form!

J1(x) = x⊤P1x

for: P1 = Q + K⊤

1 RK1 + (A + BK1)
⊤P0(A + BK1)

K1 = −(R + B⊤P0B)−1B⊤P0A.

J0(x) = x⊤P0x

xt+1 = Axt + But
g(x, u) = u⊤Ru + x⊤Qx

J2(x) = x⊤P2x

for: P2 = Q + K⊤

2 RK2 + (A + BK2)
⊤P1(A + BK2)

K2 = −(R + B⊤P1B)−1B⊤P1A.

Page 7

Value iteration solution to LQR

Set P0 = 0.
for i = 1, 2, 3, . . .

Ki = −(R + B⊤Pi−1B)−1B⊤Pi−1A

Pi = Q + K⊤

i RKi + (A + BKi)
⊤Pi−1(A + BKi)

The optimal policy for a i-step horizon is given by:

π(x) = Kix

The cost-to-go function for a i-step horizon is given by:

Ji(x) = x⊤Pix.

� Extensions which make it more generally applicable:

� Affine systems

� System with stochasticity

� Regulation around non-zero fixed point for non-linear systems

� Penalization for change in control inputs

� Linear time varying (LTV) systems

� Trajectory following for non-linear systems

LQR assumptions revisited

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

= for keeping a linear system at the all-zeros state.

Page 8

� Optimal control policy remains linear, optimal cost-to-go

function remains quadratic

� Two avenues to do derivation:

� 1. Work through the DP update as we did for standard setting

� 2. Redefine the state as: z_t = [x_t; 1], then we have:

LQR Ext0: Affine systems

xt+1 = Axt + But + c

g(xt, ut) = x⊤t Qxt + u⊤t Rut

zt+1 =

[
xt+1

1

]
=

[
A c

0 1

] [
xt
1

]
+

[
B

0

]
ut = A′zt + B′ut

� Exercise: work through similar derivation as we did for

the deterministic case.

� Result:

� Same optimal control policy

� Cost-to-go function is almost identical: has one additional term

which depends on the variance in the noise (and which cannot

be influenced by the choice of control inputs)

LQR Ext1: stochastic system

xt+1 = Axt + But + wt

g(xt, ut) = x⊤t Qxt + u⊤t Rut

wt, t = 0, 1, . . . are zero mean and independent

Page 9

Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:

[=standard LQR]

LQR Ext2: non-linear systems

xt+1 = f(xt, ut)

∃u∗s.t. x∗ = f(x∗, u∗)

xt+1 ≈ f(x∗, u∗) +
∂f

∂x
(x∗, u∗)(xt − x∗) +

∂f

∂u
(x∗, u∗)(ut − u∗)

xt+1 − x∗ ≈ A(xt − x∗) + B(ut − u∗)

A B

zt+1 = Azt + Bvt, cost = z⊤t Qzt + v⊤t Rvt

vt = Kzt ⇒ ut − u∗ = K(xt − x∗) ⇒ ut = u∗ + K(xt − x∗)

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� When run in this format on real systems: often high frequency

control inputs get generated. Typically highly undesirable and

results in poor control performance.

� Why?

� Solution: frequency shaping of the cost function. (See, e.g.,

Anderson and Moore.)

� Simple special case which works well in practice: penalize for

change in control inputs. ---- How ??

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

Page 10

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� How to incorporate the change in controls into the

cost/reward function?

� Soln. method A: explicitly incorporate into the state and the

reward function, and re-do the derivation based upon value

iteration.

� Soln. method B: change of variables to fit into the standard LQR

setting.

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� Introducing change in controls ∆u:
[
xt+1
ut+1

]
=

[
A B

0 I

] [
xt
ut−1

]
+

[
B

I

]
∆ut

A’ B’x’t+ x’t= + u’t

Q′ =

[
Q 0
0 R

]

R′ = penalty for change in controls

cost = −(x′⊤Q′x′ + ∆u⊤R′∆u)

[If R’=0, then equivalent to standard LQR.]

xt+1 = Axt +But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

Page 11

LQR Ext4: Linear Time Varying (LTV) Systems

xt+1 = Atxt + Btut

g(xt, ut) = x⊤t Qtxt + u⊤t Rtut

LQR Ext4: Linear Time Varying (LTV) Systems

Set P0 = 0.
for i = 1, 2, 3, . . .

Ki = −(RH−i + B⊤H−iPi−1BH−i)
−1B⊤

H−iPi−1AH−i

Pi = QH−i + K⊤

i RH−iKi + (AH−i + BH−iKi)
⊤Pi−1(AH−i + BH−iKi)

The optimal policy for a i-step horizon is given by:

π(x) = Kix

The cost-to-go function for a i-step horizon is given by:

Ji(x) = x⊤Pix.

Page 12

LQR Ext5: Trajectory following for non-linear systems

� A state sequence x*, x*, …, xH* is a feasible target

trajectory iff

� Problem statement:

� Transform into linear time varying case (LTV):

∃u∗0, u
∗
1, . . . , u

∗

H−1 : ∀t ∈ {0, 1, . . . , H − 1} : x∗t+1 = f(x∗t , u
∗
t)

minu0,u1,...,uH−1

∑H−1
t=0 (xt − x∗t)

⊤Q(xt − x∗t) + (ut − u∗t)
⊤R(ut − u∗t)

s.t. xt+1 = f(xt, ut)

xt+1 ≈ f(x∗t , u
∗

t) +
∂f

∂x
(x∗t , u

∗

t)(xt − x∗t) +
∂f

∂u
(x∗t , u

∗

t)(ut − u∗t)

xt+1 − x∗t ≈ At(xt − x∗t) + Bt(ut − u∗t)
At Bt

LQR Ext5: Trajectory following for non-linear systems

� Transformed into linear time varying case (LTV):

� Now we can run the standard LQR back-up iterations.

� Resulting policy at i time-steps from the end:

� The target trajectory need not be feasible to apply this technique,

however, if it is infeasible then the linearizations are not around the

(state,input) pairs that will be visited

minu0,u1,...,uH−1

∑H−1
t=0 (xt − x∗t)

⊤Q(xt − x∗t) + (ut − u∗t)
⊤R(ut − u∗t)

s.t. xt+1 − x∗t+1 ≈ At(xt − x∗t) + Bt(ut − u∗t)

uH−i − u∗H−i = Ki(xH−i − x∗H−i)

Page 13

� Methods which attempt to solve the generic optimal

control problem

by iteratively approximating it and leveraging the fact

that the linear quadratic formulation is easy to solve.

Most general cases

minu

H∑

t=0

g(xt, ut)

subject to xt+1 = f(xt, ut) ∀t

Iteratively apply LQR

Initialize the algorithm by picking either (a) A control policy π(0) or (b) A

sequence of states x
(0)
0 , x

(0)
1 , . . . , x

(0)
H and control inputs u

(0)
0 , u

(0)
1 , . . . , u

(0)
H . With

initialization (a), start in Step (1). With initialization (b), start in Step (2).
Iterate the following:

(1) Execute the current policy π(i) and record the resulting state-input tra-

jectory x
(i)
0 , u

(i)
0 , x

(i)
1 , u

(i)
1 , . . . , x

(i)
H , u

(i)
H .

(2) Compute the LQ approximation of the optimal control around the ob-
tained state-input trajectory by computing a first-order Taylor expansion
of the dynamics model, and a second-order Taylor expansion of the cost
function.

(3) Use the LQR back-ups to solve for the optimal control policy π(i+1) for
the LQ approximation obtained in Step (2).

(4) Set i = i + 1 and go to Step (1).

Page 14

Standard LTV is of the form zt+1 = Atzt + Btvt, g(z, v) = z⊤Qz + v⊤Rv.

Linearizing around (x
(i)
t , u

(i)
t) in iteration i of the iterative LQR algorithm

gives us (up to first order!):

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

Subtracting the same term on both sides gives the format we want:

xt+1−x
(i)
t+1 = f(x

(i)
t , u

(i)
t)−x

(i)
t+1+

∂f

∂x
(x
(i)
t , u

(i)
t)(xt−x

(i)
t)+

∂f

∂u
(x
(i)
t , u

(i)
t)(ut−u

(i)
t)

Hence we get the standard format if using:

zt = [xt − x
(i)
t 1]⊤

vt = (ut − u
(i)
t)

At =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t) − x

(i)
t+1

0 1

]

Bt =

[
∂f
∂u

(x
(i)
t , u

(i)
t)

0

]

Iterative LQR: in standard LTV format

� Need not converge as formulated!

� Reason: the optimal policy for the LQ approximation

might end up not staying close to the sequence of

points around which the LQ approximation was

computed by Taylor expansion.

� Solution: in each iteration, adjust the cost function so

this is the case, i.e., use the cost function

Assuming g is bounded, for α close enough to one,

the 2nd term will dominate and ensure the

linearizations are good approximations around the

solution trajectory found by LQR.

Iteratively apply LQR: convergence

(1− α)g(xt, ut) + α(‖xt − x
(i)
t ‖

2
2 + ‖ut − u

(i)
t ‖

2
2)

Page 15

� f is non-linear, hence this is a non-convex optimization

problem. Can get stuck in local optima! Good

initialization matters.

� g could be non-convex: Then the LQ approximation fails

to have positive-definite cost matrices.

Iteratively apply LQR: practicalities

Standard LTV is of the form zt+1 = Atzt + Btvt, g(z, v) = z⊤Qz + v⊤Rv.

Linearizing around (x
(i)
t , u

(i)
t) in iteration i of the iterative LQR algorithm

gives us (up to first order!):

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

Subtracting the same term on both sides gives the format we want:

xt+1−x
(i)
t+1 = f(x

(i)
t , u

(i)
t)−x

(i)
t+1+

∂f

∂x
(x
(i)
t , u

(i)
t)(xt−x

(i)
t)+

∂f

∂u
(x
(i)
t , u

(i)
t)(ut−u

(i)
t)

Hence we get the standard format if using:

zt = [xt − x
(i)
t 1]⊤

vt = (ut − u
(i)
t)

At =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t)− x

(i)
t+1

0 1

]

Bt =

[
∂f
∂u

(x
(i)
t , u

(i)
t)

0

]

A similar derivation is needed to find Q and R.

Iterative LQR: in standard LTV format

Page 16

While there is no need to follow this particular route, this is a (imho) partic-
ularly convenient way of turning the linearized and quadraticized approximation
in the iLQR iterations into the standard LQR format for the setting of trajectory
following with a quadratic penalty for deviation from the trajectory.

Let x
(i)
t , u

(i)
t be the state and control around which we linearize. Let x∗t , u

∗

t

be the target controls then we have:

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

xt+1 − x∗t+1 = f(x
(i)
t , u

(i)
t)− x∗t+1 +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t − x∗t + x∗t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t − u∗t + u∗t)

xt+1 − x∗t+1 = f(x
(i)
t , u

(i)
t)− x∗t+1 +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x∗t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(x∗t − x

(i)
t)

+
∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u∗t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(u∗t − u

(i)
t)

[
xt+1 − x∗t+1; 1

]
= A[(xt − x∗t); 1] + B(ut − u∗t)

For

A =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t)− x∗t+1 + ∂f

∂x
(x
(i)
t , u

(i)
t)(x∗t − x

(i)
t) + ∂f

∂u
(x
(i)
t , u

(i)
t)(u∗t − u

(i)
t)

0 1

]

and

B =

[
∂f

∂u
(x
(i)
t , u

(i)
t)

0

]

The cost function can be used as is: (xt−x
∗

t)
⊤Q(xt−x

∗

t)+(ut−u
∗

t)
⊤R(ut−u

∗

t).

Iterative LQR for trajectory following

� Often loosely used to refer to iterative LQR procedure.

� More precisely: Directly perform 2nd order Taylor expansion of the

Bellman back-up equation [rather than linearizing the dynamics and

2nd order approximating the cost]

� Turns out this retains a term in the back-up equation which is

discarded in the iterative LQR approach

� [It’s a quadratic term in the dynamics model though, so even if cost is

convex, resulting LQ problem could be non-convex …]

[Typically cited book: Jacobson and Mayne, “Differential dynamic

programming,” 1970]

Differential Dynamic Programming (DDP)

Page 17

Ji+1(x) = min
u

2nd order expansion of g around (x∗, u∗)

+Ji(f(x∗, u∗))

+
dJ

dx
(f(x, u)− f(x∗, u∗))

+(f(x, u)− f(x∗, u∗))⊤
d2J

dx2
(f(x, u)− f(x∗, u∗))

Differential dynamic programming

To keep entire expression 2nd order:
Use Taylor expansions of f and then remove all resulting
terms which are higher than 2nd order.
Turns out this keeps 1 additional term compared to
iterative LQR

� Yes!

� At convergence of iLQR and DDP, we end up with linearizations around

the (state,input) trajectory the algorithm converged to

� In practice: the system could not be on this trajectory due to

perturbations / initial state being off / dynamics model being off / …

� Solution: at time t when asked to generate control input ut, we could re-

solve the control problem using iLQR or DDP over the time steps t

through H

� Replanning entire trajectory is often impractical � in practice: replan over
horizon h. = receding horizon control

� This requires providing a cost to go J^{(t+h)} which accounts for all

future costs. This could be taken from the offline iLQR or DDP run

Can we do even better?

Page 18

� In many systems of interest, there is noise entering the

system which is multiplicative in the control inputs, i.e.:

� Exercise: LQR derivation for this setting

[optional related reading:Todorov and Jordan, nips 2003]

Multiplicative noise

xt+1 = Axt + (B + Bwwt)ut

Cart-pole

[See also Section 3.3 in Tedrake notes.]

H(q)q̈ + C(q, q̇) + G(q) = B(q)u

H(q) =

[
mc + mp mpl cos θ
mpl cos θ mpl

2

]

C(q, q̇) =

[
0 −mplθ̇ sin θ
0 0

]

G(q) =

[
0
mpgl sin θ

]

B =

[
1
0

]

Page 19

Cart-pole --- LQR

Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 0; [x, theta, xdot, thetadot]

Page 20

Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 1; [x, theta, xdot, thetadot]

We will not cover any details, but here is the basic result:

Assume x* is an equilibrium point for f(x), i.e., x* = f(x*).

If x* is an asymptotically stable equilibrium point for the

linearized system, then it is asymptotically stable for the

non-linear system.

If x* is unstable for the linear system, it’s unstable for the

non-linear system.

If x* is marginally stable for the linear system, no

conclusion can be drawn.

This provides additional justification for using linear control

design techniques for non-linear systems.

Lyapunov’s linearization method

[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.]

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 8: Control 7: MPC --- Feedback Linearization --- Controllability ---

Lagrangian Dynamics

Pieter Abbeel

UC Berkeley EECS

� Optimal control problem

� MPC:

� In practice, one often ends up having to solve:

Model predictive control (MPC)

Given a system with (stochastic) dynamics: xt+1 = f(xt, ut, wt) Find the
optimal policy π which minimizes the expected cost:

min
π

E[

H∑

t=0

g(xt, ut)|π]

For t = 0, 1, 2, . . .

1. Solve

minut,ut+1,...,uH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

2. Execute ut from the solution found in (1).

minut,ut+1,...,ut+h−1

t+h∑

k=t

g(xk, uk) + ḡ(xt+h, ut+h)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , t+ h− 1

Page 2

� At core of MPC, need to quickly solve problems of the form:

� Single shooting methods directly solve for

i.e., they solve:

� Underneath, this typically boils down to iterating:

� For the current simulate and find the state sequence

� Take the 1st (and 2nd) derivatives w.r.t.

� Note: When taking derivatives, one ends up repeatedly applying the chain rule and the
same Jacobians keep re-occurring

� � Beneficial to not waste time re-computing same Jacobians; pretty straightforward,
various specifics with their own names. (E.g., back-propagation.)

Single shooting

minut,ut+1,...,uH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . ,H − 1

� Numerical conditioning of the problem:

� Influence on objective function of earlier actions vs.

later actions

� What happens in case of a non-linear, unstable system?

Single shooting drawback

Page 3

� Keep the state at each time in the optimization problem:

� Larger optimization problem, yet sparse structure.

� Special case: Linear MPC: f linear, h, g convex �

convex opt. problem, “easily” solved

Multiple shooting/Direct collocation

minut,ut+1,...,uH ,xt,xt+1,...,xH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

hk(xk, uk) ≤ 0 ∀k = t, t+ 1, . . . , H − 1

� Goal: solve

� SQP: Iterates over

� Linearize f around current point (uuuu, xxxx), quadraticize g, h around

current point

� Solve the resulting Quadratic Programming problem to find the
updated “current point” (u, x)

� Corresponds to:

� Write out the first-order necessary conditions for optimality (the

Karuhn-Kuhn-Tucker (KKT) conditions)

� Apply Newton’s method to solve the (typically non-linear) KKT

equations

Sequential Quadratic Programming (SQP)

minut,ut+1,...,uH ,xt,xt+1,...,xH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

hk(xk, uk) ≤ 0 ∀k = t, t+ 1, . . . , H − 1

Page 4

� Not only method, but happens to be quite popular

� Packages available, such as SNOPT, SOCS.

� Many choices underneath:

� Quasi-Newton methods

� Compared to single shooting:

� Easier initialization (single shooting relies on control sequence)

� Easy to incorporate constraints on state / controls

� More variables, yet good algorithms leverage sparsity to offset this

Sequential Quadratic Programming (SQP)

� Tedrake Chapter 9.

� Diehl, Ferreau and Haverbeke, 2008, Nonlinear MPC overview

paper

� Francesco Borelli (M.E., UC Berkeley): taught course in Spring

2009 on (linear) MPC

� Packages:

� SNOPT, ACADO, SOCS, …

� We have ignored:

� Continuous time aspects

� Details of optimization methods underneath --- matters in

practice b/c the faster the longer horizon

� Theoretical guarantees

Further readings

Page 5

� Many companies pursuing this: Makani, KiteGen, SkySails, AmpyxPower, …

� Number from Diehl et al.: For a 500m2 kite and 10m/s wind speed (in sim)

can produce an average power of more than 5MW

� Technically interesting aspect in particular work of Diehl et al.: incorporate

open-loop stability into the optimization problem.

� Only possible for non-linear systems

� The criterion quantifies how much deviation from the nominal trajectory would
amplify/decrease in one cycle

Related intermezzo: Nonlinear control
applied to kite-based power generation

[Diehl + al.]

Non-minimum phase example
[Slotine and Li, p. 195, Example II.2]

Page 6

Feedback linearization

Feedback linearization

Page 7

Feedback linearization

Feedback linearization

Page 8

� Further readings:

� Slotine and Li, Chapter 6

� Isidori, Nonlinear control systems, 1989.

Feedback linearization

� Reminder: No office hours today.

� [Feel free to schedule over email instead]

Announcements

Page 9

� A system xt+1 = f(xt, ut) if for all x0 and all x, there exists a time k and

a control sequence u0, …, uk-1 such that xt = x.

Controllability [defn., linear systems]

Fact. The linear system xt+1 = Axt + But with xt ∈ ℜ
n is controllable iff

[B AB A2B . . . AnB] is full rank.

Lagrangian dynamics

[From: Tedrake Appendix A]

Page 10

Lagrangian dynamics: example

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 9: Reinforcement Learning 1: Bandits

Pieter Abbeel

UC Berkeley EECS

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Reinforcement Learning

� Model: Markov decision process (S, A, T, R, γ)

� Goal: Find π that maximizes expected sum of rewards

� T and R might be unknown

Page 2

� = classical dilemma in reinforcement learning

� A conceptual solution: Bayesian approach:

� State space = { x : x = probability distribution over T, R}

� For known initial state --- tree of sufficient statistics could suffice

� Transition model: describes transitions in new state space

� Reward = standard reward

� Today: one particular setting in which the Bayesian

solution is in fact computationally practical

Exploration vs. exploitation

� Slot machines

� Clinical trials

� Advertising

� Merchandising

Multi-armed bandits

Page 3

Multi-armed bandits

Information state

Page 4

� Transition model:

� Objective:

� Bellman update:

Semi-MDP

� A specialized version of the Semi-MDP is is the “Optimal

stopping problem”. At each of the times, we have two

choices:

� 1. continue

� 2. stop and accumulate reward g for current time and

for all future times.

� The optimal stopping problem has the following Bellman

update:

Optimal stopping

Page 5

� Optimal stopping Bellman update:

� Hence, for fixed g, we can find the value of each state in the optimal

stopping problem by dynamic programming

� However, we are interested in g*(s) for all s:

� Note: τ is a random variable, which denotes the stopping time. It is the

policy in this setting.

� Any stopping policy can be represented as a set of states in which we
decided to stop. The random variable τ takes on the value = time when we

first visit a state in the stopping set.

Optimal stopping

� One approach:

� Solve the optimal stopping problem for many values

of g, and for each state keep track of the smallest

value of g which causes stopping

Optimal stopping

Page 6

� Reward rate

� Expected reward rate

Reward rate

Basic idea to find g*

Page 7

Finding the optimal stopping costs

� 1. Find the optimal stopping cost for each

bandit’s current state

� 2. When asked to act, pull an arm i such that

Solving the multi-armed bandit

g∗(s
(i)
t)

Page 8

� Reward at time t only depends on state of Mi at time t

� When pulling Mi, only state of Mi changes

� Note: M_i need not “just” be a bandit; we just need to be

able to compute its optimal stopping cost

Key requirements

Example: cashier’s nightmare

P(i|j): probability of joining queue
i after being served in queue j
c_i : cost of a customer being in
queue i

P(i|j)

Page 9

� Gittins, J.C., D.M. Jones. 1974. A dynamic allocation index for the sequential design
of experiments.[“Gittins indices”]

� Different family of approaches: regret-based

� Lai and Robbins, 1985

� Auer +al, UCB algorithm (1998)

Type of result: after n plays, the regret is bounded by an expression O(log n)

� Loosening and strengthening assumptions, e.g.,

� Guha, S., K. Munagala. 2007. Approximation algorithms for budgeted learning
problems. STOC ’07.

