
Homework 3

E. Todorov, AMATH/CSE 579

Due June 12 noon

Here we will construct a global control policy for the cart-pole system.
Let y denote the horizontal position of the cart and � the angle of the
pole/pendulum which is attached to the cart, where � = 0 corresponds to

the upright position. The state vector is x =
�
�; y; _�; _y

�
. The system is

under-actuated: there is a scalar control u pushing the cart in the horizontal
direction. The goal is to push the cart in such a way that the pendulum
swings to the upright position and stays there.
The dynamics are:

�� =
9:8 sin � �

�
u+ _�2 sin �

�
cos � � 0:1 _�

8=3� cos2 �
�y = u+ _�2 sin � � �� cos �

Note the unusual form of the horizontal acceleration �y: it is expressed as a
function of the angular acceleration ��, which needs to be computed �rst.
You should design a cost function that captures this task. In addition

to the task cost (with minimum at � = 0) you should include the usual
quadratic control cost, with some weight that produces sensible controls.
Recall that for optimal control problems in the form

_x = a (x) +B (x)u

` (x; u) = q (x) +
1

2
uTRu

the optimal value function for the in�nite-horizon average-cost setting is the
solution to the HJB equation

c+ v� (x) = ` (x; u� (x)) + (a (x) +B (x)u� (x))T v�x (x)
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where the optimal control law is given by

u� (x) = �R�1B (x)T v�x (x)

Let us now replace the (unknown) function v� (x) with a parametric func-
tion approximator v (x;w). The approach here is to fund the w for which
the above HJB equation is satis�ed as closely as possible. The average cost
c is also an unknown parameter that needs to be computed along the way.
We can �t w using a collocation method as follows. De�ne a set of colloca-

tion states fxng which should be larger than the number of free parameters,
and should cover the region of state space where we want to obtain a good
solution (since our state space is only 4D, we can cover all of it here). De�ne
the Bellman residual error

E (w; c) =
1

N

NX
n=1

�
` (xn; u (xn; w)) + (a (xn) +B (xn)u (xn; w))

T vx (xn; w)� c� v (xn; w)
�2

where the control law u (x;w) is given by

u (x;w) = �R�1B (x)T vx (x;w)

The quantityE (w; c) can now be minimized numerically via gradient descent.
You should be able to compute the gradient of E analytically.
For the function approximator, use a mixture of Gaussians whose centers

are scattered around the state space. For simplicity �x the centers and
covariances of the Gaussians, and only adjust their scalar weights. Thus the
function approximator is

v (x;w) =
KX
i=1

wi exp
�
� (x� ri)T S (x� ri)

�
where frig are the centers of the Gaussians, and S is half the inverse covari-
ance matrix (assumed to be the same for all Gaussians). Again, we �x frig
and S in advance and adjust fwig and c by optimizing the quantity E.
You should experiment with the number of placement of the Gaussian

bases and collocation states, so that the resulting control law can indeed
control the cart-pole system and make the pole go to the upright position.
Submit your code along with �gures illustrating the behavior of the re-

sulting control law, and some text summarizing your observations.
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