� Various Robert Kleinberg publications

� “contextual bandit” setting

Further readings

After n plays the regret is defined by:

nµ∗ −
∑

j

µjE[Tj(n)]where µ
∗ = max

j
µj

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 11: Reinforcement Learning

Pieter Abbeel

UC Berkeley EECS

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Reinforcement Learning

� Model: Markov decision process (S, A, T, R, γ)

� Goal: Find π that maximizes expected sum of rewards

� T and R might be unknown

Page 2

MDP (S, A, T, γ, R), goal: maxπ E [∑t γ t R(st, at) | π]

� Cleaning robot

� Walking robot

� Pole balancing

� Games: tetris, backgammon

� Server management

� Shortest path problems

� Model for animals, people

Examples

Canonical Example: Grid World

� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not

always go as planned:

� 80% of the time, the action

North takes the agent North

(if there is no wall there)

� 10% of the time, North takes

the agent West; 10% East

� If there is a wall in the direction

the agent would have been

taken, the agent stays put

� Big rewards come at the end

Page 3

Solving MDPs

� In deterministic single-agent search problem, want an

optimal plan, or sequence of actions, from start to a goal

� In an MDP, we want an optimal policy π*: S → A

� A policy π gives an action for each state

� An optimal policy maximizes expected utility if followed

� Defines a reflex agent

Example Optimal Policies

R(s) = -2.0R(s) = -0.1

R(s) = -0.04R(s) = -0.02

Page 4

� Recap and extend exact methods

� Value iteration

� Policy iteration

� Generalized policy iteration

� Linear programming [later]

� Additional challenges we will address by building on top

of the above:

� Unknown transition model and reward function

� Very large state spaces

Outline current and next few lectures

Value Iteration

� Algorithm:

� Start with V0(s) = 0 for all s.

� Given Vi, calculate the values for all states for depth i+1:

� This is called a value update or Bellman update/back-up

� Repeat until convergence

Page 5

Example: Bellman Updates

Example: Value Iteration

� Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

Page 6

Convergence

Infinity norm: ‖V ‖∞ = maxs |V (s)|

Fact. Value iteration converges to the optimal value function V ∗ which satisfies
the Bellman equation:

∀s ∈ S : V ∗(s) = max
a

∑

s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

Or in operator notation: V ∗ = TV ∗ where T denotes the Bellman operator.

Fact. If an estimate V satisfies ‖V − TV ‖∞ ≤ ǫ then we have that

‖V − V ∗‖∞ ≤
ǫ

1− γ

Practice: Computing Actions

� Which action should we chose from state s:

� Given optimal values V*?

� = greedy action with respect to V*

� = action choice with one step lookahead w.r.t. V*

12

Page 7

Policy Iteration

� Alternative approach:

� Step 1: Policy evaluation: calculate value function for

a fixed policy (not optimal!) until convergence

� Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not

optimal!) value function

� Repeat steps until policy converges

� This is policy iteration

� It’s still optimal!

� Can converge faster under some conditions
13

Policy Iteration

� Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:

� Iterate until values converge

� Policy improvement: with fixed utilities, find the best

action according to one-step look-ahead

14

Page 8

Comparison

� Value iteration:

� Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

� Policy iteration:

� Several passes to update utilities with frozen policy

� Occasional passes to update policies

� Generalized policy iteration:

� General idea of two interacting processes revolving around an
approximate policy and an approximate value

� Asynchronous versions:

� Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

15

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 12: Reinforcement Learning

Pieter Abbeel

UC Berkeley EECS

� LP approach for finding the optimal value function of

MDPs

� Model-free approaches

Outline

Page 2

Solving an MDP with linear programming

Solving an MDP with linear programming

Page 3

Solving an MDP with linear programming

The dual LP

Page 4

� Meaning λ(s,a) ?

� Meaning c(s) ?

The dual LP: interpretation

max
λ≥0

∑

s,a,s′

T (s, a, s′)λ(s, a)R(s, a, s′)

s.t. ∀s
∑

a

λ(s, a) = c(s) +
∑

s′,a

λ(s′, a)T (s′, a, s)

The optimal value function satisfies:

∀s : V (s) = max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] .

We can relax these non-linear equality constraints to inequality constraints:

∀s : V (s) ≥ max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] .

Equivalently, (x ≥ maxi yi is equivalent to ∀i x ≥ yi), we have:

∀s, ∀a : V (s) ≥
∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] . (1)

The relaxation still has the optimal value function as one of its solutions, but we
might have introduced new solutions. So we look for an objective function that
will favor the optimal value function over other solutions of (1). To this extent,
we observed the following monotonicity property of the Bellman operator T :

∀s V1(s) ≥ V2(s) implies : ∀s (TV1)(s) ≥ (TV2)(s)

Any solution to (1) satisfies V ≥ TV , hence also: TV ≥ T 2V , hence also:
T 2V ≥ T 3V ... “T∞−1”V ≥ T∞V = V ∗. Stringing these together, we get for
any solution V of (1) that the following holds:

V ≥ V ∗

Hence to find V ∗ as the solution to (1), it suffices to add an objective function
which favors the smallest solution:

min
V
c⊤V s.t.∀s,∀a : V (s) ≥

∑

s′

T (s, a, s′) [R(s, a, s′) + γV (s′)] . (2)

If c(s) > 0 for all s, the unique solution to (2) is V ∗.
Taking the Lagrange dual of (2), we obtain another interesting LP:

max
λ≥0

∑

s,a,s′

T (s, a, s′)λ(s, a)R(s, a, s′)

s.t. ∀s
∑

a

λ(s, a) = c(s) + γ
∑

s′,a

λ(s′, a)T (s′, a, s)

LP approach recap

Page 5

� PS 1: posted on class website, due Monday October 26.

� Final project abstracts due tomorrow.

Announcements

� Value iteration:

� Start with V0(s) = 0 for all s. Iterate until convergence:

� Policy iteration:

� Policy evaluation: Iterate until values converge

� Policy improvement:

� Generalized policy iteration:

� Any interleaving of policy evaluation and policy improvement

� Note: for particular choice of interleaving � value iteration

� Linear programming:

Page 6

� Model-based reinforcement learning

� Estimate model from experience

� Solve the MDP as if the model were correct

� Model-free reinforcement learning

� Adaptations of the exact algorithms which only require (s, a, r, s’)

traces [some of them use (s, a, r, s’, a’)]

� No model is built in the process

What if T and R unknown

Sample Avg to Replace Expectation?

� Who needs T and R? Approximate the
expectation with samples (drawn from T!)

Problem: We need
to estimate these

too!

Page 7

Sample Avg to Replace Expectation?

Sample of V(s):

Update to V(s):

Same update:

� We could estimate Vπ(s) for all states simultaneously:

� Old updates will use very poor estimates of Vπ(s’)

� This will surely affect our estimates of Vπ(s) initially,

but will this also affect our final estimate?

Sample Avg to Replace Expectation?

� Big idea: why bother learning T?

� Update V(s) each time we experience (s,a,s’)

� Likely s’ will contribute updates more often

� Temporal difference learning (TD or TD(0))

� Policy still fixed!

� Move values toward value of whatever

successor occurs: running average!

Sample of V(s):

Update to V(s):

Same update:

Page 8

Exponential Moving Average

� Weighted averages emphasize certain samples

� Exponential moving average

� Makes recent samples more important

� Forgets about the past (which contains mistakes in TD)

� Easy to compute from the running average

� Decreasing learning rate can give converging averages

TD(0) for estimating Vπ

Note: this is really Vπ

Page 9

� Convergence with probability 1 for the states which are

visited infinitely often if the step-size parameter

decreases according to the “usual” stochastic

approximation conditions

� Examples:

� 1/k

� C/(C+k)

Convergence guarantees for TD(0)

∞∑

k=0

αk = ∞

∞∑

k=0

α2k <∞

� If limited number of trials available: could repeatedly go

through the data and perform the TD updates again

� Under this procedure, the values will converge to the

values under the empirical transition and reward model.

Experience replay

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 13: Reinforcement Learning

Pieter Abbeel

UC Berkeley EECS

� Model-free approaches

� Recap TD(0)

� Sarsa

� Q learning

� TD(λ), sarsa(λ), Q(λ)

� Function approximation and TD

� TD Gammon

Outline

Page 2

TD(0) for estimating Vπ

Note: this is really Vπ

Stochastic version of the policy evaluation update:

Problems with TD Value Learning

� TD value leaning is model-free for policy evaluation

� However, if we want to turn our value estimates into a

policy---as required for a policy update step---we’re sunk:

� Idea: learn Q-values directly

� Makes action selection model-free too!

Page 3

� When experiencing st, at, st+1, rt+1, at+1 perform the following “sarsa”

update:

� Will find the Q values for the current policy π.

� How about Q(s,a) for action a inconsistent with the policy π at state s?

� Converges (w.p. 1) to Q function for current policy π for all states and

actions *if* all states and actions are visited infinitely often (assuming

proper step-sizing)

Update Q values directly

Qπ(st, at) ← (1− α)Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)]

= Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)−Qπ(st, at)]

� To ensure convergence for all Q(s,a) we need to visit

every (s,a) infinitely often

� The policy π needs to include some randomness

� Simplest: random actions (ε greedy)
� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to some current policy

� � This results in a new policy π’

� We end up finding the Q values for this new policy π’

Exploration aspect

Page 4

� Policy iteration iterates:

� Evaluate value of current policy Vπ

� Improve policy by choosing the greedy policy w.r.t. Vπ

� Answer: Using the epsilon greedy policies can be

interpreted as running policy iteration w.r.t. a related

MDP which differs slighty in its transition model: with
probability ǫ the transition is according to a random

action in the new MDP

Does policy iteration still work when we
execute epsilon greedy policies?

� Recall: Generalized policy iteration methods: interleave

policy improvement and policy evaluation and

guaranteed to converge to the optimal policy as long as

value for every state updated infinitely often

� � Sarsa: continuously update the policy by choosing
actions ǫ greedy w.r.t. the current Q function

Need not wait till convergence with the
policy improvement step

Page 5

Sarsa: updates Q values directly

Sarsa converges w.p. 1 to an optimal policy and action-

value function as long as all state-action pairs are visited an

infinite number of times and the policy converges in the limit

to the greedy policy (which can be arranged, e.g., by having
ǫ greedy policies with ǫ = 1 / t).

� Directly approximate the optimal Q function Q*:

� Compare to sarsa:

Q learning

Qπ(st, at) ← (1− α)Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)]

Q(st, at) ← (1− α)Q(st, at) + α
[
r(st, at, st+1) + max

a
γQπ(st+1, a)

]

Page 6

Q learning

Q-Learning Properties

� Will converge to optimal Q function if

� Every (s,a) visited infinitely often

� α is chosen to decay according to standard stochastic

approximation requirements

� Neat property: learns optimal Q-values regardless of

policy used to collect the experience

� “Off policy” method

� Strictly better than TD, sarsa? Some caveats.

Page 7

� Reward = 0 at goal; -100 in cliff region; -1 everywhere else

� ǫ = 0.1

Behaviour of Q-learning vs. sarsa

Exploration / Exploitation

� Several schemes for forcing exploration

� Simplest: random actions (ε greedy)
� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to current policy

� Problems with random actions?
� You do explore the space, but keep thrashing around once

learning is done

� Takes a long time to explore certain spaces

� One solution: lower ε over time

� Another solution: exploration functions

Page 8

Exploration Functions

� When to explore

� Random actions: explore a fixed amount

� Better idea: explore areas whose badness is not (yet)

established

� Exploration function

� Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important---for

optimality guarantees: it should guarantee that every (s,a) is

visited infinitely often _or_ that Q(s,a) is always optimistic)

TD(λ) --- motivation (grid world)

Page 9

TD(λ) --- motivation

� t:

� t+1:

+also perform:

� t+2:

+also:

TD(λ) “backward view”

V (st)← V (st) + αγλδt+1

V (st)← V (st) + α[R(st) + γV (st+1)− V (st)]

V (st+1)← V (st+1) + α[R(st+1) + γV (st+2)− V (st+1)]

V (st+2)← V (st+2) + α[R(st+2) + γV (st+3)− V (st+2)]

V (st+1)← V (st+1) + αγλδt+2

V (st)← V (st) + αγ2λ2δt+2

Page 10

V (st)← V (st) + α [R(st) + γV (st+1) − V (st)]︸ ︷︷ ︸
δt

Similarly, the update at the next time step is

V (st+1)← V (st+1) + α (R(st+1) + γV (st+2)− V (st+1)︸ ︷︷ ︸
δt+1

Note that at the next time step we update V (st+1). This (crudely speaking)
results in having a better estimate of the value function for state st+1. TD(λ)
takes advantage of the availability of this better estimate to improve the update
we performed for V (st) in the previous step of the algorithm. Concretely, TD(λ)
performs another update on V (st) to account for our improved estimate of
V (st+1) as follows:

V (st)← V (st) + αγλδt+1

where λ is a fudge factor that determines how heavily we weight changes in
the value function for st+1.

Similarly, at time t + 2 we perform the following set of updates:

V (st+2)← V (st+2) + α [R(st+2) + γV (st+2)− V (st+3)]︸ ︷︷ ︸
δt+2

...

V (st+1)← V (st+1) + αγλδt+2

V (st) ← V (st) + α γ2λ2︸︷︷︸
e(st)

δt+2

The term e(st) is called the eligibility vector.

TD(λ) --- backward view wordy

TD(λ)

Page 11

TD(λ) --- example

A B Q RK
100 0 0 0 0 0

Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

� TD:

� Sample =

� λ ∈ [0,1]

� Forward view equivalent to backward view

TD(λ) --- “forward view”

V (st)← (1− α)V (st) + α sample

R(st) + γV (st+1)

R(st) + γR(st+1) + γ2V (st+2)

R(st) + γR(st+1) + γ2R(st+2) + γ3V (st+3)

. . .

R(st) + γR(st+1) + γ2R(st+2) + . . . + γTR(sT)

Page 12

Sarsa(λ)

Watkins Q(λ)

Page 13

� What if a state is visited at two different times t1 and t2 ?

� Recall TD(λ)

Replacing traces

Replacing traces: example 1

A B Q RK
100 0 0 0 0 0

Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

Page 14

Replacing traces: example 2

� When model is available:

� VI, PI, GPI, LP

� When model is not available:

� Model-based RL: collect data, estimate model, run one of the

above methods for estimated model

� Model-free RL: learn V, Q directly from experience:

� TD(λ), sarsa(λ), Q(λ)

� What about large MDPs for which we cannot represent

all states in memory or cannot collect experience from

all states?

� Function Approximation

Recap RL so far

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 14: Reinforcement Learning with Function Approximation and TD

Gammon case study

Pieter Abbeel

UC Berkeley EECS

� Roll-out: nice example paper: X. Yan, P. Diaconis, P. Rusmevichientong,

and B. Van Roy, ``Solitaire: Man Versus Machine,'' Advances in Neural

Information Processing Systems 17, MIT Press, 2005.

Assignment #1

Page 2

� When model is available:

� VI, PI, GPI, LP

� When model is not available:

� Model-based RL: collect data, estimate model, run one of the

above methods for estimated model

� Model-free RL: learn V, Q directly from experience:

� TD(λ), sarsa(λ): on policy updates

� Q: off policy updates

� What about large MDPs for which we cannot represent

all states in memory or cannot collect experience from

all states?

� Function Approximation

Recap RL so far

� Represent the value function using a parameterized

function Vθ(s), e.g.:

� Neural network: θ is a vector with the weights on the

connections in the network

� Linear function approximator: Vθ(s) = θ⊤φ(s)

� Radial basis functions

� Tilings: (often multiple) partitions of the state space

� Polynomials:

� Fourier basis

� [Note: most algorithms kernelizable]

� Often also specifically designed for the problem at hand

Generalization and function approximation

φi(s) = exp
(
1
2 (s− si)

⊤Σ−1(s− si)
)

φi(s) = x
ji
1

1 x
ji
2

2 . . . x
jin
n

{1, sin(2π x1
L1
), cos(2π x1

L1
), sin(2π x2

L2
), cos(2π x2

L2
), . . .}

Page 3

� state: board configuration + shape of the falling piece ~2200

states!

� action: rotation and translation applied to the falling piece

� 22 features aka basis functions φi

� Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each
of the ten columns.

� Nine basis functions, 10, . . . , 18, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] − h[k]|, k = 1, .
. . , 9.

� One basis function, 19, that maps state to the maximum column height:

maxk h[k]

� One basis function, 20, that maps state to the number of ’holes’ in the
board.

� One basis function, 21, that is equal to 1 in every state.

Example: tetris

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V (s) =
∑22

i=1 θiφi(s)

� A standard way to find θ in supervised learning, optimize

MSE:

� Is this the correct objective?

Objective

minθ
∑

s P (s) (V (s)− Vθ(s))
2

Page 4

� When performing policy evaluation, we can obtain

samples by simply executing the policy and

recording the empirical (discounted) sum of rewards

� TD methods: use as a

substitute for

Evaluating the objective

minθ
∑

encountered states s

(
V̂ π(s)− V π

θ (s)
)2

vt = rt + γV π
θ (st+1)

V π(s)

� Stochastic gradient descent to optimize MSE objective:

� Iterate

� Draw a state s according to P

� Update:

� TD(0): use as a substitute for

Stochastic gradient descent

θ ← θ − 1
2
α∇θ (V

π(s)− V π
θ (s))

2 = θ + α(V π(s)− V π
θ (s))∇θV

π
θ (s)

vt = rt + γV π
θ (st+1) V π(s)

θt+1 ← θt + α
(
R(st, at, st+1) + γV π

θt
(st+1)− V π

θt
(st)

)
∇θV

π
θt
(st)

Page 5

� time t:

� time t+1:

Combined:

TD(λ) with function approximation

θt+1 ← θt + α
(
R(st, at, st+1) + γV π

θt
(st+1)− V π

θt
(st)

)

︸ ︷︷ ︸
δt

∇θV
π
θt
(st)︸ ︷︷ ︸

et

δt+1 = R(st+1, at+1, st+2) + γV π
θ (st+2)− V π

θt+1
(st+1)

et+1 = γλet +∇θt+1V
π
θt+1

(st+1)

θt+2 = θt+1 + αδt+1et+1

θt+2 ← θt+1+α
(
R(st+1, at+1, st+2) + γV π

θt+1
(st+2)− V π

θt+1
(st+1)

)

︸ ︷︷ ︸
δt+1

∇θV
π
θt+1

(st+1)

θt+2 ← θt+2 + αδt+1γλet [“improving previous update”]

TD(λ) with function approximation

Can similarly adapt sarsa(λ) and Q(λ) eligibility vectors

for function approximation

Page 6

� Monte Carlo based evaluation:

� Provides unbiased estimates under current policy

� Will converge to true value of current policy

� Temporal difference based evaluations:

� TD(λλλλ) w/linear function approximation: [Tsitsiklis and Van Roy, 1997]
If samples are generated from traces of execution of the policy π, and for
appropriate choice of step-sizes α, TD(λ) converges and at convergence: [D =
expected discounted state visitation frequencies under policy π]

� Sarsa(λλλλ) w/linear function approximation: same as TD

� Q w/linear function approximation: [Melo and Ribeiro, 2007] Convergence
to “reasonable” Q value under certain assumptions, including:

� [Could also use infinity norm contraction function approximators to attain
convergence --- see earlier lectures. However, this class of function
approximators tends to be more restrictive.]

Guarantees

‖Vθ − V ∗‖D ≤
1− λγ

1 − γ
‖ΠDV ∗ − V ∗‖D

∀s, a‖φ(s, a)‖1 ≤ 1

� Baird’s counterexample for off policy updates:

Off-policy counterexamples

Page 7

� Tsitsiklis and Van Roy counterexample: complete back-

up with “off-policy” linear regression [i.e., uniform least

squares, rather than waited by state visitation rates]

Off-policy counterexamples

� Stochastic approximation of the following operations:

� Back-up:

� Weighted linear regression:

with solution:

� Key observations:

Intuition behind TD(0) with linear
function approximation guarantees

(T πV)(s) =
∑
s′ T (s, π(s), s′) [R(s, π(s), s′) + γV (s′)]

∀V1, V2 : ‖T
πV1 − TπV2‖D ≤ γ‖V1 − V2‖D, here : ‖x‖D =

√∑

i

D(i)x(i)2

∀V1, V2 : ‖ΠDV1 −ΠDV2‖D ≤ ‖V1 − V2‖D

minθ
∑

s D(s)((T πV)(s)− θ⊤φ(s))2

Φθ = Φ(Φ⊤DΦ)−1Φ⊤D
︸ ︷︷ ︸

ΠD

(TπV)

Page 8

Intuition behind TD(λ) guarantees

� Bellman operator:

� Tλ operator:

� Tλ operator is contraction w.r.t. \| \|_D for all λ ∈ [0,1]

(T πJ)(s) =
∑

s′ P (s′|s, π(s)) [g(s) + γJ(s′)] = E [g(s) + γJ(s′)]

TλJ(s) = (1− λ)
∑

∞

m=0 λmE
[∑m

k=0 γtg(sk) + γm+1J(sm+1)
]

� At convergence:

Should we use TD than well Monte Carlo?

‖Vθ − V ∗‖D ≤
1− λγ

1− γ
‖ΠDV ∗ − V ∗‖D

Page 9

Empirical comparison (See, Sutton&Barto p.221 for details)

� 15 pieces, try go reach “other side”

� Move according to roll of dice

� If hitting an opponent piece: it gets reset to the middle row

� Cannot hit points with two or more opponent pieces

Backgammon

Page 10

� 30 pieces, 24+2 possible locations

� For typical state and dice roll: often 20 moves

Backgammon

� Reward = 1 for winning the game

= 0 other states

� Function approximator: 2 layer neural network

TD Gammon [Tesauro 92,94,95]

Page 11

� For each point on the backgammon board, 4 input units

indicate the number of white pieces as follows:

� 1 piece � unit1=1;

� 2 pieces � unit1=1, unit2=1;

� 3 pieces � unit1=1, unit2=1, unit3=1;

� n>3 pieces � unit1=1, unit2=1, unit3=1, unit4 = (n-3)/2

� Similarly for black

[This already makes for 2*4*24 = 192 input units.]

� Last six: number of pieces on the bar (w/b), number of

pieces that completed the game (w/b), white’s move,

black’s move

Input features

� Each hidden unit computes:

� Output unit computes:

� Overall:

Neural net

h(j) = σ(
∑

i wijφ(i)) =
1

1+exp(−
∑

i
wijφ(i))

φ(i), i = 1, . . . , 198

o = σ(
∑

j wjh(j)) =
1

1+exp
(
−

∑
j
wjh(j)

)

o = f(φ(1), . . . , φ(198);w)

Page 12

� Popular at that time for function approximation / learning

in general

� Derivatives/Gradients are easily derived analytically

� Turns out they can be computed through backward

error propagation --- name “error backpropagation”

� Susceptible to local optima!

Neural nets

� Initialize weights randomly

� TD(λ) [λ = 0.7, α = 0.1]

� Source of games: self-play, greedy w.r.t. current value

function [results suggest game has enough

stochasticity built in for exploration purposes]

Learning

Page 13

� After 300,000 games as good as best previous

computer programs

� Neurogammon: highly tuned neural network trained

on large corpus of exemplary moves

� TD Gammon 1.0: add Neurogammon features

� Substantially better than all previous computer

players; human expert level

� TD Gammon 2.0, 2.1: selective 2-ply search

� TD Gammon 3.0: selective 3-ply search, 160 hidden

units

Results

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 15: LSTD, LSPI, RLSTD, imitation learning

Pieter Abbeel

UC Berkeley EECS

� Stochastic approximation of the following operations:

� Back-up:

� Weighted linear regression:

� Batch version (for large state spaces):

� Let {(s,a,s’)} have been sampled according to D

� Iterate:

� Back-up for sampled (s,a,s’):

� Perform regression:

TD(0) with linear function
approximation guarantees

(T πV)(s) =
∑
s′ T (s, π(s), s

′) [R(s, π(s), s′) + γV (s′)]

minθ
∑

sD(s)((T
πV)(s)− θ⊤φ(s))2

min
θ

∑

(s,a,s′)

(V (s)− θ⊤φ(s))2

min
θ

∑

(s,a,s′)

(R(s, a, s′) + γθ(old)
⊤

φ(s′)− θ⊤φ(s))2

V (s)← [R(s, a, s′) + γV (s′)] =
[
R(s, a, s′) + γθ⊤φ(s′)

]

Page 2

� Iterate:

� Can we find the fixed point directly?

� Rewrite the least squares problem in matrix notation:

� Solution:

TD(0) with linear function
approximation guarantees

θ(new) = argmin
θ

∑

(s,a,s′)

(R(s, a, s′) + γθ(old)
⊤

φ(s′)− θ⊤φ(s))2

θ(new) = argmin
θ
‖R + γΦ′θ(old) − Φθ‖22

θ(new) = (Φ⊤Φ)−1Φ⊤(R + γΦ′θ(old))

� Solution:

� Fixed point?

TD(0) with linear function
approximation guarantees

θ(new) = (Φ⊤Φ)−1Φ⊤(R + γΦ′θ(old))

θ = (Φ⊤Φ)−1Φ⊤(R+ γΦ′θ)

(Φ⊤Φ)θ = Φ⊤(R + γΦ′θ)
(
Φ⊤Φ− γΦ⊤Φ′

)
θ = Φ⊤R

θ =
(
Φ⊤Φ− γΦ⊤Φ′

)−1
Φ⊤R

Page 3

� Collect state-action-state triples (si,ai,s’i) according to a policy π

� Build the matrices:

� Find an approximation of the value function

LSTD(0)

Φ =

φ(s1)
⊤

φ(s2)
⊤

. . .

φ(sm)
⊤

 ,Φ

′ =

φ(s′1)
⊤

φ(s′2)
⊤

. . .

φ(s′m)
⊤

 , R =

R(s1, a1, s
′

1)
R(s2, a2, s

′

2)
. . .

R(sm, am, s
′

m)

V π(s) ≈ θ⊤φ(s)

for θ =
(
Φ⊤Φ− γΦ⊤Φ′

)−1
Φ⊤R

� Iterate

� Collect state-action-state triples (si,ai,s’i) according to current
policy π

� Use LSTD(0) to compute Vπ

� Tweaks:

� Can re-use triples (si,ai,s’i) from previous policies as long as they

are consistent with the current policy

� Can redo the derivation with Q functions rather than V

� In case of stochastic policies, can weight contribution of a triple

according to Prob(ai|si) under the current policy

� Doing all three results in “Least squares policy iteration,”

(Lagoudakis and Parr, 2003).

LSTD(0) in policy iteration

Page 4

� Collect state-action-state triples (si,ai,s’i) according to a policy π

� Build the matrices:

� Find an approximation of the value function

� One more datapoint � “m+1” :

Sherman-Morrison formula:

LSTD(0) --- batch vs. incremental updates

Φm =

φ(s1)
⊤

φ(s2)
⊤

. . .

φ(sm)
⊤

 ,Φ

′

m =

φ(s′1)
⊤

φ(s′2)
⊤

. . .

φ(s′m)
⊤

 , Rm =

R(s1, a1, s
′

1)
R(s2, a2, s

′

2)
. . .

R(sm, am, s
′
m)

V π(s) ≈ θ⊤mφ(s)

for θm =
(
Φ⊤m(Φm − γΦ

′

m)
)−1

Φ⊤mRm

θm+1 =
(
Φ⊤m(Φm − γΦ

′

m) + φm+1(φm − γφ
′

m)
⊤
)−1 (

Φ⊤mRm + φm+1rm+1
)

� Recursively compute approximation of the value function by

leveraging the Sherman-Morrison formula

�

� One more datapoint � “m+1” :

� Note: there exist orthogonal matrix techniques to do the same thing

but in a numerically more stable fashion (essentially: keep track of

the QR decomposition of Am)

RLSTD

A−1m =
(
Φ⊤m(Φm − γΦ

′

m)
)−1

bm = ΦmRm

θm = A−1m bm

A−1m+1 = A−1m −
A−1m φm+1(φm+1 − γφ

′
m+1)

⊤A−1m

1 + (φm+1 − γφ′m+1)
⊤A−1m φm+1

bm+1 = bm + φm+1rm+1

Page 5

� RLSTD with linear function approximation with a Gaussian prior on \theta

� Kalman filter

� Can be applied to non-linear setting too: simply linearize the non-linear function
approximator around the current estimate of \theta; not globally optimal, but likely
still better than “naïve” gradient descent

(+prior � Extended Kalman filter)

RLSTD: for non-linear function approximators?

Recursive Least Squares (1)

[From: Boyd, ee263]

Page 6

Recursive Least Squares (2)

[From: Boyd, ee263]

Recursive Least Squares (3)

[From: Boyd, ee263]

Page 7

� Model-free RL: learn V, Q directly from experience:

� TD(λ), sarsa(λ): on policy updates

� Q: off policy updates

� Large MDPs: include function Approximation

� Some guarantees for linear function approximation

� Batch version

� No need to tweak various constants

� Same solution can be obtained incrementally by using recursive

updates! This is generally true for least squares type systems.

TD methods recap

� Backgammon

� Standard RL testbeds (all in simulation)

� Cartpole balancing

� Acrobot swing-up

� Gridworld --- Assignment #2

� Bicycle riding

� Tetris --- Assignment #2

� As part of actor-critic methods (=policy gradient + TD)

� Fine-tuning / Learning some robotics tasks

� Many financial institutions use some linear TD for

pricing of options

Applications of TD methods

Page 8

� Small MDPs: VI, PI, GPI, LP

� Large MDPs:

� Value iteration + function approximation

� Iterate: Bellman back-up, project, …

� TD methods:

� TD, sarsa, Q with function approximation

� Simplicity, limited storage can be a convenience

� LSTD, LSPI, RLSTD

� Built upon in and compared to in many current RL papers

� Main current direction: feature selection

� You should be able to read/understand many RL papers

� Which important ideas are we missing (and will I try to cover

between today and the next 3-5 lectures) ?

RL: our learning status

� Imitation learning

� Learn from observing an expert

� Linear programming w/function approximation and constraint sampling

� Guarantees, Generally applicable idea of constraint sampling

� Policy gradient, Actor-Critic (=TD+policy gradient in one)

� Fine tuning policies through running trials on a real system, Robotic success stories

� Partial observability

� POMDPS

� Hierarchical methods

� Incorporate your knowledge to enable scaling to larger systems

� Reward shaping

� Can we choose reward functions such as to enable faster learning?

� Exploration vs. exploitation

� How/When should we explore?

� Stochastic approximation

� Basic intuition behind how/when sampled versions work?

Page 9

Imitation learning

� If expert available, could use expert trace s1, a1, s2, a2,

s3, a3, … to learn “something” from the expert

� Behavioral cloning: use supervised learning to

directly learn a policy S�A.
� No model of the system dynamics required

� No MDP / optimal control solution algorithm required

� Inverse reinforcement learning:
� Learn the reward function

� Often most compact and transferrable task description

� Trajectory primitives:
� Use expert trajectories as motion primitives / components for

motion planning

� Use expert trajectories as starting points for trajectory optimization

Imitation learning: what to learn?

Page 10

� If expert available, could use expert trace s1, a1, s2, a2, s3, a3, … to
learn the expert policy π : S � A

� Class of policies to learn:

� Neural net, decision tree, linear regression, logistic regression,

svm, deep belief net, …

� Advantages:

� No model of the system dynamics required

� No MDP / optimal control solution algorithm required

� Minuses:

� Only works if we can come up with a good policy class
� Typically more applicable to “reactive” tasks, less so to tasks that involve

planning

� No leveraging of dynamics model if available.

Behavioral cloning

� Task: steer a vehicle

� Input: 30x32 image.

Alvinn

CMU Navlab Autonomous
Navigation Testbed

Page 11

Alvinn

� Training data from good driver does not well represent

situations from which it should be able to recover

� Might over-train on the “simple” data

� Solution? Intentionally swerve off-center?

� Issues:

� Inconvenience to switch on/off the learning

� Might require a lot of swerving (which could be especially

undesirable in traffic)

Richness of training data?

Page 12

Transformed images

Transformed images

original extrap1 extrap2

Page 13

� Steering direction for transformed images:

� “pure pursuit model” : constant steering arc will bring

it back in the center at distance T

� Image buffering:

� Keeps 200 images in buffer

� One backpropagation pass over all images in each

round of training

� Replacement to favor neutral steering

� Road types:

Few other details

� Achieved 98.2% autonomous driving on a 5000 km (3000-mile) "No hands

across America" trip.

� Throttle and brakes were human-controlled.

� Note: other autonomous driving projects:

� Ernst Dickmanns

� Darpa Grand and Urban Challenge

Results

Page 14

� Task (in Silicon Graphics Flight Sim)

� (crudely) Take off, fly through some waypoints, land

� Training data: 30 flights (/pilot)

� Recorded features: on_ground, g_limit exceeded, wing_stall, twist , elevation,

azimuth, roll_speed, elevation_speed, azimuth_speed, airspeed, climbspeed, E/W

distance from centre of runway, altitude, N/S distance from northern end of runway,
fuel, rollers, elevator, rudder, thrust, flaps

� Data from each flight segmented into seven stages

� In each stage: Four separate decision trees (C4.5), one for each of the

elevator, rollers, thrust and flaps.

� Succeeded in synthesizing control rules for a complete flight, including a

safe landing. The rules fly the Cessna in a manner very similar to that of

the pilot whose data were used to construct the rules.

� Pilots who are frugal in their use of the controls give few examples of what

to do when things go wrong.

Sammut+al, Learning to fly (ICML1992)

� 1. Take off and fly to an altitude of 2,000 feet.

� 2. Level out and fly to a distance of 32,000 feet from the starting point.

� 3. Turn right to a compass heading of approximately 330°. The subjects were

actually told to head toward a particular point in the scenery that corresponds to

that heading.

� 4. At a North/South distance of 42,000 feet, turn left to head back towards the

runway. The scenery contains grid marks on the ground. The starting point for

the turn is when the last grid line was reached. This corresponds to about 42,000

feet. The turn is considered complete when the azimuth is between 140°and

180°.

� 5. Line up on the runway. The aircraft was considered to be lined up when the

aircraft's azimuth is less than 5°off the heading of the runway and the twist is

less that ±10°from horizontal.

� 6. Descend to the runway, keeping in line. The subjects were given the hint that

they should have an ‘aiming point’ near the beginning of the runway.

� 7. Land on the runway.

7 stages

Page 15

� Example decision tree:

� Stage 3: Turn right to a compass heading of

approximately 330°

� twist <= -23 : left_roll_3

� twist > -23 :

� | azimuth <= -25 : no_roll

� | azimuth > -25 : right_roll_2

Sammut + al

Sammut+al

Page 16

� state: board configuration + shape of the falling piece ~2200

states!

� action: rotation and translation applied to the falling piece

� 22 features aka basis functions φi

� Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each

of the ten columns.

� Nine basis functions, 10, . . . , 18, each mapping the state to the absolute

difference between heights of successive columns: |h[k+1] − h[k]|, k = 1, .

. . , 9.

� One basis function, 19, that maps state to the maximum column height:

maxk h[k]

� One basis function, 20, that maps state to the number of ’holes’ in the
board.

� One basis function, 21, that is equal to 1 in every state.

Tetris

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V (s) =
∑22

i=1 θiφi(s)

Behavioral cloning in tetris

Page 17

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 16: imitation learning

Pieter Abbeel

UC Berkeley EECS

Page 2

� state: board configuration + shape of the falling piece ~2200

states!

� action: rotation and translation applied to the falling piece

Behavioral cloning example

� 22 features aka basis functions φi

� Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each
of the ten columns.

� Nine basis functions, 10, . . . , 18, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] − h[k]|, k = 1, .
. . , 9.

� One basis function, 19, that maps state to the maximum column height:
maxk h[k]

� One basis function, 20, that maps state to the number of ’holes’ in the
board.

� One basis function, 21, that is equal to 1 in every state.

Behavioral cloning example

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V (s) =
∑22

i=1 θiφi(s)

Page 3

Behavioral cloning example

Behavioral cloning example

Page 4

Training data: Example choices of next states chosen by the demonstrator:

s
(i)
+

Alternative choices of next states that were available: s
(i)
j−

Max-margin formulation

minθ,ξ≥0 θ⊤θ + C
∑

i,j

ξi,j

subject to ∀i,∀j : θ⊤φ(s
(i)
+) ≥ θ⊤φ(s

(i)
j−) + 1− ξi,j

Probabilistic/Logistic formulation

Assumes experts choose for result s(i) with probability
exp(θ⊤φ(s

(i)

+
))

exp(θ⊤φ(s
(i)
+
)+
∑

j−
exp(θ⊤φ(s

(i)
j−
)
.

Hence the maximum likelihood estimate is given by:

max
θ

∑

i

log

(
exp(θ⊤φ(s

(i)
+))

exp(θ⊤φ(s
(i)
+)) +

∑
j− exp(θ

⊤φ(s
(i)
j−)

)

− C‖θ‖

Behavioral cloning example

� Scientific inquiry

� Model animal and human behavior

� E.g., bee foraging, songbird vocalization. [See intro of Ng

and Russell, 2000 for a brief overview.]

� Apprenticeship learning/Imitation learning through

inverse RL

� Presupposition: reward function provides the most succinct and

transferable definition of the task

� Has enabled advancing the state of the art in various robotic

domains

� Modeling of other agents, both adversarial and

cooperative

Motivation for inverse RL

Page 5

� Input:

� State space, action space

� Transition model Psa(st+1 | st, at)

� No reward function

� Teacher’s demonstration: s0, a0, s1, a1, s2, a2, …

(= trace of the teacher’s policy π*)

� Inverse RL:

� Can we recover R ?

� Apprenticeship learning via inverse RL

� Can we then use this R to find a good policy ?

� Vs. Behavioral cloning (which directly learns the teacher’s policy using supervised

learning)

� Inverse RL: leverages compactness of the reward function

� Behavioral cloning: leverages compactness of the policy class considered, does not
require a dynamics model

Problem setup

� Inverse RL intro

� Mathematical formulations for inverse RL

� Case studies

Lecture outline

Page 6

Three broad categories of formalizations

� Max margin

� Feature expectation matching

� Interpret reward function as parameterization of a policy class

� Find a reward function R* which explains the expert behaviour.

� Find R* such that

� Equivalently, find R* such that

� A convex feasibility problem in R*, but many challenges:

� R=0 is a solution, more generally: reward function ambiguity

� We typically only observe expert traces rather than the entire expert policy
π* --- how to compute LHS?

� Assumes the expert is indeed optimal --- otherwise infeasible

� Computationally: assumes we can enumerate all policies

Basic principle

E[

∞∑

t=0

γtR∗(st)|π
∗] ≥ E[

∞∑

t=0

γtR∗(st)|π] ∀π

∑

s∈S

R(s)

(
∞∑

t=0

γt1{st = s|π∗}

)

≥
∑

s∈S

R(s)

(
∞∑

t=0

γt1{st = s|π∗}

)

∀π

Page 7

� ff

Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

E[

∞∑

t=0

γtR(st)|π] =

x

� ff

� Subbing into

gives us:

Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

E[

∞∑

t=0

γtR(st)|π] = E[

∞∑

t=0

γtw⊤φ(st)|π]

= w⊤E[

∞∑

t=0

γtφ(st)|π]

= w⊤µ(π)

Expected cumulative discounted sum of
feature values or “feature expectations”

E[
∑∞

t=0 γtR∗(st)|π
∗] ≥ E[

∑∞

t=0 γtR∗(st)|π] ∀π

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

Page 8

� Feature expectations can be readily estimated from sample trajectories.

� The number of expert demonstrations required scales with the number

of features in the reward function.

� The number of expert demonstration required does not depend on

� Complexity of the expert’s optimal policy π*

� Size of the state space

Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

E[
∑∞

t=0 γtR∗(st)|π
∗] ≥ E[

∑∞

t=0 γtR∗(st)|π] ∀π

� Challenges:

� Assumes we know the entire expert policy π* � assumes we can

estimate expert feature expectations

� R=0 is a solution (now: w=0), more generally: reward function

ambiguity

� Assumes the expert is indeed optimal---became even more of an

issue with the more limited reward function expressiveness!

� Computationally: assumes we can enumerate all policies

Recap of challenges

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

Page 9

� We currently have:

� Standard max margin:

� “Structured prediction” max margin:

Ambiguity
x

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

� Standard max margin:

� “Structured prediction” max margin:

� Justification: margin should be larger for policies that are
very different from π*.

� Example: m(π, π*) = number of states in which π* was
observed and in which π and π* disagree

Ambiguity

min
w
‖w‖22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + 1 ∀π

min
w
‖w‖22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) +m(π∗, π) ∀π

Page 10

� Structured prediction max margin:

Expert suboptimality
x

min
w
‖w‖22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) +m(π∗, π) ∀π

� Structured prediction max margin with slack variables:

� Can be generalized to multiple MDPs (could also be same
MDP with different initial state)

Expert suboptimality

min
w,ξ

‖w‖22 + Cξ

s.t. w⊤µ(π∗) ≥ w⊤µ(π) +m(π∗, π)− ξ ∀π

min
w,ξ(i)

‖w‖22 + C
∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) +m(π(i)∗, π(i))− ξ(i) ∀i, π(i)

Page 11

� Resolved: access to π*, ambiguity, expert suboptimality

� One challenge remains: very large number of

constraints

� Ratliff+al use subgradient methods.

� In this lecture: constraint generation

Complete max-margin formulation

[Ratliff, Zinkevich and Bagnell, 2006]

min
w
‖w‖22 + C

∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) +m(π(i)∗, π(i))− ξ(i) ∀i, π(i)

Initialize Π(i) = {} for all i and then iterate

� Solve

� For current value of w, find the most violated constraint

for all i by solving:

= find the optimal policy for the current estimate of the
reward function (+ loss augmentation m)

� For all i add π(i) to Π(i)

� If no constraint violations were found, we are done.

Constraint generation

max
π(i)

w⊤µ(π(i)) +m(π(i)∗, π(i))

min
w
‖w‖22 + C

∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) +m(π(i)∗, π(i))− ξ(i) ∀i, ∀π(i) ∈ Π(i)

Page 12

� Every policy π has a corresponding feature expectation vector µ(π),

which for visualization purposes we assume to be 2D

Visualization in feature expectation space

µ1

µ2

µ(π*)

E[

∞∑

t=0

γtR(st)|π] = w⊤µ(π)

max margin

structured max margin (?)

wmm

wsmm

� Every policy π has a corresponding feature expectation vector µ(π),

which for visualization purposes we assume to be 2D

Constraint generation

µ1

µ(π0)

µ(π2)

µ2

µ(π*)

µ(π1)

max
π
E[

∞∑

t=0

γtRw(st)|π] = max
π

w⊤µ(π)

w(2)

w(3) = wmm

constraint generation:

Page 13

Three broad categories of formalizations

� Max margin (Ratliff+al, 2006)

� Feature boosting [Ratliff+al, 2007]

� Hierarchical formulation [Kolter+al, 2008]

� Feature expectation matching (Abbeel+Ng, 2004)

� Two player game formulation of feature matching
(Syed+Schapire, 2008)

� Max entropy formulation of feature matching (Ziebart+al,2008)

� Interpret reward function as parameterization of a policy class.
(Neu+Szepesvari, 2007; Ramachandran+Amir, 2007)

� Inverse RL starting point: find a reward function such

that the expert outperforms other policies

� Observation in Abbeel and Ng, 2004: for a policy π to be

guaranteed to perform as well as the expert policy π*, it

suffices that the feature expectations match:

� How to find such a policy π ?

Feature expectation matching

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

‖µ(π)− µ(π∗)‖ small implies ‖w∗⊤µ(π∗)− w∗⊤µ(π)‖ small

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

Page 14

� If expert suboptimal:

� Abbeel and Ng, 2004: resulting policy is a mixture of policies

which have expert in their convex hull---In practice: pick the best

one of this set and pick the corresponding reward function.

� Syed and Schapire, 2008 recast the same problem in game

theoretic form which, at cost of adding in some prior knowledge,

results in having a unique solution for policy and reward

function.

� Ziebart+al, 2008 assume the expert stochastically chooses

between paths where each path’s log probability is given by its

expected sum of rewards.

Feature expectation matching

� Inverse RL intro

� Mathematical formulations for inverse RL

� Max-margin

� Feature matching

� Reward function parameterizing the policy class

� Case studies

Lecture outline

Page 15

� Recall:

� Let’s assume our expert acts according to:

� Then for any R and α, we can evaluate the likelihood of

seeing a set of state-action pairs as follows:

� Note: non-convex formulation --- due to non-linear equality constraint for V!

� Ramachandran and Amir, AAAI2007: MCMC method to sample from this distribution

� Neu and Szepesvari, UAI2007: gradient method to find local optimum of the likelihood

Reward function parameterizing the
policy class

V ∗(s;R) = R(s) + γmax
a

∑

s′

P (s′|s, a)V ∗(s;R)

Q∗(s, a;R) = R(s) + γ
∑

s′

P (s′|s, a)V ∗(s;R)

π(a|s;R, α) =
1

Z(s;R, α)
exp(αQ∗(s, a;R))

P ((s1, a1)) . . . P ((sm, am)) =
1

Z(s1;R, α)
exp(αQ∗(s1, a1;R)) . . .

1

Z(sm;R, α)
exp(αQ∗(sm, am;R))

� Inverse RL intro

� Mathematical formulations for inverse RL

� Case studies:

� Highway driving,

� Parking lot navigation,

� Route inference,

� Quadruped locomotion

Lecture outline

Page 16

Simulated highway driving

Abbeel and Ng, ICML 2004; Syed and Schapire, NIPS 2007

Highway driving

Teacher in Training World Learned Policy in Testing World

� Input:

� Dynamics model / Simulator Psa(st+1 | st, at)

� Teacher’s demonstration: 1 minute in “training world”

� Note: R* is unknown.

� Reward features: 5 features corresponding to lanes/shoulders; 10 features

corresponding to presence of other car in current lane at different distances

[Abbeel and Ng 2004]

Page 17

More driving examples

In each video, the left sub-panel shows a
demonstration of a different driving
“style”, and the right sub-panel shows
the behavior learned from watching the
demonstration.

Driving
demonstration

Driving
demonstration

Learned
behavior

Learned
behavior

[Abbeel and Ng 2004]

Parking lot navigation

[Abbeel et al., IROS 08]

� Reward function trades off:

� Staying “on-road,”

� Forward vs. reverse driving,

� Amount of switching between forward and reverse,

� Lane keeping,

� On-road vs. off-road,

� Curvature of paths.

Page 18

� Demonstrate parking lot navigation on “train parking lots.”

� Run our apprenticeship learning algorithm to find the reward

function.

� Receive “test parking lot” map + starting point and

destination.

� Find the trajectory that maximizes the learned reward

function for navigating the test parking lot.

Experimental setup

Nice driving style

Page 19

Sloppy driving-style

Only 35% of routes are
“fastest” (Letchner, Krumm, &

Horvitz 2006)

Page 20

Time Money

Stress Skill

Ziebart+al, 2007/8/9

Time

Fuel

Safety

Stress

Skill

Mood

Distance

Speed

Type

Lanes

Turns

Context

Ziebart+al, 2007/8/9

Page 21

Data Collection

Length
Speed
Road
Type
Lanes

Accidents
Construction
Congestion
Time of day

25 Taxi Drivers

Over 100,000 miles Ziebart+al, 2007/8/9

Destination Prediction

Page 22

� Reward function trades off 25 features.

Quadruped

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]

� Demonstrate path across the “training terrain”

� Run our apprenticeship learning algorithm to find the

reward function

� Receive “testing terrain”---height map.

� Find the optimal policy with respect to the learned

reward function for crossing the testing terrain.

Experimental setup

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]

Page 23

Without learning

With learned reward function

Page 24

� 1964, Kalman posed the inverse optimal control

problem and solved it in the 1D input case

� 1994, Boyd+al.: a linear matrix inequality (LMI)

characterization for the general linear quadratic setting

� 2000, Ng and Russell: first MDP formulation, reward

function ambiguity pointed out and a few solutions

suggested

� 2004, Abbeel and Ng: inverse RL for apprenticeship

learning---reward feature matching

� 2006, Ratliff+al: max margin formulation

Inverse RL history

Page 25

� 2007, Ratliff+al: max margin with boosting---enables large

vocabulary of reward features

� 2007, Ramachandran and Amir, and Neu and Szepesvari: reward

function as characterization of policy class

� 2008, Kolter, Abbeel and Ng: hierarchical max-margin

� 2008, Syed and Schapire: feature matching + game theoretic

formulation

� 2008, Ziebart+al: feature matching + max entropy

� 2008, Abbeel+al: feature matching -- application to learning parking

lot navigation style

� Active inverse RL? Inverse RL w.r.t. minmax control, partial

observability, learning stage (rather than observing optimal policy),

… ?

Inverse RL history

Page 1

Consider the following scenario:

There are two envelopes, each of which has

an unknown amount of money in it. You get

to choose one of the envelopes. Given this is

all you get to know, how should you choose?

Consider the changed scenario:

Same as above, but before you get to

choose, you can ask me to disclose the

amount in one of the envelopes. Without any

distributional assumptions on the amounts of

money, is there a strategy that could improve

your expected pay-off over simply picking an

envelope at random?

CS 287: Advanced Robotics

Fall 2009

Lecture 17: Policy search

Pieter Abbeel

UC Berkeley EECS

Page 2

� Input:

� State space, action space

� Transition model Psa(st+1 | st, at)

� No reward function

� Teacher’s demonstration: s0, a0, s1, a1, s2, a2, …

(= trace of the teacher’s policy π*)

� Inverse RL:

� Can we recover R ?

� Apprenticeship learning via inverse RL

� Can we then use this R to find a good policy ?

� Vs. Behavioral cloning (which directly learns the teacher’s policy using supervised

learning)

� Inverse RL: leverages compactness of the reward function

� Behavioral cloning: leverages compactness of the policy class considered, does not
require a dynamics model

Problem setup

Parking lot navigation

[Abbeel et al., IROS 08]

� Reward function trades off:

� Staying “on-road,”

� Forward vs. reverse driving,

� Amount of switching between forward and reverse,

� Lane keeping,

� On-road vs. off-road,

� Curvature of paths.

Page 3

� Demonstrate parking lot navigation on “train parking lots.”

� Run our apprenticeship learning algorithm to find the reward

function.

� Receive “test parking lot” map + starting point and

destination.

� Find the trajectory that maximizes the learned reward

function for navigating the test parking lot.

Experimental setup

Nice driving style

Page 4

Sloppy driving-style

� Reward function trades off 25 features.

Quadruped

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]

Page 5

� Demonstrate path across the “training terrain”

� Run our apprenticeship learning algorithm to find the

reward function

� Receive “testing terrain”---height map.

� Find the optimal policy with respect to the learned

reward function for crossing the testing terrain.

Experimental setup

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]

Without learning

Page 6

With learned reward function

� Assignment 1 was due yesterday at 23:59pm

� For late day policy details, see class webpage.

� Reminder: Project milestone (1 page progress report) due Friday November 6.

� Grading:

� 3 assignments: 25%, 25%, 5%

� Final project: 45%

� Final project presentations:

� Dec 1 & Dec 3

� November 24: Zico Kolter guest lecture

Announcements

As part of the course
requirements, I expect you
to attend these 3 lectures

Page 7

� Inverse RL case studies wrap-up

� Policy search

� Assume some policy class parameterized by a vector
θ, search for the optimal setting of θ

� Perhaps the largest number of success stories of RL

Lecture outline

x, y, z: x points forward along the helicopter, y sideways to the right, z

downward.
nx, ny, nz: rotation vector that brings helicopter back to“level” position (ex-

pressed in the helicopter frame).

ucollective = θ1 · f1(z
∗ − z) + θ2 · ż

uelevator = θ3 · f2(x
∗ − x) + θ4f4(ẋ) + θ5 · q + θ6 · ny

uaileron = θ7 · f3(y
∗ − y) + θ8f5(ẏ) + θ9 · p+ θ10 · nx

urudder = θ11 · r + θ12 · nz

Policy class for helicopter hover

Page 8

Ng + al, ISER 2004[Policy search was done in simulation]

� 12 parameters define the Aibo’s gait:

� The front locus (3 parameters: height,

x-pos., y-pos.)

� The rear locus (3 parameters)

� Locus length

� Locus skew multiplier in the x-y plane

(for turning)

� The height of the front of the body

� The height of the rear of the body

� The time each foot takes to move

through its locus

� The fraction of time each foot spends

on the ground

Policy class for quadruped
locomotion on flat terrain

Kohl and Stone, ICRA2004

Page 9

Kohl and Stone, ICRA 2004

Before learning (hand-tuned) After learning

[Policy search was done through trials on the actual robot.]

Let S = s1, s2, . . . , sn be the set of board situations available depending on
the choice of placement of the current block. Then the probability of choosing
the action that leads to board situation si is taken is given by:

exp
(
θ⊤φ(si)

)
∑n

j=1 exp (θ
⊤φ(sj))

Policy class for tetris

Page 10

max
θ

U(θ) = max
θ
E

[
H∑

t=0

R(st, at, st+1)|πθ

]

Deterministic, known dynamics

∂U

∂θi
=

H∑

t=0

∂R

∂s
(st, ut, st+1)

∂st

∂θi
+

∂R

∂u
(st, ut, st+1)

∂ut

∂θi
+

∂R

∂s′
(st, ut, st+1)

∂st+1

∂θi

∂ut

∂θi
=

∂πθ

∂θi
(st, θ) +

∂πθ

∂s
(st, θ)

∂st

∂θi

∂st

∂θi
=

∂f

∂s
(st−1, ut−1)

∂st−1

∂θi
+

∂f

∂s
(st−1, ut−1)

∂ut−1

∂θi

Numerical optimization: find the gradient w.r.t. θ and take a step in the

gradient direction.

Computing these recursively, starting at time 0 is a discrete time instantiation
of Real Time Recurrent Learning (RTRL)

Stochastic, known dynamics

max
θ

U(θ) = max
θ
E

[
H∑

t=0

R(st, at, st+1)|πθ

]

= max
θ

H∑

t=0

∑

s,u

Pt(st = s, ut = u; θ)R(s, u)

∂U

∂θi
=

H∑

t=0

∑

s,u

∂Pt

∂θi
(st = s, ut = u; θ)R(s, u)

Numerical optimization: find the gradient w.r.t. θ and take a step in the

gradient direction.

∂Pt
∂θi
(st = s, ut = u; θ) =

∑
s−,u−

∂Pt−1

∂θi
(st−1 = s−, ut−1 = u−; θ)T (s−, u−, s)π(u|s; θ)

+Pt−1(st−1 = s−, ut−1 = u−; θ)T (s−, u−, s)
∂π

∂θi
(u|s; θ)

Pt(st = s, ut = u; θ) =
∑

s−,u−

Pt−1(st−1 = s−, ut−1 = u−)T (s−, u−, s)π(u|s; θ)

Using the chain rule we obtain the following recursive procedure:

Computationally impractical for most large state/action spaces!

Page 11

Deterministic Stochastic

Known
Dynamics

Unknown
Dynamics

Known
Dynamics

Unknown
Dynamics

Analytical OK
Taking
derivatives---
potentially time
consuming and
error-prone

N/A OK
Often
computationally
impractical

N/A

Policy gradient

We can compute the gradient g using standard finite difference methods, as
follows:

∂U

∂θj
(θ) =

U(θ + ǫej)− U(θ − ǫej)

2ǫ

Where:

ej =

0
0
...
0
1
0
...
0

Finite differences

j’th entry

Page 12

Locally around our current estimate θ, we can approximate the utility U(θ(i))
at an alternative point θ(i) with a linear approximation:

U(θ) ≈ U(θ) + gT (θ(i) − θ)

Let’s say we have a set of small perturbations θ(0), θ(1), . . . , θ(m) for which we
are willing to evaluate the utility U(θ(i)). We can get an estimate of the gradient
through solving the following set of equations for the gradient g through least
squares:

U(θ(0)) = U(θ) + (θ(0) − θ)⊤g

U(θ(1)) = U(θ) + (θ(1) − θ)⊤g

. . .

U(θ(m)) = U(θ) + (θ(m) − θ)⊤g

Finite differences --- generic points

� Noise could dominate the gradient evaluation

Issue in stochastic setting

Page 13

� Intuition by example: wind influence on a helicopter is

stochastic, but if we assume the same wind pattern
across trials, this will make the different choices of θ

more readily comparable.

� General instantiation:

� Fix the random seed

� Result: deterministic system

� **If** the stochasticity can be captured in an appropriate

way, this will result in a significantly more efficient

gradient computation

� Details of “appropriate”: Ng & Jordan, 2000

“Fixing” the randomness

Deterministic Stochastic

Known
Dynamics

Unknown
Dynamics

Known
Dynamics

Unknown
Dynamics

Analytical OK
Taking
derivatives---
potentially time
consuming and
error-prone

N/A OK
Often
computationally
impractical

N/A

Finite
differences

OK
Sometimes
computationally
more expensive
than analytical

OK OK
N = #roll-outs:
Naive: O(N-1/4),
or O(N-2/5)
Fix random
seed: O(N-1/2)
[1]

Same as known
dynamics, but
no fixing of
random seed.

Policy gradient

[1] P. Glynn, “Likelihood ratio gradient estimation: an overview,” in Proceedings of the 1987
Winter Simulation Conference, Atlanta, GA, 1987, pp. 366–375.

Page 14

� Assumption:

� Stochastic policy πθ(ut | st)

� Stochasticity:

� Required for the methodology

� + Helpful to ensure exploration

� - Optimal policy is often not stochastic (though it can be!!)

Likelihood ratio method

Likelihood ratio method

Page 15

Likelihood ratio method

Likelihood ratio method

Page 16

Likelihood ratio method

We let τ denote a state-action sequence s0, u0, . . . , sH , uH . We overload
notation: R(τ) =

∑H

t=0 R(st, ut).

U(θ) = E[
H∑

t=0

R(st, ut);πθ] =
∑

τ

P (τ ; θ)R(τ)

In our new notation, our goal is to find θ:

max
θ

U(θ) = max
θ

∑

τ

P (τ ; θ)R(τ)

Likelihood ratio method

Page 17

U(θ) =
∑

τ

P (τ ; θ)R(τ)

Taking the gradient w.r.t. θ gives

∇θU (θ) = ∇θ
∑

τ

P (τ ; θ)R(τ)

=
∑

τ

∇θP (τ ; θ)R(τ)

=
∑

τ

P (τ ; θ)

P (τ ; θ)
∇θP (τ ; θ)R(τ)

=
∑

τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
R(τ)

=
∑

τ

P (τ ; θ)∇θ logP (τ ; θ)R(τ)

Approximate with the empirical estimate for m sample paths under policy
πθ:

∇θU (θ) ≈ ĝ =
1

m

m∑

i=1

∇θ logP (τ (i); θ)R(τ (i))

Likelihood ratio method

∇θ logP (τ (i); θ) = ∇θ log

H∏

t=0

P (s
(i)
t+1|s

(i)
t , u

(i)
t)︸ ︷︷ ︸

dynamics model

·πθ(u
(i)
t |s

(i)
t)︸ ︷︷ ︸

policy

= ∇θ

[
H∑

t=0

logP (s
(i)
t+1|s

(i)
t , u

(i)
t) +

H∑

t=0

log πθ(u
(i)
t |s

(i)
t)

]

= ∇θ

H∑

t=0

log πθ(u
(i)
t |s

(i)
t)

=
H∑

t=0

∇θ log πθ(u
(i)
t |s

(i)
t)︸ ︷︷ ︸

no dynamics model required!!

Likelihood ratio method

Page 18

Likelihood ratio method

The following expression provides us with an unbiased estimate of the gradient,
and we can compute it without access to a dynamics model:

ĝ =
1

m

m∑

i=1

∇θ logP (τ (i); θ)R(τ (i))

Here:

∇θ logP (τ (i); θ) =

H∑

t=0

∇θ log πθ(u
(i)
t |s

(i)
t)︸ ︷︷ ︸

no dynamics model required!!

Unbiased means:
E[ĝ] = ∇θU(θ)

We can obtain a gradient estimate from a single trial run! While the math we
did is sound (and constitutes the commonly used derivation), this could seem
a bit surprising at first. Let’s perform another derivation which might give us
some more insight.

Page 1

Boston Dynamics PetMan

CS 287: Advanced Robotics

Fall 2009

Lecture 18: Policy search

Pieter Abbeel

UC Berkeley EECS

Page 2

Deterministic Stochastic

Known
Dynamics

Unknown
Dynamics

Known
Dynamics

Unknown
Dynamics

Analytical OK
Taking
derivatives---
potentially time
consuming and
error-prone

N/A OK
Often
computationally
impractical

N/A

Finite
differences

OK
Sometimes
computationally
more expensive
than analytical

OK OK
N = #roll-outs:
Naive: O(N-1/4), or
O(N-2/5)
Fix random seed:
O(N-1/2) [1]

Same as known
dynamics, but no
fixing of random
seed.

Likelihood ratio
method

OK OK OK
O(N-1/2) [1]

OK
O(N-1/2) [1]

Policy gradient

[1] P. Glynn, “Likelihood ratio gradient estimation: an overview,” in Proceedings of the 1987

Winter Simulation Conference, Atlanta, GA, 1987, pp. 366–375.

� Assumption:

� Stochastic policy πθ(ut | st)

� Stochasticity:

� Required for the methodology

� + Helpful to ensure exploration

� - Optimal policy within the policy class is not always

stochastic (though it can be!!)

Likelihood ratio method

Page 3

We let τ denote a state-action sequence s0, u0, . . . , sH , uH . We overload
notation: R(τ) =

∑H
t=0R(st, ut).

U (θ) = E[
H∑

t=0

R(st, ut);πθ] =
∑

τ

P (τ ; θ)R(τ)

Our goal is to find θ:

max
θ
U(θ) = max

θ

∑

τ

P (τ ; θ)R(τ)

Likelihood ratio method

U(θ) =
∑

τ

P (τ ; θ)R(τ)

Taking the gradient w.r.t. θ gives

∇θU (θ) = ∇θ
∑

τ

P (τ ; θ)R(τ)

=
∑

τ

∇θP (τ ; θ)R(τ)

=
∑

τ

P (τ ; θ)

P (τ ; θ)
∇θP (τ ; θ)R(τ)

=
∑

τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
R(τ)

=
∑

τ

P (τ ; θ)∇θ logP (τ ; θ)R(τ)

Approximate with the empirical estimate for m sample paths under policy
πθ:

∇θU (θ) ≈ ĝ =
1

m

m∑

i=1

∇θ logP (τ
(i); θ)R(τ (i))

Likelihood ratio method derivation

∇θ logP (τ
(i); θ) = ∇θ log

H∏

t=0

P (s
(i)
t+1|s

(i)
t , u

(i)
t)

︸ ︷︷ ︸
dynamics model

· πθ(u
(i)
t |s

(i)
t)

︸ ︷︷ ︸
policy

= ∇θ

[
H∑

t=0

logP (s
(i)
t+1|s

(i)
t , u

(i)
t) +

H∑

t=0

log πθ(u
(i)
t |s

(i)
t)

]

= ∇θ

H∑

t=0

log πθ(u
(i)
t |s

(i)
t)

=
H∑

t=0

∇θ log πθ(u
(i)
t |s

(i)
t)

︸ ︷︷ ︸
no dynamics model required!!

Page 4

Likelihood ratio method: result recap

The following expression provides us with an unbiased estimate of the gradient,
and we can compute it without access to a dynamics model:

ĝ =
1

m

m∑

i=1

∇θ logP (τ
(i); θ)R(τ (i))

Here:

∇θ logP (τ
(i); θ) =

H∑

t=0

∇θ log πθ(u
(i)
t |s

(i)
t)

︸ ︷︷ ︸
no dynamics model required!!

Unbiased means:
E[ĝ] = ∇θU(θ)

� As formulated thus far: yes, unbiased estimator, but very

noisy, hence would take very long

� Set of critical fixes that have led to real-world practicality:

� Add a free parameter to the estimator called “baseline” and set it

such that the variance of the estimator is minimized

� Exploit temporal structure + incorporate value function estimates (=

actor-critic learning)

� Don’t step in the direction of the gradient, follow the “natural”

gradient direction instead

Likelihood ratio method in practice

Page 5

Consider the following scenario:

There are two envelopes, each of which has

an unknown amount of money in it. You get

to choose one of the envelopes. Given this is

all you get to know, how should you choose?

Consider the changed scenario:

Same as above, but before you get to

choose, you can ask me to disclose the

amount in one of the envelopes. Without any

distributional assumptions on the amounts of

money, is there a strategy that could improve

your expected pay-off over simply picking an

envelope at random?

Envelopes riddle

Page 6

Envelopes riddle

� MDP:

� horizon of 1, always start in state 0

� Transition to state 1 or 2 according to choice made

� Observe the reward in the visited state

� Policy

� Choose to see an envelope’s contents according to πθ

� Perform a gradient update:

Envelopes riddle

πθ(1|0) =
exp(θ)

1 + exp(θ)

πθ(2|0) =
1

1 + exp(θ)

∇θ logP (τ = 1; θ)R(τ = 1) =
1

1 + exp(θ)
R(1)

∇θ logP (τ = 2; θ)R(τ = 2) = −
exp(θ)

1 + exp(θ)
R(2)

Page 7

� Perform a gradient update:

� This gradient update is simply making the recently observed path more

likely; and how much more likely depends on the observed R for the

observed path

� � rather than let it depend simply on R, if we had a “baseline” b which is

an estimate of the expected reward under the current policy, then could

update scaled by (R-b) instead,

i.e. the baseline enables updating such that better than average paths

become more likely, less than average paths become less likely

Envelopes riddle

∇θ logP (τ = 1; θ)R(τ = 1) =
1

1 + exp(θ)
R(1)

∇θ logP (τ = 2; θ)R(τ = 2) = −
exp(θ)

1 + exp(θ)
R(2)

πθ(1|0) =
exp(θ)

1 + exp(θ)

πθ(2|0) =
1

1 + exp(θ)

� Gradient estimate with baseline:

� This will (crudely speaking) increase the log-likelihood of paths with

higher than baseline reward, and decrease the log-likelihood of

observed paths with lower than baseline reward.

� Is this still an unbiased gradient estimate?

Likelihood ratio method with baseline

ĝ =
1

m

m∑

i=1

∇θ log P (τ
(i); θ)(R(τ (i))− b)

Unbiased means: E[ĝ] = ∇θU(θ)

Page 8

Even with baseline, we obtain an unbiased
estimate of the gradient

∑

τ

P (τ ; θ) = 1

⇒
∂

∂θi

∑

τ

P (τ ; θ) = 0

⇔
∑

τ

∂

∂θj
P (τ ; θ) = 0

⇔
∑

τ

P (τ ; θ)

P (τ ; θ)

∂

∂θj
P (τ ; θ) = 0

⇒
∑

τ

P (τ ; θ)
∂

∂θj
logP (τ ; θ) = 0

⇒Eτ

[
∂

∂θj
logP (τ ; θ)

]
= 0

⇒Eτ

[
∂

∂θj
logP (τ ; θ)bj

]
= 0

∂

∂θj
U (θ) = Eτ

[
∂

∂θj
logP (τ ; θ)R(τ)

]

= Eτ

[
∂

∂θj
logP (τ ; θ)(R(τ)− bj)

]

≈
1

m

m∑

i=1

[
∂

∂θj
logP (τ (i); θ)(R(τ)− b

(i)
j)

]

Natural choices for b:

• Estimate of utility U(θ)

• Choose bj to minimize

the variance of the
gradient estimates.

Our gradient estimate:

ĝj =
∂

∂θj
logP (τ (i); θ) · (R(τ)− bj) ,

It is unbiased, i.e.:

Eĝj =
∂U (θ)

∂θj

Its variance is given by:

E
[
(ĝj − E [ĝj])

2
]

which we would like to minimize over bj :

min
bj

E
[
(ĝj − E [ĝj])

2
]
= Eĝ2j + E

[
(Eĝj)

2
]
− 2E [ĝj − E [ĝj]]

= Eĝ2j + (Eĝj)
2
− 2E [ĝj] E [ĝj]

= Eĝ2j − (Eĝj)
2

︸ ︷︷ ︸
= ∂U(θ)

∂θj
−independent of bj

Page 9

min
bj

Eĝ2j = min
bj

Eτ

[(
∂

∂θj
logP (τ ; θ) · (R(τ)− bj)

)2]

= min
bj

Eτ

[(
∂

∂θj
log(τ ; θ)

)2
·
(
R(τ)2 + b2j − 2bjR(τ)

)
]

= min
bj

Eτ

[(
∂

∂θj
logP (τ ; θ)

)2
·R(τ)2

]

︸ ︷︷ ︸
independent of bj

+E

[(
∂

∂θj
logP (τ ; θ)

)2
· b2j

]

− 2E

[(
∂

∂θi
logP (τ ; θ)2

)
· bjR(τ)

]

= min
bj
b2j · Eτ

[(
∂

∂θj
logP (τ ; θ)

)2]

− 2bjEτ

[(
∂

∂θj
logP (τ ; θ)2

)2
R(τ)

]

∂

∂bj
= 0⇒ 2bjEτ [...]− 2Eτ [...] = 0

⇒ bj =

Eτ

[(
∂
∂θj

logP (τ ; θ)
)2
·R(τ)

]

Eτ

[(
∂
∂θj

logP (τ ; θ)
)2]

� Could estimate optimal baseline from samples.

Exploiting temporal structure

Our gradient estimate:

ĝj =
1

m

m∑

i=1

(
∂

∂θj
logP (τ (i); θ)

)(
R(τ (i))− bj

)
,

=
1

m

m∑

i=1

(
H−1∑

t=0

∂

∂θj
log πθ(u

(i)
t |s

(i)
t)

)(
H−1∑

t=0

R(s
(i)
t , u

(i)
t)− bj

)

Future actions do not depend on past rewards (assuming a fixed policy). This
can be formalized as

E

[
∂

∂θj
log πθ(ut|st)R(sk, uk)

]
= 0 ∀k < t

Removing these terms with zero expected value from our gradient estimate we
obtain:

ĝj =
1

m

m∑

i=1

H−1∑

t=0

∂

∂θj
log πθ(u

(i)
t |s

(i)
t)

(
H−1∑

k=t

R(s
(i)
k , u

(i)
k)− bj

)

Page 10

Actor-Critic

Our gradient estimate:

ĝj =
1

m

m∑

i=1

H−1∑

t=0

∂

∂θj
log πθ(u

(i)
t |s

(i)
t)

(
H−1∑

k=t

R(s
(i)
k , u

(i)
k)− bj

)

The term
∑H−1

k=t R(s
(i)
k , u

(i)
k) is a sample based estimate of Qπθ(s

(i)
t , u

(i)
k). If

we simultaneously run a temporal difference (TD) learning method to estimate
Qπθ , then we could substitute its estimate for Q instead of the sample based
estimate!

Our gradient estimate becomes:

ĝj =
1

m

m∑

i=1

H−1∑

t=0

∂

∂θj
log πθ(u

(i)
t |s

(i)
t)

(
Q̂πθ (s

(i)
t , u

(i)
t)− bj

)

� Is the gradient the correct direction?

Natural gradient

Page 11

� Is the gradient the correct direction?

Natural gradient

Page 1

“MODULARITY, POLYRHYTHMS, AND WHAT ROBOTICS AND CONTROL MAY YET
LEARN FROM THE BRAIN”

Jean-Jacques Slotine, Nonlinear Systems Laboratory, MIT

Thursday, Nov 5th, 4:00 p.m., 3110 Etcheverry Hall

ABSTRACT

Although neurons as computational elements are 7 orders of magnitude slower than their artificial

counterparts, the primate brain grossly outperforms robotic algorithms in all but the most

structured tasks. Parallelism alone is a poor explanation, and much recent functional modelling of

the central nervous system focuses on its modular, heavily feedback-based computational

architecture, the result of accumulation of subsystems throughout evolution. We discuss this

architecture from a global functionality point of view, and show why evolution is likely to favor

certain types of aggregate stability. We then study synchronization as a model of computations at

different scales in the brain, such as pattern matching, restoration, priming, temporal binding of

sensory data, and mirror neuron response. We derive a simple condition for a general dynamical

system to globally converge to a regime where diverse groups of fully synchronized elements

coexist, and show accordingly how patterns can be transiently selected and controlled by a very

small number of inputs or connections. We also quantify how synchronization mechanisms can

protect general nonlinear systems from noise. Applications to some classical questions in

robotics, control, and systems neuroscience are discussed.

The development makes extensive use of nonlinear contraction theory, a comparatively

recent analysis tool whose main features will be briefly reviewed.

CS 287: Advanced Robotics

Fall 2009

Lecture 19:

Actor-Critic/Policy gradient for learning to walk in 20 minutes

Natural gradient

Pieter Abbeel

UC Berkeley EECS

Page 2

� Dynamic gait:

� A bipedal walking gait is considered dynamic if the

ground projection of the center of mass leaves the

convex hull of the ground contact points during some

portion of the walking cycle.

� Why hard?

� Achieving stable dynamic walking on a bipedal robot

is a difficult control problem because bipeds can only

control the trajectory of their center of mass through

the unilateral, intermittent, uncertain force contacts

with the ground.

� �� “fully actuated walking”

Case study: learning bipedal walking

Passive dynamic walkers

Page 3

� The energy lost due to friction and collisions when the

swing leg returns to the ground are balanced by the

gradual conversion of potential energy into kinetic

energy as the walker moves down the slope.

� Can we actuate them to have them walk on flat terrains?

� John E. Wilson. Walking toy. Technical report, United States Patent Office, October 15 1936.

� Tad McGeer. Passive dynamic walking. International Journal of Robotics Research, 9(2):62.82,

April 1990.

Passive dynamic walkers

Learning to walk in 20 minutes --- Tedrake,
Zhang, Seung 2005

Page 4

Learning to walk in 20 minutes --- Tedrake,
Zhang, Seung 2005

passive hip joint [1DOF]

2 x 2 (roll, pitch)

position controlled

servo motors [4 DOF]

44 cm

Natural gait down 0.03 radians ramp:
0.8Hz, 6.5cm steps

Arms: coupled to the
opposite leg to reduce
yaw moment

freely swinging load [1DOF]

9DOFs:
* 6 internal DOFs
* 3 DOFs for the robot’s orientation
(always assumed in contact with
ground at a single point, absolute
(x,y) ignored)

� q: vector of joint angles

� u: control vector (4D)

� d(t): time-varying vector of random disturbances

� Discrete footstep-to-footstep dynamics: consider state at

touchdown of robot’s left leg

� Stochasticity due to

� Sensor noise

� Disturbances d(t)

Dynamics

q̈ = f(q, q̇, u, d(t))

Fπ(x
′, x) = P (x̂n+1 = x

′|x̂n = x; π)

Page 5

� Goal: stabilize the limit cycle trajectory that the passive robot follows when walking

down the ramp, making it invariant to slope.

� Reward function:

� x* is taken from the gait of the walker down a slope of 0.03 radians

� Action space:

� At the beginning of each step cycle (=when a foot touches down) we choose an

action in the discrete time RL formulation

� Our action choice is a feedback control policy to be deployed during the step, in
this particular example it is a column vector w

� Choosing this action means that throughout the following step cycle, the following

continous-time feedback controls will be exerted:

� Goal: find the (constant) action choice w which maximizes expected sum of rewards

Reinforcement learning formulation

R(x(n)) = −
1

2
‖x(n)− x∗‖22

u(t) =
∑

i

wiφi(x̂(t)) = w
⊤φ(x̂(t))

� To apply the likelihood gradient ratio method, we need to

define a stochastic policy class. A natural choice is to
choose our action vector w to be sampled from a Gaussian:

Which gives us:

[Note: it does not depend on x, this is the case b/c the

actions we consider are feedback policies themselves!]

� The policy optimization becomes optimizing the mean of

this Gaussian. [In other papers people have also included

the optimization of the variance parameter.]

Policy class

w ∼ N (θ, σ2I)

πθ(w|x) =
1

(2π)dσd
exp

(
−1

2σ2
(w − θ)⊤(w − θ)

)

Page 6

Policy update

Likelihood ratio based gradient estimate from a single trace of H footsteps:

ĝ =

H−1∑

n=0

∇θ log πθ(w(n)|x̂(n))

(
H−1∑

k=n

R(x̂(k))− b

)

Rather than waiting till horizon H is reached, we can perform the updates
online as follows: (here ηθ is a step-size parameter, b(n) is the amount of baseline
we allocate to time n–see next slide)

e(n) = e(n− 1) +
1

2σ2
(w(n)− θ(n))

θ(n+ 1) = θ(n) + ηθe(n)(R(x̂(n))− b(n))

We have:

∇θ log πθ(w|x̂) =
1

2σ2
(w − θ)

To reduce variance, can discount the eligibilities:

e(n) = γe(n− 1) +
1

2σ2
(w(n)− θ(n))

Choosing the baseline b(n)

A good choice for the baseline is such that it corresponds to an estimate of
the expected reward we should have obtained under the current policy.

Assuming we have estimates of the value function V̂ under the current policy,
we can estimate such a baseline as follows:

b(n) = V̂ (x̂(n))− γV̂ (x̂(n+ 1))

To estimate V̂ we can use TD(0) with function approximation. Using linear
value function approximation, we have:

V̂ (x̂) =
∑

i

viψi(x̂).

This gives us the following update equations to learn V̂ with TD(0):

δ(n) = R(x̂(n)) + γV̂ (x̂(n+ 1))− V̂ (x̂(n))

v(n+ 1) = v(n) + ηvδ(n)ψ(x̂(n))

Page 7

The complete actor critic learning algorithm

Before each foot step, sample the feedback control policy parameters w(n)
from N (θ(n), σ2I).

During the foot step, execute the following controls in continuous time:
u(t) = w(n)⊤φ(x̂(t)).

After the foot step is completed, compute the reward function R(x̂(n)) and
perform the following updates:

Policy updates:

e(n) = γe(n− 1) +
1

2σ2
(w − θ(n))

θ(n+ 1) = θ(n) + ηθe(n)(R(x̂(n))− b(n))

b(n) = V̂ (x̂(n))− γV̂ (x̂(n+ 1))

TD(0) updates:

δ(n) = R(x̂(n)) + γV̂ (x̂(n+ 1))− V̂ (x̂(n))

v(n+ 1) = v(n) + ηvδ(n)ψ(x̂(n))

� Decompose the control problem in the frontal and

sagittal planes

� Due to simplicity of sagittal plane control---hand set.

� Left with control of the ankle roll actuators to control in

the frontal plane

� Let roll control input only depend on θroll and dθroll/dt

� Basis functions: non-overlapping tile encoding
� Policy: 35 tiles (5 in θroll x 7 in dθroll/dt)

� Value: 11 tiles (a function in dθroll/dt only because the value

is evaluated at the discrete time when θroll hits a particular

value)

Manual dimensionality reduction

Page 8

� When the learning begins, the policy parameters, w, are

set to 0 and the baseline parameters, v, are initialized
so that \hat{V}(x) ≈ R(x) / (1-γ)

� Train the robot on flat terrain.

� Reset with simple hand-designed controller that gets it

into a random initial state every 10s.

� Results:

� After 1 minute: foot clearance on every step

� After 20 minutes: converged to a robust gait (=960

steps at 0.8Hz)

Experimental setup and results

Return maps

before learning after learning

[Note: this is a projection from 2x9-1 dim to 1dim]

Page 9

Toddler movie

� On tread-mill: passive walking. On ground: learning.

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 20:

Natural gradient

Reward shaping

Approximate LP with function approximation

POMDP

Hierarchical RL

Pieter Abbeel

UC Berkeley EECS

� Is the gradient the correct direction?

Natural gradient

Page 2

� Is the gradient the correct direction?

Natural gradient

Gradient and linear transformations

Consider the optimization of the function f(θ) through gradient descent. In
iteration k we would perform an update of the following form:

θ(k+1) = θ(k) + α∇θf(θ(k)). (1)

Consider a new coordinate system x = A−1θ. We could work in the new
coordinate system instead, and optimize f(Ax) over the variable x. A gradient
descent step is given by:

x(k+1) = x(k) + α∇xf(Ax(k)) = x(k) + αA⊤∇θf(Ax(k)) (2)

If x(k) = A−1θ(k), do we have x(k+1) = θ(k+1)?
No!
The value in θ coordinates that corresponds to xk+1 is given by

Ax(k+1) = Ax(k) + αAA⊤∇θf(Ax(k)) = θ(k) + αAA⊤∇θf(θ(k)) �= θ(k+1)

Page 3

Newton’s method approximates the function f(θ) by a quadratic function
through a Taylor expansion around the current point θk:

f(θ) ≈ f(θk) +∇θf(θ(k))⊤(θ − θ(k)) +
1

2
(θ − θ(k))⊤H(θ(k))(θ − θ(k))

Here Hij(θ
(k)) = ∂2f

∂θiθj
(θ(k)) is a matrix with the 2nd derivatives of f evaluated

at θ(k).
The local optimum of the 2nd order approximation is found by setting its

gradient equal to zero, which gives:

Newton step direction = (θ − θ(k)) = −H−1(θ(k))∇θf(θ(k))

Newton’s direction

The Newton step direction is affine invariant

Newton’s step direction for f(θ) is given by:

H−1(θ(k))∇θf(θ(k)). (1)

For f(Ax), with x = A−1θ, we have

Hessian = A⊤HA

gradient = A⊤∇θf

Hence we have for the Newton step direction in the x coordinates:

(
A⊤HA

)−1
A⊤∇θf(Ax(k)) = A−1∇θf(Ax(k)) (2)

Translating this into θ coordinates gives us AA−1∇θf(Ax(k)) = ∇θf(Ax(k)),
which is identical to the step direction directly computed in θ coordinates.

Page 4

� Gradient depends on choice of coordinate system.

� Newton’s method is invariant to affine coordinate

transformations, but not to general coordinate

transformations.

� Can we achieve more invariance than simply affine

invariance?

Natural gradient

� Let’s first re-interpret the gradient:

� The gradient is the direction of steepest ascent:

Natural gradient

Page 5

� Let’s first re-interpret the gradient:

� The gradient is the direction of steepest ascent:

� When expressing our problem in a different coordinate system f

remains the same, but the || . || <= 1 constraint means something

different in different coordinate systems.

� � Can we find a norm constraint that is independent of the coordinate

system????

Natural gradient

For small ǫ we have:

arg max
δθ:‖δθ‖2≤ǫ

f(θ + δθ) ≈ arg max
δθ:‖δθ‖2≤ǫ

f(θ) +∇θf(θ)⊤δθ

= arg max
δθ:‖δθ‖2≤ǫ

∇θf(θ)⊤δθ

=
∇θf(θ)

‖∇θf(θ)‖2
ǫ

� Kullback-Leibler divergence between distributions over paths induced by

the policies:

� E.g., 2 Bernoulli distributions:

� Prob(heads)=p and Prob(heads)=q

� Alternative parameterization:

A distance which is independent of the
parameterization of the policy class

KL(P (τ ; θ1)||P (τ ; θ2)) =
∑

τ

P (τ ; θ1) log
P (τ ; θ1)

P (τ ; θ2)

KL(P (·; p)||P (·; q)) = p log
p

q
+ (1− p) log

1− p

1− q

Prob(heads) =
exp(θ)
1+exp(θ) and Prob(heads) =

exp(ψ)
1+exp(ψ)

KL(P (·; θ)‖P (·; ψ)) =
exp(θ)

1 + exp(θ)
log

exp(θ)
1+exp(θ)

exp(ψ)
1+exp(ψ)

+
1

1 + exp(θ)
log

1
1+exp(θ)

1
1+exp(ψ)

= KL(P (·; p)‖P (·; q)) if p =
exp(θ)

1 + exp(θ)
, q =

exp(ψ)

1 + exp(ψ)

Page 6

� Kullback-Leibler divergence between distributions

over paths induced by the policies:

� Second-order Taylor approximation

� G(θ) = Fisher information matrix, independent of the

choice of parameterization of the class of distributions.

A distance which is independent of the
parameterization of the policy class

KL(P (τ ; θ1)||P (τ ; θ2)) =
∑

τ

P (τ ; θ1) log
P (τ ; θ1)

P (τ ; θ2)

KL(P (τ ; θ)||P (τ ; θ + δθ)) ≈
∑

τ

P (τ ; θ)δθ⊤∇θ log P (τ ; θ)∇θ log P (τ ; θ)⊤δθ

= δθ⊤

(
∑

τ

P (τ ; θ)∇θ log P (τ ; θ)∇θ log P (τ ; θ)⊤

)

δθ

= δθ⊤G(θ)δθ

2nd order Taylor expansion of KL divergence

KL(P (X; θ)‖P (X ; θ + δθ)

=
∑

x

P (x; θ) log
P (x; θ)

P (x; θ + δθ)

≈
∑

x

P (x; θ)

(
log

P (x; θ)

P (x; θ)
−

d

dθ
log P (x; θ)⊤δθ −

1

2
δθ⊤

d2

dθ2
log P (x; θ)δθ

)

= −
∑

x

P (x; θ)
d

dθ
log P (x; θ)⊤δθ −

1

2
δθ⊤

d2

dθ2
log P (x; θ)δθ

= −
∑

x

P (x; θ)

(
d
dθ

P (x; θ)

P (x; θ)

)⊤
δθ −

1

2
δθ
∑

x

P (x; θ)
P (x; θ) d

2

dθ2
P (x; θ)−

(
dP (x;θ)
dθ

)(
dP (x;θ)
dθ

)⊤

P (x; θ)2
δθ

= −
∑

x

d

dθ
P (x; θ)⊤δθ −

1

2
δθ
∑

x

d2

dθ2
P (x; θ)δθ +

1

2
δθ
∑

x

P (x; θ)

(
dP (x;θ)
dθ

P (x; θ)

)(
dP (x;θ)
dθ

P (x; θ)

)⊤
δθ

= −

(
d

dθ

∑

x

P (x; θ)

)⊤
δθ −

1

2
δθ⊤

(
d2

dθ2

∑

x

P (x; θ)

)

δθ

+
1

2
δθ⊤

(
∑

x

P (x; θ)

(
d

dθ
log P (x; θ)

)(
d

dθ
log P (x; θ)

)⊤)

δθ

= −

(
d

dθ
1

)⊤
δθ −

1

2
δθ⊤

(
d2

dθ2
1

)
δθ

+
1

2
δθ⊤

(
∑

x

P (x; θ)

(
d

dθ
log P (x; θ)

)(
d

dθ
log P (x; θ)

)⊤)

δθ

= −0− 0 +
1

2
δθ⊤

(
∑

x

P (x; θ)

(
d

dθ
log P (x; θ)

)(
d

dθ
log P (x; θ)

)⊤)

δθ

=
1

2
δθ⊤G(θ)δθ

Page 7

Natural gradient gN

Natural gradient: general setting

Page 8

Natural gradient in policy search

� = the direction with highest increase in the objective per

change in KL divergence

Natural gradient gN

gN = arg max
δθ:KL(P (τ ;θ)||P (τ ;θ+δθ)≤ǫ

f(θ + δθ)

≈ arg max
δθ: 1

2
δθ⊤G(θ)δθ≤ǫ

f(θ) +∇θf(θ)⊤δθ

= arg max
δθ: 1

2
δθ⊤G(θ)δθ≤ǫ

∇θf(θ)⊤δθ

= G(θ)−1∇θf(θ)

Page 9

Problem setting: optimize an objective which depends on a probability dis-
tribution Pθ

max
θ

f(Pθ)

Rather than following the gradient, which depends on the choice of param-
eterization for the set of probability distributions that we are searching over,
follow the natural gradient gN :

gN = G(θ)−1∇θf(Pθ)

Here G(θ) is the Fisher information matrix, and can be computed as follows:

G(θ) =
∑

x∈X

Pθ(x)∇θ log Pθ(x)∇θ log Pθ(x)⊤

Natural gradient: general setting

Objective:

U(θ) =
∑

τ

P (τ ; θ)R(τ)

Natural gradient gN :

gN = G(θ)−1∇θU(θ)

Both the Fisher information matrix G and the gradient need to be estimate
from samples. We have seen many ways to estimate the gradient from samples.
Remains to show how to estimate G.

G(θ) =
∑

τ

P (τ)∇θ log P (τ ; θ)∇θ log P (τ ; θ)⊤

≈
1

m

m∑

i=1

∇θ log P (τ (i); θ)∇θ log P (τ (i); θ)⊤

As we have seen earlier, we can compute the expression ∇θ log P (τ (i)) even
without access to the dynamics model:

∇θ log P (τ (i); θ) = ∇θ

H−1∑

t=0

log T (st, ut, st+1) + log πθ(ut|st)

= ∇θ

H−1∑

t=0

log πθ(ut|st)

Natural gradient in policy search

Page 10

Example

Kober and Peters, NIPS 2009

Page 11

� Project milestone due tomorrow 23:59pm

� = 1 page progress update.

� Format: pdf

� Assignment #2: out tomorrow night, due in 2 weeks

� Topic: RL

� Start early!

� Late day policy: 7 days total; -20pts (out of 100pts of the

thing you are submitting late) per day beyond that

� Assignment #3 will be released in 2 weeks and will be

very small compared to #1 and #2.

Announcements

Thomas Daniel, University of Washington

A Tale of Two (or Three?) Gyroscopes: Inertial measurement units (IMUs) in flying insects

Date: Thursday, November 5, 2009

Time: 4:00 PM

Place: 2040 Valley Life Sciences Building

Animals use a combination of sensory modalities to control their movement including visual,

mechanosensory and chemosensory information. Mechanosensory systems that can detect

inertial forces are capable of responding much more rapidly than visual systems and, as such,

are thought to play a critical role in rapid course correction during flight. This talk focusses on

two gryoscopic organs: halteres of flies and antennae of moths. Both have mechanical and

neural components play critical roles in encoding relatively tiny Coriolis forces associated with

body rotations, both of which will be reviewed along with new data that suggests each have

complex circuits that connect visual systems to mechanosensory systems. But, insects are

bristling with mechanosensory structures, including the wings themselves. It is not clear whether

these too could serve an IMU function in addition to their obvious aerodynamic roles.

Page 12

“MODULARITY, POLYRHYTHMS, AND WHAT ROBOTICS AND CONTROL MAY YET
LEARN FROM THE BRAIN”

Jean-Jacques Slotine, Nonlinear Systems Laboratory, MIT

Thursday, Nov 5th, 4:00 p.m., 3110 Etcheverry Hall

ABSTRACT

Although neurons as computational elements are 7 orders of magnitude slower than their artificial

counterparts, the primate brain grossly outperforms robotic algorithms in all but the most

structured tasks. Parallelism alone is a poor explanation, and much recent functional modelling of

the central nervous system focuses on its modular, heavily feedback-based computational

architecture, the result of accumulation of subsystems throughout evolution. We discuss this

architecture from a global functionality point of view, and show why evolution is likely to favor

certain types of aggregate stability. We then study synchronization as a model of computations at

different scales in the brain, such as pattern matching, restoration, priming, temporal binding of

sensory data, and mirror neuron response. We derive a simple condition for a general dynamical

system to globally converge to a regime where diverse groups of fully synchronized elements

coexist, and show accordingly how patterns can be transiently selected and controlled by a very

small number of inputs or connections. We also quantify how synchronization mechanisms can

protect general nonlinear systems from noise. Applications to some classical questions in

robotics, control, and systems neuroscience are discussed.

The development makes extensive use of nonlinear contraction theory, a comparatively

recent analysis tool whose main features will be briefly reviewed.

� approximate LP, pomdp's, reward shaping, exploration

vs. exploitation, hierarchical methods

Reinforcement learning: remaining topics

Page 13

� Exact Bellman LP

� Approximate LP

minV
∑

s

c(s)V (s)

s.t. V (s) ≥
∑

s′

T (s, a, s′) (R(s, a, s′) + γV (s′)) ∀s,∀a

Approximate LP

minθ
∑

s∈S′

c(s)θ⊤φ(s)

s.t. θ⊤φ(s) ≥
∑

s′

T (s, a, s′)
(
R(s, a, s′) + γθ⊤φ(s′)

)
∀s ∈ S′, ∀a

� When retaining all constraints, yet introducing function approximation.

Approximate LP guarantees

minθ
∑

s∈S

c(s)θ⊤φ(s)

s.t. θ⊤φ(s) ≥
∑

s′

T (s, a, s′)
(
R(s, a, s′) + γθ⊤φ(s′)

)
∀s ∈ S, ∀a

Theorem. [de Farias and Van Roy] If one of the basis function satisfies
φi(s) = 1 for all s ∈ S, then the LP has a feasible solution and the optimal

solution θ̂ satisfies:

‖V ∗ − Φθ‖1,c ≤
2

1− α
min
θ
‖V ∗ − Φθ‖∞

Page 14

Consider a convex optimization problem with a very large number of con-
straints:

min c⊤x

s.t. gi(x) ≤ b i = 1, 2, . . . , m

where x ∈ ℜn, gi convex, and m >> n.
We obtain the sampled approximation by sampling the sequence {i1, i2, . . . , iN}

IID according to some measure over the constraints µ. This gives us:

min c⊤x

s.t. gj(x) ≤ b j = i1, i2, . . . , iN

Let x̂N be the optimal solution to the sampled convex problem.

Theorem. [Calafiore and Campi, 2005] For arbitrary ǫ > 0, δ > 0, if
N ≥ n

ǫδ
− 1, then

Prob (µ ({i|gi(x̂N) > bi}) ≤ ǫ) ≥ 1− δ

where the probability is taken over the random sampling of constraints.

This result can be leveraged to show that the solution to the sampled ap-
proximate LP is close to V ∗ with high probablity. (de Farias and Van Roy,
2001)

Constraint sampling

� What freedom do we have in specifying the reward

function? Can we choose it such that learning is faster?

� Examples:

� + Tetris: set the reward equal to the distance

between highest filled square and the top of the

board vs. a reward of 1 for placing a block

� - Bicycle control task: provide a positive reward for

motion towards the goal

� - Soccer task: provide a positive reward for touching

the ball

Reward shaping

Page 15

� Let F(s,a,s’) = γ φ(s’) - φ(s)

� Shaped reward = R + F

� Theorem [Ng, Harada & Russell, 1999]

Potential based reward shaping is a necessary and

sufficient condition to guarantee that the optimal
policy in the shaped MDP M’ = (S, A, T, γ, R+F)

is also an optimal policy in the original MDP M =
(S, A, T, γ, R)

[In fact even stronger: all policies retain their

relative value.]

Potential based shaping

� In the new MDP, for a trace s0, a0, s1, a1, … we obtain:

R(s0, a0, s1) + γ φ(s1) - φ (s0)

+ γ (R(s1, a1, s2) + γ φ (s) - φ (s1))

+ γ2 (R(s2, a2, s3) + γ φ (s3) - φ (s2))

+ …

= -φ (s0) + R(s0, a0, s1) + γ R(s1, a1, s2) + γ 2 R(s2, a2, s3) + …

� For any policy π we have: (M: original MDP, M’: MDP w/shaped reward)

Vπ
M’(s0) = Vπ

M(s0) - φ(s0)

Intuition of proof

Page 16

� Let φ = V*

� Then in one update we have:

� If we initialize V = 0, we obtain:

� V=0 satisfies the Bellman equation; � this particular choice of potential

function / reward shaping, we can find the solution to the shaped MDP

very quickly

A good potential?

V (s) ← max
a

∑

s′

T (s, a, s′) (R(s, a, s′) + F (s, a, s′) + γV (s′))

= max
a

∑

s′

T (s, a, s′) (R(s, a, s′) + γV ∗(s′)− V (s) + γV (s′))

= −V ∗(s) + max
a

∑

s′

T (s, a, s′) (R(s, a, s′) + γV ∗(s′) + γV (s′))

V (s) ← −V ∗(s) + max
a

∑

s′

T (s, a, s′) (R(s, a, s′) + γV ∗(s′))

= −V ∗(s) + V ∗(s)

= 0

Example

[From Ng, Harada & Russell 1999]

10x10 grid world, 1 goal state = absorbing, other states R=-1;
Prob(action successful) = 80%

� Shaping function: φ0(s) = - (manhattan distance to goal) / 0.8

Plot shows performance of Sarsa(0) with epsilon=0.1 greedy, learning rate = .2
(a) no shaping vs. (b) φ = 0.5 * φ0 vs. (c) φ = φ0

Page 17

� Potential based shaping can be shown to be equivalent

to initializing the value function to the shaping potential.

[see course website for the technical note describing this]

� If restricting ourselves to potential based shaping, can

implement it in 2 ways.

Relationship to value function intialization

� = no direct observation of the state

� Instead: might have noisy measurements

� Partially Observable Markov Decision Process

(POMDP)

� Main ideas:

� Based on the noisy measurements and knowledge

about the dynamics, keep track of a probability

distribution for the current state

� Define a new MDP for which the probability

distribution over current state is considered the state

Partial observability

Page 18

� One of the milestone results: Kearns and Singh, Explicit

Exploration and Exploitation (E3), 2002

� Question/Problem:

� Given an MDP with unknown transition model.

� Can we

� (a) explicitly decide to take actions that will assist us in

building a transition model of the MDP, and

� (b) detect when we have a sufficiently accurate model and

start exploiting?

Exploration vs. exploitation

� Repeat forever

� Based on all data seen so far, partition the state space is a set of

“known” states and a set of “unknown” states. [A state is known when

each action in that state has been observed sufficiently often.]

� If currently in a “known” state:

� Lump all unknown states together in one absorbing meta-state. Give the
meta-state a reward of 1. Give all known states a reward of zero. Find the
optimal policy in this new MDP.

� If the optimal policy has a value of zero (or low enough): exit. [No need
for exploration anymore.]

� Otherwise: Execute the optimal action for the current state.

� If currently in a “unknown” state:

� Take the action that has been taken least often in this state.

Basic idea of E3 algorithm

Page 19

� Simulation lemma: if the transition models and reward models of

two MDPs are sufficiently close, then the optimal policy in one will

also be close to optimal in the other

� After having seen a state-action pair sufficiently often, with high

probability the data based transition model estimate will be accurate

� Their analysis provides a finite time result (as opposed to

asymptotic, such as for Q learning, sarsa, etc.)

� Various extensions since:

� Brafman and Tenneholtz, Rmax

� Kakade + al, Metric E3

� Kearns and Koller, E3 in MDP w/transition model ~ temporal

Bayes net

Technical aspects underneath E3

� Main idea: use hierarchical domain knowledge to speed

up RL

� I posted one representative paper onto the course

website, should be a reasonable starting point if you

wanted to find out more.

Hierarchical RL

Page 20

� Exact methods: VI, PI, GPI, LP

� Model-free methods: TD, Q, sarsa

� Batch versions: LSTD (recursive version: RLSTD), LSPI

� Function approximation:

� Contractions – infinity norm, 2norm weighted by state visitation

frequency

� Approximate LP

� Policy gradient methods:

� analytical, finite difference, likelihood ratio

� Gradient <-> natural gradient

� Imitation learning:

� Behavioral cloning <-> inverse RL

RL summary

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 21:

HMMs, Bayes filter, smoother, Kalman filters

Pieter Abbeel

UC Berkeley EECS

� Thus far:

� Optimal control and reinforcement learning

� We always assumed we got to observe the state at each time

and the challenge was to choose a good action

� Current and next set of lectures

� The state is not observed

� Instead, we get some sensory information about the state

� Challenge: compute a probability distribution over the state

which accounts for the sensory information (“evidence”) which

we have observed.

Overview

Page 2

� Helicopter

� A choice of state: position, orientation, velocity, angular rate

� Sensors:

� GPS : noisy estimate of position (sometimes also velocity)

� Inertial sensing unit: noisy measurements from (i) 3-axis gyro [=angular rate sensor],

(ii) 3-axis accelerometer [=measures acceleration + gravity; e.g., measures (0,0,0) in

free-fall], (iii) 3-axis magnetometer

� Mobile robot inside building

� A choice of state: position and heading

� Sensors:

� Odometry (=sensing motion of actuators): e.g., wheel encoders

� Laser range finder: measures time of flight of a laser beam between departure and

return (return is typically happening when hitting a surface that reflects the beam back

to where it came from)

Examples

For any random variables X, Y we have:

� Definition of conditional probability:

P(X=x | Y=y) = P(X=x, Y=y) / P(Y=y)

� Chain rule: (follows directly from the above)

P(X=x, Y=y) = P(X=x) P(Y=y | X=x)

= P(Y=y) P(X=x | Y=y)

� Bayes rule: (really just a re-ordering of terms in the above)

P(X=x | Y=y) = P(Y=y | X=x) P(X=x) / P(Y=y)

� Marginalization:

P(X=x) = ∑y P(X=x, Y=y)

Note: no assumptions beyond X, Y being random variables are made for any of these to
hold true (and when we divide by something, that something is not zero)

Probability review

Page 3

For any random variables X, Y, Z, W we have:

� Conditional probability: (can condition on a third variable z throughout)

P(X=x | Y=y, Z=z) = P(X=x, Y=y | Z=z) / P(Y=y | Z=z)

� Chain rule:

P(X=x, Y=y, Z=z, W=w) = P(X=x) P(Y=y | X=x) P(Z=z | X=x, Y=y) P(W=w| X=x, Y=y, Z=z)

� Bayes rule: (can condition on other variable z throughout)

P(X=x | Y=y, Z=z) = P(Y=y | X=x, Z=z) P(X=x | Z=z) / P(Y=y | Z=z)

� Marginalization:

P(X=x | W=w) = ∑y,z P(X=x, Y=y, Z=z | W=w)

Note: no assumptions beyond X, Y, Z, W being random variables are made for any of these to
hold true (and when we divide by something, that something is not zero)

Probability review

Independence

� Two random variables X and Y are independent iff

for all x, y : P(X=x, Y=y) = P(X=x) P(Y=y)

� Representing a probability distribution over a set of random
variables X1, X2, …, XT in its most general form can be expensive.

� E.g., if all Xi are binary valued, then there would be a total of 2T

possible instantiations and it would require 2T-1 numbers to
represent the probability distribution.

� However, if we assumed the random variables were independent,
then we could very compactly represent the joint distribution as
follows:

� P(X1=x1, X2=x2, …, XT=xT) = P(X1=x1) P(X2=x2) … P(XT=xT)

� Thanks to the independence assumptions, for the binary case,
we went from requiring 2T-1 parameters, to only requiring T
parameters!

� Unfortunately independence is often too strong an assumption …

Page 4

� Two random variables X and Y are conditionally independent given a third

random variable Z iff

for all x, y, z : P(X=x, Y=y | Z=z) = P(X=x | Z=z) P(Y=y | Z=z)

� Chain rule (which holds true for all distributions, no assumptions needed):

� P(X=x,Y=y,Z=z,W=w) = P(X=x)P(Y=y|X=x)P(Z=z|X=x,Y=y)P(W=w|X=x,Y=y,Z=z)

� For binary variables the representation requires 1 + 2*1 + 4*1 + 8*1 = 24-1 numbers
(just like a full joint probability table)

� Now assume Z independent of X given Y, and assume W independent of X and

Y given Z, then we obtain:

� P(X=x,Y=y,Z=z,W=w) = P(X=x)P(Y=y|X=x)P(Z=z|Y=y)P(W=w|Z=z)

� For binary variables the representation requires 1 + 2*1 + 2*1 + 2*1 = 1+(4-1)*2
numbers --- significantly less!!

Conditional independence

Markov Models

� Models a distribution over a set of random variables X1, X2, …, XT where the
index is typically associated with some notion of time.

� Markov models make the assumption:

� Xt is independent of X1, …, Xt-2 when given Xt-1

� Chain rule: (always holds true, not just in Markov models!)

� P(X1 = x1, X2 = x2, …, XT = xT) = ∏t P(Xt = xt | Xt-1 = xt-1, Xt-2 = xt-2, …, X1 = x1)

� Now apply the Markov conditional independence assumption:

� P(X1 = x1, X2 = x2, …, XT = xT) = ∏t P(Xt = xt | Xt-1 = xt-1) (1)

� � in binary case: 1 + 2*(T-1) numbers required to represent the joint
distribution over all variables (vs. 2T – 1)

� Graphical representation: a variable Xt receives an arrow from the variables
appearing in its conditional probability in the expression for the joint distribution
(1) [called a Bayesian network or Bayes net representation]

XTX2X1 X3 X4

Page 5

Hidden Markov Models

� Underlying Markov model over states Xt

� Assumption 1: Xt independent of X1, …, Xt-2 given Xt-1

� For each state Xt there is a random variable Zt which is a sensory
measurement of Xt

� Assumption 2: Zt is assumed conditionally independent of the other
variables given Xt

� This gives the following graphical (Bayes net) representation:

XTX2

Z1

X1 X3 X4

Z2 Z3 Z4 ZT

Hidden Markov Models

� Chain rule: (no assumptions)

P(X1 = x1)

P(Z1 = z1 | X1 = x1)

P(X2 = x2 | X1 = x1 , Z1 = z1)

P(Z2 = z2 | X1 = x1, Z1 = z1, X2 = x2)

…

P(XT = xT | X1 = x1, Z1 = z1, … , XT-1 = xT-1, ZT-1 = zT-1)

P(ZT = zT | X1 = x1, Z1 = z1, … , XT-1 = xT-1, ZT-1 = zT-1 , XT = xT)

XTX2

Z1

X1 X3 X4

Z2 Z3 Z4 ZT

� HMM assumptions:

P(X1 = x1)

P(Z1 = z1 | X1 = x1)

P(X2 = x2 | X1 = x1)

P(Z2 = z2 | X2 = x2)

…

P(XT = xT | XT-1 = xT-1)

P(ZT = zT | XT = xT)

P(X1=x1, Z1=z1, X2=x2, Z2=z2, …, XT=xT, ZT=zT) =

Page 6

� What would the graph look like for a Bayesian network

with no conditional independence assumptions?

� Our particular choice of ordering of variables in the

chain rule enabled us to easily incorporate the HMM

assumptions. What if we had chosen a different

ordering in the chain rule expansion?

Mini quiz

Example

� The HMM is defined by:

� Initial distribution:

� Transitions:

� Observations:

Page 7

Real HMM Examples

� Robot localization:

� Observations are range readings (continuous)

� States are positions on a map (continuous)

� Speech recognition HMMs:

� Observations are acoustic signals (continuous valued)

� States are specific positions in specific words (so, tens of
thousands)

� Machine translation HMMs:

� Observations are words (tens of thousands)

� States are translation options

Filtering / Monitoring

� Filtering, or monitoring, is the task of tracking the distribution

P(Xt | Z1 = z1 , Z2 = z2 , …, Zt = zt)

over time. This distribution is called the belief state.

� We start with P(X0) in an initial setting, usually uniform

� As time passes, or we get observations, we update the belief state.

� The Kalman filter was invented in the 60’s and first implemented as

a method of trajectory estimation for the Apollo program. [See

course website for a historical account on the Kalman filter. “From

Gauss to Kalman”]

Page 8

Example: Robot Localization

t=0

Sensor model: never more than 1 mistake

Know the heading (North, East, South or West)

Motion model: may not execute action with small prob.

10Prob

Example from
Michael Pfeiffer

Example: Robot Localization

t=1

10Prob

Page 9

Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob

Page 10

Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Page 11

Inference: Base Cases

Incorporate observation Time update

Z1

X1 X2X1

Time update

� Assume we have current belief P(X | evidence to date)

� Then, after one time step passes: Xt+1Xt

Page 12

Observation update

� Assume we have:

� Then:

Et+1

Xt+1

� Init P(x1) [e.g., uniformly]

� Observation update for time 0:

� For t = 1, 2, …

� Time update

� Observation update

� For continuous state / observation spaces: simply replace

summation by integral

Algorithm

Page 13

Example HMM

Rt-1 P(Rt)

T 0.7

F 0.3

Rt P(Ut)

T 0.9

F 0.2

The Forward Algorithm

� Time/dynamics update and observation update in one:

� � recursive update

� Normalization:

� Can be helpful for numerical reasons

� However: lose information!

� Can renormalize (for numerical reasons) + keep track of the

normalization factor (to enable recovering all information)

Page 14

The likelihood of the observations

� The forward algorithm first sums over x1, then over x2 and so forth,

which allows it to efficiently compute the likelihood at all times t, indeed:

� Relevance:

� Compare the fit of several HMM models to the data

� Could optimize the dynamics model and observation model to maximize the

likelihood

� Run multiple simultaneous trackers --- retain the best and split again

whenever applicable (e.g., loop closures in SLAM, or different flight

maneuvers)

With control inputs

X5X2

Z1

X1 X3 X4

Z2 Z3 Z4 E5

U2U1 U3 U4

Page 15

With control inputs

� Control inputs known:

� They can be simply seen as selecting a particular dynamics function

� Control inputs unknown:

� Assume a distribution over them

� Above drawing assumes open-loop controls. This is rarely the case in

practice. [Markov assumption is rarely the case either. Both assumptions

seem to have given quite satisfactory results.]

X5X2

Z1

X1 X3 X4

Z2 Z3 Z4 E5

U2U1 U3 U4

� Thus far, filtering, which finds:

� The distribution over states at time t given all evidence until time t:

� The likelihood of the evidence up to time t:

� How about?

� T < t : can simply run the forward algorithm until time t, but stop

incorporating evidence from time T+1 onwards

� T > t : need something else

Smoothing

Page 16

� Sum as written has a number of terms exponential in T

� Key idea: order in which variables are being summed out affects

computational complexity

� Forward algorithm exploits summing out x1, x2, …, xt-1 in this

order

� Can similarly run a backward algorithm, which sums out xT, xT-1,

…, xt+1 in this order

Smoothing

Smoothing

� Can be easily verified from the equations:

� The factors in the right parentheses only contain Xt+1, …, XT,

hence they act as a constant when summing out over X1, …, Xt-1

and can be brought outside the summation

� Can also be read off from the Bayes net graph / conditional

independence assumptions:

� X1, …, Xt-1 are conditionally of Xt+1, …, XT given Xt

Forward algorithm computes this Backward algorithm computes this

Page 17

� Sum out xT:

� Can recursively compute for l=T, T-1, …:

Backward algorithm

fl−1(xl−1) =
∑

xl

P (xl|xl−1)P (el|xl)fl(xl)

� Run forward algorithm, which gives

� P(xt , z1, …, zt) for all t

� Run backward algorithm, which gives

� ft(xt) for all t

� Find

� P(xt , z1, …, zT) = P(xt , z1, …, zt) ft(xt)

� If desirable, can renormalize and find P(xt | z1, …, zT)

Smoother algorithm

Page 18

� Recursively compute

� P(xt , z1:t-1) = ∑xt-1 P(xt | xt-1) P(xt-1 | z1:t-1)

� P(xt , z1:t) = P(xt, z1:t-1) P(zt | xt)

� Tractable cases:

� State space finite and sufficiently small

(what we have in some sense considered so far)

� Systems with linear dynamics and linear

observations and Gaussian noise

� Kalman filtering

Bayes filters

Univariate Gaussian

� Gaussian distribution with mean µ, and standard

deviation σ:

x

PX(x)

Page 19

� Mean:

� Variance:

Properties of Gaussians

Central limit theorem (CLT)

� Classical CLT:

� Let X1, X2, … be an infinite sequence of independent

random variables with E Xi = µ, E(Xi - µ)2 = σ2

� Define Zn = ((X1 + … + Xn) – n µ) / (σ n1/2)

� Then for the limit of n going to infinity we have that Zn

is distributed according to N(0,1)

� Crude statement: things that are the result of the

addition of lots of small effects tend to become

Gaussian.

Page 20

Multi-variate Gaussians

� µ = [1; 0]

� Σ = [1 0; 0 1]

� µ = [-.5; 0]

� Σ = [1 0; 0 1]

� µ = [-1; -1.5]

� Σ = [1 0; 0 1]

Multi-variate Gaussians: examples

Page 21

Multi-variate Gaussians: examples

� µ = [0; 0]

� Σ = [1 0 ; 0 1]

� µ = [0; 0]

� Σ = [.6 0 ; 0 .6]

� µ = [0; 0]

� Σ = [2 0 ; 0 2]

� µ = [0; 0]

� Σ = [1 0; 0 1]

� µ = [0; 0]

� Σ = [1 0.5; 0.5 1]

� µ = [0; 0]

� Σ = [1 0.8; 0.8 1]

Multi-variate Gaussians: examples

Page 22

� µ = [0; 0]

� Σ = [1 0; 0 1]

� µ = [0; 0]

� Σ = [1 0.5; 0.5 1]

� µ = [0; 0]

� Σ = [1 0.8; 0.8 1]

Multi-variate Gaussians: examples

� µ = [0; 0]

� Σ = [1 -0.5 ; -0.5 1]

� µ = [0; 0]

� Σ = [1 -0.8 ; -0.8 1]

� µ = [0; 0]

� Σ = [3 0.8 ; 0.8 1]

Multi-variate Gaussians: examples

Page 23

47

Discrete Kalman Filter

tttttt uBxAx ε++=
−1

tttt xCz δ+=

Estimates the state x of a discrete-time controlled process

that is governed by the linear stochastic difference
equation

with a measurement

48

Components of a Kalman Filter

tε

Matrix (nxn) that describes how the state evolves
from t to t-1 without controls or noise.

tA

Matrix (nxl) that describes how the control ut

changes the state from t to t-1.tB

Matrix (kxn) that describes how to map the state xt

to an observation zt.
tC

tδ

Random variables representing the process and
measurement noise that are assumed to be
independent and normally distributed with
covariance Rt and Qt respectively.

Page 24

53

()0000 ,;)(Σ= µxNxbel

Linear Gaussian Systems: Initialization

� Initial belief is normally distributed:

54

� Dynamics are linear function of state and control
plus additive noise:

tttttt uBxAx ε++=
−1

Linear Gaussian Systems: Dynamics

()ttttttttt RuBxAxNxuxp ,;),|(11 +=
−−

() ()1111

111

,;~,;~

)(),|()(

−−−−

−−−

Σ+

⇓⇓

= ∫

ttttttttt

tttttt

xNRuBxAxN

dxxbelxuxpxbel

µ

Page 25

55

Linear Gaussian Systems: Dynamics

() ()

+Σ=Σ

+=

=

−Σ−−

−−−−−=

⇓

Σ+

⇓⇓

=

−

−

−−−

−

−−−

−

−

−

−−−−

−−−

∫

∫

t

T

tttt

ttttt

t

tttt

T

tt

tttttt

T

tttttt

ttttttttt

tttttt

RAA

uBA
xbel

dxxx

uBxAxRuBxAxxbel

xNRuBxAxN

dxxbelxuxpxbel

1

1

111

1

111

1

1

1

1111

111

)(

)()(
2

1
exp

)()(
2

1
exp)(

,;~,;~

)(),|()(

µµ

µµ

η

µ

� To integrate out xt-1, re-write the integrand in the format:

� This integral is readily computed (integral of a

multivariate Gaussian times a constant = that constant)

to be

� Inspection of f will show that it is a multi-variate

Gaussian in xt with the mean and covariance as shown
on previous slide.

Proof: completion of squares

∫
f(µt−1,Σt−1, xt)

(
1

(2π)
d

2 |S|
1

2

exp

(
−1

2
(xt−1 −m)S

−1(xt−1 −m)

))

dxt−1

f(µt−1,Σt−1, xt)

Page 26

� We just showed:

� We stay in the “Gaussian world” as long as we start with
Gaussians and perform only linear transformations.

� Now we know this, we could find µY and ΣY without
computing integrals by directly computing the expected
values:

),(~
),(~

T
AABANY

BAXY

NX
Σ+⇒

+=

Σ

µ

µ

Properties of Gaussians

E[Y] = E[AX + B] = AE[X] +B = Aµ+B

ΣY Y = E[(Y − E[Y])(Y − E[Y])⊤] = E[(AX +B −Aµ−B)(AX + B −Aµ −B)⊤]

= E[A(X − µ)(X − µ)⊤A⊤] = AE[(X − µ)(X − µ)⊤]A⊤ = AΣA⊤

Self-quiz

Page 27

59

� Observations are linear function of state plus
additive noise:

tttt xCz δ+=

Linear Gaussian Systems: Observations

()tttttt QxCzNxzp ,;)|(=

() ()ttttttt

tttt

xNQxCzN

xbelxzpxbel

Σ

⇓⇓

=

,;~,;~

)()|()(

µ

η

60

Linear Gaussian Systems: Observations

() ()

1

11

)(with
)(

)(
)(

)()(
2

1
exp)()(

2

1
exp)(

,;~,;~

)()|()(

−

−−

+ΣΣ=

Σ−=Σ

−+=

=

−Σ−−

−−−=

⇓

Σ

⇓⇓

=

t

T

ttt

T

ttt
tttt

tttttt

t

ttt

T

tttttt

T

tttt

ttttttt

tttt

QCCCK
CKI

CzK
xbel

xxxCzQxCzxbel

xNQxCzN

xbelxzpxbel

µµµ

µµη

µ

η

Page 28

� Re-write the expression for bel(xt) in the format:

� f is the normalization factor

� The expression in parentheses is a multi-variate

Gaussian in xt. Its parameters m and S can be

identified to satisfy the expressions for the mean and

covariance on the previous slide.

Proof: completion of squares

f(µ̄t, Σ̄t, Ct, Qt)

(
1

(2π)
d

2 |S|
1

2

exp

(
−1

2
(xt −m)S

−1(xt −m)

))

62

Kalman Filter Algorithm

Algorithm Kalman_filter(µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA +=
−1µµ

t

T

tttt RAA +Σ=Σ
−1

1)(−

+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

Page 29

� Simply work through the integrals

� Key “trick”: completion of squares

� If your derivation results in a different format � apply

matrix inversion lemma to prove equivalence

How to derive these updates

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 22:

HMMs, Kalman filters

Pieter Abbeel

UC Berkeley EECS

� Current and next set of lectures

� The state is not observed

� Instead, we get some sensory information about the state

� Challenge: compute a probability distribution over the state

which accounts for the sensory information (“evidence”) which

we have observed.

Overview

Page 2

Hidden Markov Models

� Underlying Markov model over states Xt

� Assumption 1: Xt independent of X1, …, Xt-2 given Xt-1

� For each state Xt there is a random variable Zt which is a sensory
measurement of Xt

� Assumption 2: Zt is assumed conditionally independent of the other
variables given Xt

� This gives the following graphical (Bayes net) representation:

XTX2

Z1

X1 X3 X4

Z2 Z3 Z4 ZT

� Init P(x1) [e.g., uniformly]

� Observation update for time 0:

� For t = 1, 2, …

� Time update

� Observation update

� For discrete state / observation spaces: simply replace integral by

summation

Filtering in HMM

Page 3

With control inputs

� Control inputs known:

� They can be simply seen as selecting a particular dynamics function

� Control inputs unknown:

� Assume a distribution over them

� Above drawing assumes open-loop controls. This is rarely the case in

practice. [Markov assumption is rarely the case either. Both assumptions

seem to have given quite satisfactory results.]

X5X2

Z1

X1 X3 X4

Z2 Z3 Z4 E5

U2U1 U3 U4

6

Discrete-time Kalman Filter

tttttt uBxAx ε++=
−1

tttt xCz δ+=

Estimates the state x of a discrete-time controlled process

that is governed by the linear stochastic difference
equation

with a measurement

Page 4

7

Kalman Filter Algorithm

Algorithm Kalman_filter(µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA +=
−1

µµ

t

T

tttt RAA +Σ=Σ
−1

1
)(

−

+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

� From an analytical point of view == Kalman filter

� Difference: keep track of the inverse covariance rather than the

covariance matrix

[matter of some linear algebra manipulations to get into this form]

� Why interesting?

� Inverse covariance matrix = 0 is easier to work with than covariance

matrix = infinity (case of complete uncertainty)

� Inverse covariance matrix is often sparser than the covariance matrix

--- for the “insiders”: inverse covariance matrix entry (i,j) = 0 if xi is

conditionally independent of xj given some set {xk, xl, …}

� Downside: when extended to non-linear setting, need to solve a

linear system to find the mean (around which one can then linearize)

� See Probabilistic Robotics pp. 78-79 for more in-depth pros/cons

Intermezzo: information filter

Page 5

� A = [0.99 0.0074; -0.0136 0.99]; C = [1 1 ; -1 +1];

� x(:,1) = [-3;2];

� Sigma_w = diag([.3 .7]); Sigma_v = [2 .05; .05 1.5];

� w = randn(2,T); w = sqrtm(Sigma_w)*w; v = randn(2,T); v = sqrtm(Sigma_v)*v;

� for t=1:T-1

x(:,t+1) = A * x(:,t) + w(:,t);

y(:,t) = C*x(:,t) + v(:,t);

end

� % now recover the state from the measurements

� P_0 = diag([100 100]); x0 =[0; 0];

� % run Kalman filter and smoother here

� % + plot

Matlab code data generation example

Kalman filter/smoother example

Page 6

� If system is observable (=dual of controllable!) then Kalman filter will

converge to the true state.

� System is observable iff

O = [C ; CA ; CA2 ; … ; CAn-1] is full column rank (1)

Intuition: if no noise, we observe y0, y1, … and we have that the unknown

initial state x0 satisfies:

y0 = C x0

y1 = CA x0

...

yK = CAK x0

This system of equations has a unique solution x0 iff the matrix [C; CA; … CAK]

has full column rank. B/c any power of a matrix higher than n can be written in

terms of lower powers of the same matrix, condition (1) is sufficient to check

(i.e., the column rank will not grow anymore after having reached K=n-1).

Kalman filter property

� The previous slide assumed zero control inputs at all

times. Does the same result apply with non-zero control

inputs? What changes in the derivation?

Simple self-quiz

Page 7

13

Kalman Filter Summary

� Highly efficient: Polynomial in measurement

dimensionality k and state dimensionality n:

O(k2.376 + n2)

� Optimal for linear Gaussian systems!

� Most robotics systems are nonlinear!

� Extended Kalman filter (EKF)

� Unscented Kalman filter (UKF)

[And also: particle filter (next lecture)]

� I provided a game log of me playing for your convenience.

� However, to ensure you fully understand, I suggest you follow the

following procedure:

� Code up a simple heuristic policy to collect samples from the

state space for question 1. Then use these samples as your

state samples for ALP and for approximate value iteration.

� Play the game yourself for question 2 and have it learn to clone

your playing style.

� You don’t *need* to follow the above procedure, but I strongly

suggest to in case you have any doubt about how the algorithms in

Q1 and Q2 operate, b/c following the above procedure will force

you more blatantly to see the differences (and can only increase

you ability to hand in a good PS2).

Announcement: PS2

Page 8

� PS1: will get back to you over the weekend, likely Saturday

� Milestone: ditto

� PS2: don’t underestimate it!

� Office hours: canceled today. Feel free to set appointment

over email. Also away on Friday actually. Happy to come in

on Sat or Sun afternoon by appointment.

� Tuesday 4-5pm 540 Cory: Hadas Kress-Gazit (Cornell)

High-level tasks to correct low-level robot control
In this talk I will present a formal approach to creating robot controllers that ensure the robot
satisfies a given high level task. I will describe a framework in which a user specifies a
complex and reactive task in Structured English. This task is then automatically translated,
using temporal logic and tools from the formal methods world, into a hybrid controller. This
controller is guaranteed to control the robot such that its motion and actions satisfy the
intended task, in a variety of different environments.

Announcements

Nonlinear Dynamic Systems

� Most realistic robotic problems involve nonlinear

functions

noisexugx ttt +=
−

),(
1

noisexhz tt +=)(

Page 9

Linearity Assumption Revisited

Non-linear Function

Throughout: “Gaussian of P(y)” is the Gaussian which minimizes the KL-divergence with P(y). It
turns out that this means the Gaussian with the same mean and covariance as P(y).

Page 10

EKF Linearization (1)

EKF Linearization (2)

Page 11

EKF Linearization (3)

� Prediction:

� Correction:

EKF Linearization: First Order Taylor
Series Expansion

)(),(),(

)(
),(

),(),(

1111

11

1

1
11

−−−−

−−

−

−

−−

−+≈

−

∂

∂
+≈

ttttttt

tt

t

tt
tttt

xGugxug

x
x

ug
ugxug

µµ

µ
µ

µ

)()()(

)(
)(

)()(

ttttt

tt

t

t
tt

xHhxh

x
x

h
hxh

µµ

µ
µ

µ

−+≈

−

∂

∂
+≈

Page 12

EKF Algorithm

Extended_Kalman_filter(µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

),(
1−

= ttt ug µµ

t

T

tttt RGG +Σ=Σ
−1

1
)(

−

+ΣΣ= t

T

ttt

T

ttt QHHHK

))((ttttt hzK µµµ −+=

tttt HKI Σ−=Σ)(

1

1),(

−

−

∂

∂
=

t

tt
t

x

ug
G

µ

t

t
t

x

h
H

∂

∂
=

)(µ

ttttt uBA +=
−1

µµ

t

T

tttt RAA +Σ=Σ
−1

1
)(

−

+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

Simultaneous Localization and Mapping (SLAM)

� Robot navigating in unknown environment

� Perception

� Environment: typically through laser-range finders,

sonars, cameras

� Odometry (its own motion): inertial sensing, wheel

encoders, (if outdoors and clear sky-view: gps)

Page 13

Simultaneous Localization and Mapping (SLAM)

� State: (nR, eR, θR, nA, eA, nB, eB, nC, eC, nD, eD, nE, eE, nF,
eF, nG, eG, nH, eH)

� Transition model:

� Robot motion model; Landmarks stay in place

B
E

F
C

H

A

G

D

R

Simultaneous Localization and Mapping (SLAM)

� In practice: robot is not aware of all landmarks from the

beginning

� Moreover: no use in keeping track of landmarks the

robot has not received any measurements about

� Incrementally grow the state when new landmarks get

encountered.

Page 14

Simultaneous Localization and Mapping (SLAM)

� Landmark measurement model: robot measures [xk; yk],

the position of landmark k expressed in coordinate frame

attached to the robot:

� h(nR, eR, θR, nk, ek) = [xk; yk] = R(θ) ([nk; ek] - [nR; eR])

� Often also some odometry measurements

� E.g., wheel encoders

� As they measure the control input being applied, they

are often incorporated directly as control inputs (why?)

33

EKF SLAM Application

[courtesy by J. Leonard]

Page 15

34

EKF SLAM Application

odometry estimated trajectory

[courtesy by John Leonard]

EKF-SLAM: practical challenges

� Defining landmarks

� Laser range finder: Distinct geometric features (e.g. use RANSAC to

find lines, then use corners as features)

� Camera: “interest point detectors”, textures, color, …

� Often need to track multiple hypotheses

� Data association/Correspondence problem: when seeing features

that constitute a landmark --- Which landmark is it?

� Closing the loop problem: how to know you are closing a loop?

� Can split off multiple EKFs whenever there is ambiguity;

� Keep track of the likelihood score of each EKF and discard the ones

with low likelihood score

� Computational complexity with large numbers of landmarks.

Page 16

36

EKF Summary

� Highly efficient: Polynomial in measurement

dimensionality k and state dimensionality n:

O(k2.376 + n2)

� Not optimal!

� Can diverge if nonlinearities are large!

� Works surprisingly well even when all assumptions are

violated!

� Note duality with linearizing a non-linear system and then

running LQR back-ups to obtain the optimal linear

controller!

37

Linearization via Unscented Transform

EKF UKF

Page 17

38

UKF Sigma-Point Estimate (2)

EKF UKF

UKF Sigma-Point Estimate (3)

EKF UKF

Page 18

UKF Sigma-Point Estimate (4)

� Assume we know the distribution over X and it has a mean \bar{x}

� Y = f(X)

UKF intuition why it can perform better

[Julier and Uhlmann, 1997]

Page 19

� Assume

� 1. We represent our distribution over x by a set of sample

points.

� 2. We propagate the points directly through the function f.

� Then:

� We don’t have any errors in f !!

� The accuracy we obtain can be related to how well the

first, second, third, … moments of the samples correspond

to the first, second, third, … moments of the true

distribution over x.

UKF intuition why it can perform better

� When would the UKF significantly outperform the EKF?

Self-quiz

Page 20

� Picks a minimal set of sample points that match 1st, 2nd

and 3rd moments of a Gaussian:

� \bar{x} = mean, Pxx = covariance, i � i’th row, x ∈ ℜn

� \kappa : extra degree of freedom to fine-tune the higher

order moments of the approximation; when x is

Gaussian, n+\kappa = 3 is a suggested heuristic

Original unscented transform

[Julier and Uhlmann, 1997]

� Dynamics update:

� Can simply use unscented transform and estimate

the mean and variance at the next time from the

sample points

� Observation update:

� Use sigmapoints from unscented transform to

compute the covariance matrix between xt and zt.
Then can do the standard update.

Unscented Kalman filter

Page 21

[Table 3.4 in Probabilistic Robotics]

Algorithm Unscented Kalman filter(µt−1,Σt−1, ut, zt):

1. Xt−1 =
(
µt−1 µt−1 + γ

√
Σt−1 µt−1 − γ

√
Σt−1

)

2. X̄ ∗

t = g(µt,Xt−1)

3. µ̄t =
∑2n

i=0w
[i]
mX̄

∗[i]
t

4. Σ̄t =
∑2n

i=0 w
[i]
c (X̄

∗[i]
t − µ̄t)(X̄

∗[i]
t − µ̄t)

⊤ + Rt

5. X̄t =
(
µ̄t µ̄t + γ

√
Σ̄t µ̄t − γ

√
Σ̄t

)

6. Z̄t = h(X̄t)

7. ẑt =
∑2n

i=0 w
[i]
m Z̄

[i]
t

8. St =
∑2n

i=0w
[i]
c

(
Z̄
[i]
t − ẑt

)(
Z̄
[i]
t − ẑt

)⊤
+Qt

9. Σ̄x,zt =
∑2n

i=0 w
[i]
c

(
X̄
[i]
t − µ̄t

)(
Z̃
[i]
t − ẑt

)⊤

10. Kt = Σ̄
x,z
t S−1t

11. µt = µ̄t +Kt(zt − ẑt)

12. Σt = Σ̄t −KtStK
⊤

t

13. return µt,Σt

UKF Summary

� Highly efficient: Same complexity as EKF, with a constant

factor slower in typical practical applications

� Better linearization than EKF: Accurate in first two terms

of Taylor expansion (EKF only first term)

� Derivative-free: No Jacobians needed

� Still not optimal!

Page 1

� Final project: 45% of the grade, 10% presentation, 35%

write-up

� Presentations: in lecture Dec 1 and 3

� If you have constraints, inform me by email by Wednesday night, we

will assign the others at random on Thursday

� PS2: due Friday 23:59pm.

� Tuesday 4-5pm 540 Cory: Hadas Kress-Gazit (Cornell)

High-level tasks to correct low-level robot control
In this talk I will present a formal approach to creating robot controllers that ensure the robot
satisfies a given high level task. I will describe a framework in which a user specifies a
complex and reactive task in Structured English. This task is then automatically translated,
using temporal logic and tools from the formal methods world, into a hybrid controller. This
controller is guaranteed to control the robot such that its motion and actions satisfy the
intended task, in a variety of different environments.

Announcements

CS 287: Advanced Robotics

Fall 2009

Lecture 23:

HMMs: Kalman filters, particle filters

Pieter Abbeel

UC Berkeley EECS

Page 2

Hidden Markov Models

Joint distribution is assumed to be of the form:

P(X1 = x1) P(Z1 = z1 | X1 = x1) P(X2 = x2 | X1 = x1) P(Z2 = z2 | X2 = x2) …
P(XT = xT | XT-1 = xT-1) P(ZT = zT | XT = xT)

XTX2

Z1

X1 X3 X4

Z2 Z3 Z4 ZT

� Init P(x1) [e.g., uniformly]

� Observation update for time 0:

� For t = 1, 2, …

� Time update

� Observation update

� For discrete state / observation spaces: simply replace integral by

summation

Filtering in HMM

Page 3

5

Discrete-time Kalman Filter

tttttt uBxAx ε++=
−1

tttt xCz δ+=

Estimates the state x of a discrete-time controlled process

that is governed by the linear stochastic difference
equation

with a measurement

6

Kalman Filter Algorithm

Algorithm Kalman_filter(µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

ttttt uBA +=
−1µµ

t

T

tttt RAA +Σ=Σ
−1

1)(−

+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

Page 4

Nonlinear systems

noisexugx ttt +=
−

),(1

noisexhz tt +=)(

Extended Kalman filter (EKF)

Page 5

� Prediction:

� Correction:

EKF Linearization: First Order Taylor
Series Expansion

)(),(),(

)(
),(

),(),(

1111

11

1

1
11

−−−−

−−

−

−

−−

−+≈

−

∂

∂
+≈

ttttttt

tt

t

tt
tttt

xGugxug

x
x

ug
ugxug

µµ

µ
µ

µ

)()()(

)(
)(

)()(

ttttt

tt

t

t
tt

xHhxh

x
x

h
hxh

µµ

µ
µ

µ

−+≈

−

∂

∂
+≈

EKF Algorithm

Extended_Kalman_filter(µt-1, Σt-1, ut, zt):

Prediction:

Correction:

Return µt, Σt

),(1−
= ttt ug µµ

t

T

tttt RGG +Σ=Σ
−1

1)(−

+ΣΣ= t

T

ttt

T

ttt QHHHK

))((ttttt hzK µµµ −+=

tttt HKI Σ−=Σ)(

1

1),(

−

−

∂

∂
=

t

tt
t

x

ug
G

µ

t

t
t

x

h
H

∂

∂
=

)(µ

ttttt uBA +=
−1µµ

t

T

tttt RAA +Σ=Σ
−1

1)(−

+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

Page 6

11

Linearization via Unscented Transform

EKF UKF

UKF Sigma-Point Estimate (4)

Page 7

� Assume we know the distribution over X and it has a mean \bar{x}

� Y = f(X)

UKF intuition why it can perform better

[Julier and Uhlmann, 1997]

� Assume

� 1. We represent our distribution over x by a set of sample

points.

� 2. We propagate the points directly through the function f.

� Then:

� We don’t have any errors in f !!

� The accuracy we obtain can be related to how well the

first, second, third, … moments of the samples correspond

to the first, second, third, … moments of the true

distribution over x.

UKF intuition why it can perform better

Page 8

� When would the UKF significantly outperform the EKF?

Self-quiz

� Picks a minimal set of sample points that match 1st, 2nd

and 3rd moments of a Gaussian:

� \bar{x} = mean, Pxx = covariance, i � i’th row, x ∈ ℜn

� \kappa : extra degree of freedom to fine-tune the higher

order moments of the approximation; when x is

Gaussian, n+\kappa = 3 is a suggested heuristic

Original unscented transform

[Julier and Uhlmann, 1997]

Page 9

� Dynamics update:

� Can simply use unscented transform and estimate

the mean and variance at the next time from the

sample points

� Observation update:

� Use sigmapoints from unscented transform to

compute the covariance matrix between xt and zt.
Then can do the standard update.

Unscented Kalman filter

[Table 3.4 in Probabilistic Robotics]

Algorithm Unscented Kalman filter(µt−1,Σt−1, ut, zt):

1. Xt−1 =
(
µt−1 µt−1 + γ

√
Σt−1 µt−1 − γ

√
Σt−1

)

2. X̄ ∗

t = g(µt,Xt−1)

3. µ̄t =
∑2n

i=0w
[i]
mX̄

∗[i]
t

4. Σ̄t =
∑2n

i=0 w
[i]
c (X̄

∗[i]
t − µ̄t)(X̄

∗[i]
t − µ̄t)

⊤ + Rt

5. X̄t =
(
µ̄t µ̄t + γ

√
Σ̄t µ̄t − γ

√
Σ̄t

)

6. Z̄t = h(X̄t)

7. ẑt =
∑2n

i=0 w
[i]
m Z̄

[i]
t

8. St =
∑2n

i=0w
[i]
c

(
Z̄
[i]
t − ẑt

)(
Z̄
[i]
t − ẑt

)⊤
+Qt

9. Σ̄x,zt =
∑2n

i=0 w
[i]
c

(
X̄
[i]
t − µ̄t

)(
Z̃
[i]
t − ẑt

)⊤

10. Kt = Σ̄
x,z
t S−1t

11. µt = µ̄t +Kt(zt − ẑt)

12. Σt = Σ̄t −KtStK
⊤

t

13. return µt,Σt

Page 10

UKF Summary

� Highly efficient: Same complexity as EKF, with a constant

factor slower in typical practical applications

� Better linearization than EKF: Accurate in first two terms

of Taylor expansion (EKF only first term) + capturing more

aspects of the higher order terms

� Derivative-free: No Jacobians needed

� Still not optimal!

30

� Particle filters are a way to efficiently represent

non-Gaussian distribution

� Basic principle

� Set of state hypotheses (“particles”)

� Survival-of-the-fittest

Particle filters motivation

Page 11

Sample-based Localization (sonar)

FastSLAM [particle filter + Rao-Blackwellization +

occupancy grid mapping + scan matching based odometry]

Page 12

� Particle sets can be used to approximate functions

Sample-based Mathematical Description of
Probability Distributions

� The more particles fall into an interval, the higher the

probability of that interval

� If a continuous density needs to be extracted � can place

a narrow Gaussian at the location of each particle

� How to efficiently draw samples in an HMM?

Dynamics update with sample representation
of distribution: sample from P(xt+1 | xt)

Page 13

� Goal: go from a sample-based representation of

P(xt+1 | z1, …, zt)

to a sample-based representation of

P(xt+1 | z1, …, zt, zt+1) =

C * P(xt+1 | z1, …, zt) * P(zt+1 | xt+1)

Observation update

� Interested in estimating:

� Hence we could sample from an alternative distribution Q and

simply re-weight the samples == Importance Sampling

Importance sampling

EX∼P [f(X)] =

∫

x

f(x)P (x)dx

=

∫

x

f(x)P (x)
Q(x)

Q(x)
dx ifQ(x) = 0⇒ P (x) = 0

=

∫

x

f(x)
P (x)

Q(x)
Q(x)dx

= EX∼Q[
P (X)

Q(X)
f(X)]

≈
1

m

m∑

i=1

P (x(i))

Q(x(i))
f(x(i)) with x(i) ∼ Q

Page 14

� Sample x(1)1, x
(2)

1, …, x(N)1 from P(X1)

� Set w(i)
1= 1 for all i=1,…,N

� For t=1, 2, …

� Dynamics update:

� For i=1, 2, …, N

� Sample x(i)t from P(Xt+1 | Xt = x(i)t)

� Observation update:

� For i=1, 2, …, N

� w(i)
t+1 = w(i)

t* P(zt+1 | Xt+1 = x(i)t+1)

� At any time t, the distribution is represented by the weighted set of samples

{ <x(i)t, w
(i)

t> ; i=1,…,N}

Sequential Importance Sampling (SIS) Particle Filter

� The resulting samples are only weighted by the

evidence

� The samples themselves are never affected by the

evidence

� Fails to concentrate particles/computation in the high

probability areas of the distribution P(xt | z1, …, zt)

SIS particle filter major issue

Page 15

� At any time t, the distribution is represented by the

weighted set of samples

{ <x(i)t, w
(i)

t> ; i=1,…,N}

� Sample N times from the set of particles

� The probability of drawing each particle is given by its

importance weight

� More particles/computation focused on the parts of the

state space with high probability mass

Resampling

1. Algorithm particle_filter(St-1, ut-1 zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample from using and

6. Compute importance weight

7. Update normalization factor

8. Insert

9. For

10. Normalize weights

0, =∅= ηtS

ni K1=

},{ ><∪=
i

t

i

ttt wxSS

i

tw+=ηη

i

tx),|(11 −− ttt uxxp)(

1

ij

tx
− 1−tu

)|(i

tt

i

t xzpw =

ni K1=

η/i

t

i

t ww =

Page 16

Particle Filters

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

α
α

α

=←

←

−

−

−

Sensor Information: Importance Sampling

Page 17

∫←
−

'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

α
α

α

=←

←

−

−

−

Sensor Information: Importance Sampling

Page 18

Robot Motion

∫←
−

'd)'()'|()(, xxBelxuxpxBel

� Loss of samples …

Resampling issue

Page 19

Low Variance Resampling

Low Variance Resampling

� Advantages:

� More systematic coverage of space of samples

� If all samples have same importance weight, no

samples are lost

� Lower computational complexity

Page 20

� If no dynamics noise � all particles will start to coincide

� � regularization: resample from a (narrow) Gaussian

around the particle

Regularization

Mobile Robot Localization

� Each particle is a potential pose of the robot

� Proposal distribution is the motion model of the robot

(prediction step)

� The observation model is used to compute the importance

weight (correction step)

Page 21

Start

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor Sonar sensor

Note: sensor model is not Gaussian at all!

Page 22

Sample-based Localization (sonar)

55

Page 23

56

57

Page 24

58

59

Page 25

60

61

Page 26

62

63

Page 27

64

65

Page 28

66

67

Page 29

68

69

Page 30

70

71

Page 31

72

77

Summary – Particle Filters

� Particle filters are an implementation of
recursive Bayesian filtering

� They represent the posterior by a set of
weighted samples

� They can model non-Gaussian distributions

� Proposal to draw new samples

� Weight to account for the differences between
the proposal and the target

� Monte Carlo filter, Survival of the fittest,

Condensation, Bootstrap filter

Page 32

78

Summary – PF Localization

� In the context of localization, the particles are

propagated according to the motion model.

� They are then weighted according to the likelihood of

the observations.

� In a re-sampling step, new particles are drawn with a

probability proportional to the likelihood of the

observation.

Page 1

� PS2: due Friday 23:59pm.

� Final project: 45% of the grade, 10% presentation, 35%

write-up

� Presentations: in lecture Dec 1 and 3 --- schedule:

Announcements

CS 287: Advanced Robotics

Fall 2009

Lecture 24:

SLAM

Pieter Abbeel

UC Berkeley EECS

Page 2

3

Types of SLAM-Problems

� Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel,

01;…]

� Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

� State variables:

� Robot pose

� Coordinates of each of the landmarks

� Robot dynamics model: P(xt+1 | xt, ut)

� Sensor model: P(zt+1 | xt, m)

� Probability of landmark observations given the state

� Can run EKF, SEIF, various other approaches

� Result: path of robot, location of landmarks

KF-type approaches are a good fit b/c they can keep track of

correlations between landmarks

Note: Could then use path of robot + sensor log and build a map

assuming known robot poses

Recap Landmark based SLAM

Page 3

6

� Can we solve the SLAM problem if no pre-defined landmarks

are available?

� As with landmarks, the map depends on the poses of the

robot during data acquisition

� If the poses are known, grid-based mapping is easy

(“mapping with known poses”)

Grid-based SLAM

7

Occupancy Grid Maps

� Introduced by Moravec and Elfes in 1985

� Represent environment by a grid.

� Estimate the probability that a location is
occupied by an obstacle.

� Key assumptions

� Occupancy of individual cells (m[xy]) is independent

� Robot positions are known!

∏=

=
−

yx

xy

t

tttt

mBel

zuzumPmBel

,

][

121

)(

),,,|()(K

Page 4

8

z+d1 z+d2

z+d3z

z-d1

Occupancy Value Depending on the
Measured Distance

log
P (m[xy] = 1)

P (m[xy] = 0)
← log

P (m[xy] = 1)

P (m[xy] = 0)
+ log

P (m[xy] = 1|zt)

P (m[xy] = 0|zt)

9

Incremental Updating
of Occupancy Grids (Example)

Page 5

10

Alternative: Simple Counting

� For every cell count
� hits(x,y): number of cases where a beam ended at

<x,y>

� misses(x,y): number of cases where a beam passed
through <x,y>

� Value of interest: P(reflects(x,y))

),misses(),hits(

),hits(
)(][

yxyx

yx
mBel

xy

+

=

12

Difference between Occupancy Grid Maps and Counting

� The counting model determines how often a cell reflects a

beam.

� The occupancy model represents whether or not a cell is

occupied by an object.

� Although a cell might be occupied by an object, the

reflection probability of this object might be very small.

Page 6

13

Example Occupancy Map

14

Example Reflection Map

glass panes

Page 7

15

Example

� Out of 1000 beams only 60% are reflected from a cell and

40% intercept it without ending in it.

� Accordingly, the reflection probability will be 0.6.

� Suppose p(occ | z) = 0.55 when a beam ends in a cell and

p(occ | z) = 0.45 when a cell is intercepted by a beam that

does not end in it.

� Accordingly, after n measurements we will have

� Whereas the reflection map yields a value of 0.6, the

occupancy grid value converges to 1.

2.0*4.0*6.0*4.0*6.0*

9

11

9

11
*

9

11

55.0

45.0
*

45.0

55.0
nnnnn

=

=

−

16

Mapping using Raw Odometry

Page 8

� Standard particle filter represents the distribution by a

set of samples

Distribution over robot poses and maps

18

Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements

Page 9

19

Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements

20

Rao-Blackwellization

This is localization, use MCL

Use the pose estimate

from the MCL part and apply

mapping with known poses

Page 10

22

Rao-Blackwellized Mapping

� Each particle represents a possible trajectory of the
robot

� Each particle

� maintains its own map and

� updates it upon “mapping with known poses”

� Each particle survives with a probability proportional to
the likelihood of the observations relative to its own
map

23

Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles

Page 11

24

Problem

� Each map is quite big in case of grid maps

� Since each particle maintains its own map

� Therefore, one needs to keep the number of particles
small

� Solution:
Compute better proposal distributions!

� Idea:
Improve the pose estimate before applying the particle
filter

25

Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to

the (i-1)-th pose and map

{ })ˆ,|()ˆ ,|(maxargˆ
111 −−−

⋅= tttttt
x

t xuxpmxzpx
t

robot motioncurrent measurement

map constructed so far

Page 12

26

Motion Model for Scan Matching

Raw Odometry

Scan Matching

30

FastSLAM with Scan-Matching

M
a
p
:
In
te
l
R
e
se
a
rc
h
 L
a
b
 S
e
a
tt
le

Page 13

Map of the Intel Lab

� 15 particles

� four times faster
than real-time
P4, 2.8GHz

� 5cm resolution
during scan
matching

� 1cm resolution in
final map

32

FastSLAM with Scan-Matching

Loop Closure

Page 14

33

Scan matching: likelihood field

Map m Likelihood field

=map convolved with a Gaussian

34

Scan Matching

� Extract likelihood field from scan and use it to match

different scan.

Page 15

� Rao-Blackwellized representation:

� Particle instantiates entire path of robot

� Map associated with each path

� Scan matching: improves proposal distribution

� Original FastSLAM:

� Map associated with each particle was a Gaussian

distribution over landmark positions

� DP-SLAM: extension which has very efficient map

management, enabling having a relatively large number

of particles [Eliazar and Parr, 2002/2005]

FastSLAM recap

� Landmark based vs. occupancy grid

� Probability distribution representation:

� EKF vs. particle filter vs. Rao-Blackwellized particle

filter

� EKF, SEIF, FastSLAM are all “online”

� Currently popular 4th alternative: GraphSLAM

SLAM thus far

Page 16

Graph-based Formulation

� Use a graph to represent the problem

� Every node in the graph corresponds to a pose of the
robot during mapping

� Every edge between two nodes corresponds to the
spatial constraints between them

� Goal:
Find a configuration of the nodes that minimize the error
introduced by the constraints

JGraphSLAM = x⊤0 Ω0x0 +
∑

t

(xt − g(ut, xt−1))
⊤R−1t (xt − g(ut, xt−1))

+
∑

t

∑

i

(zit − h(xt,m, c
i
t))

⊤Q−1t (zit − h(xt,m, c
i
t))

The KUKA Production Site

Page 17

The KUKA Production Site

The KUKA Production Site

scans 59668

total acquisition time 4,699.71 seconds

traveled distance 2,587.71 meters

total rotations 262.07 radians

size 180 x 110 meters

processing time < 30 minutes

Page 18

GraphSLAM

Visual SLAM for Flying Vehicles
Bastian Steder, Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard

Autonomous Blimp

Page 19

� Control: underactuation, controllability, Lyapunov, dynamic

programming, LQR, feedback linearization, MPC

� Reinforcement learning: value iteration, policy iteration, linear

programming, Q learning, TD, value function approximation, Sarsa,

LSTD, LSPI, policy gradient, imitation learning, inverse

reinforcement learning, reward shaping, exploration vs. exploitation

� Estimation: Bayes filters, KF, EKF, UKF, particle filter, occupancy

grid mapping, EKF slam, GraphSLAM, SEIF, FastSLAM

� Manipulation and grasping: force closure, grasp point selection,

visual servo-ing, more sub-topics tbd

� Case studies: autonomous helicopter, Darpa Grand/Urban

Challenge, walking, mobile manipulation.

� Brief coverage of: system identification, simulation, pomdps, k-

armed bandits, separation principle

Recap – tentative syllabus

