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Abstract: Recent work on path integral stochastic optimal control theory Theodorou et al.
(2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear
systems in high dimensional state spaces. The path integral control framework relies on the
transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation
(PDE) into a linear PDE and the approximation of its solution via the use of the Feynman
Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic
optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of
stochastic dynamical systems with state dependent control and diffusion matrices. Moreover
we present the iterative path integral control approach, the so called Policy Improvement with
Path Integrals or (PI2) which is capable of scaling in high dimensional robotic control problems.
Furthermore we present a convergence analysis of the proposed algorithm and we apply the
proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion
the iterative path integral control is applied for learning nonlinear limit cycle attractors with
adjustable land scape.
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1. INTRODUCTION

The framework of nonlinear stochastic optimal control
theory has been one of the most general control theoretic
approaches with a variety of applications in domains that
span from biology Todorov (2005), Li et al. (2004) and
neuroscience Izawa et al. (2008) to vehicle and mobile
robot control Papageorgiou and Bauschert (1994). There
has been a broad applicability of nonlinear stochastic
optimal control due to that fact that dynamical systems
are usually highly nonlinear and stochastic. There are
different sources of stochasticity and randomness that are
related to the dynamics under control. For example, in case
of neuromuscular systems stochasticity may come from
the noisy neural commands while in humanoid and mobile
robotics randomness may be caused due to noise in prio-
preceptive sensors such as odometers, gyros etc as well as
contact with the environment.
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One of the main issues with stochastic optimal control is
that for the case of nonlinear systems, its solution requires
the solution of a nonlinear and second order partial dif-
ferential equation, the so called Hamilton Jacobi Bellman
equation Stengel (1994); Jacobson and Mayne (1970). How
to solve such partial differential equation especially for
high dimensional state space models is still an open re-
search problem. The challenges in solving this PDE have
limited the use of stochastic optimal control to low di-
mensional control problems. In fact, in the area humanoid
robot control Sciavicco and Siciliano (2000) where systems
are nonlinear and they can have more than 35 degrees
of freedom (= 70 states), the curse of dimensionality is
the main obstacle in applying optimal control methods.
In addition to the high dimensionality, accurate models of
the underlying nonlinear robotic dynamics are not usually
available.

Recent work on Path Integral stochastic optimal control
Kappen (2007, 2005b,a) gave interesting insights into sym-
metry breaking phenomena while it provided conditions
under which the nonlinear and second order HJB could be
transformed into a linear PDE similar to the backward
chapman Kolmogorov PDE. In Broek et al. (2008) the
path integral stochastic optimal control was extended to
the case of multi-agent dynamics. In all this work, the
theory was developed for stochastic dynamical systems of
low dimensioanality with control transition and diffusion
matrices constant. Even though linear PDEs are easier to



be solved with the use of Feynamn - Kac lemmas this con-
nection was not initially made in Kappen (2007, 2005b,a).
In Theodorou et al. (2010a,b); Theodorou (2011)we have
generalized the path integral control framework such that
it could be applied to stochastic dynamics with state
dependent control transition and diffusion matrices, while
we have made use of the Feynman Kac lemma to approx-
imate solution of the resulting linear PDE. Moreover we
have proposed an iterative version of path integral control
capable of scaling in high dimensional planning and control
problems, the so called Policy Improvement with Path
Integrals or (PI2) for short. In Buchli et al. (2010) PI2 was
applied to variable stiffness control which is an application
equivalent to autonomously tuning PD gains in a 6DOF
manipulator. In Stulp et al. (2010), PI2 was able to learn
a full-body humanoid motor skill in simulation, involving
all 34-DOF of the robot.

In this paper, in Section 2, we are reviewing the generalized
path integral stochastic optimal control (see Theodorou
et al. (2010a); Theodorou (2011)). In Section 3, we develop
the iterative version of path integral stochastic optimal
control approach PI2 and we present, for the first time,
the convergence analysis of the underlying algorithm.
This analysis provides the conditions of convergence as
well as important insights for the application of PI2

in high dimensional planning and control problems. In
Section 4, we present learnable nonlinear systems which
behave as point or limit cycle attractors. In Section 5,
these attractors are used to parameterized either reference
trajectories, for the case of planning, or control gains
for the case of control. In the Section 6, we present
applications of PI2. More precisely in Section 6.1 PI2 is
used for the task of jumping over a gap with the 12DOF
little dog robot while in 6.2 PI2 is used for learning to
open a door with a simulated CBi humanoid robot. Finally,
towards learning locomotion, PI2 is applied to learning
rhythmic behaviors with nonlinear limit cycle attractor
systems.

2. PATH INTEGRAL STOCHASTIC OPTIMAL
CONTROL

The goal in stochastic optimal control is to control a
stochastic dynamical system while minimizing a per-
formance criterion. Therefore, in mathematical term a
stochastic optimal control problem can be formulated as
follows:

V (x) = min
u
J(x,u) = min

u

∫ tN

to

L(x,u, t)dt (1)

subject to the stochastic dynamical constrains:
dx = (f(xt) + G(x)u) dt+ B(x)Ldω (2)

with xt ∈ <n×1 denoting the state of the system, Gt =
G(xt) ∈ <n×p the control matrix, Bt = B(xt) ∈ <n×p
is the diffusions matrix ft = f(xt) ∈ <n×1 the passive
dynamics, ut ∈ <p×1 the control vector and dω ∈ <p×1

brownian noise. L ∈∈ <p×p is a state independent matrix
with Σε = LLT . As immediate reward we consider

rt = r(xt,ut, t) = qt +
1
2
uTt Rut (3)

where qt = q(xt, t) is an arbitrary state-dependent cost
function, and R is the positive definite weight matrix of
the quadratic control cost. The stochastic HJB equation

(Stengel, 1994; Fleming and Soner, 2006) associated with
this stochastic optimal control problem is expressed as
follows:

−∂tVt = min
u

(
rt + (∇xVt)T ft +

1
2
tr
(
(∇xxVt)GtΣεGT

t

))
(4)

To find the minimum, the reward function (3) is inserted
into (4) and the gradient of the expression inside the
parenthesis is taken with respect to controls u and set
to zero. The corresponding optimal control is given by the
equation:

u(xt) = ut = −R−1G(x)T (∇xV (x, t)) (5)

Substitution of the optimal control into the stochastic HJB
(4) results in the following nonlinear and second order
PDE:

−∂tVt = qt + (∇xVt)T ft −
1
2

(∇xVt)TGtR−1GT
t (∇xVt)

+
1
2
tr
(
(∇xxVt)BtΣεBT

t

)
(6)

To transform the PDE above into a linear one, we use
a exponential transformation of the value functionVt =
−λ log Ψt. Given this logarithmic transformation, the par-
tial derivatives of the value function with respect to time
and state are expressed as follows: ∂tVt = −λ 1

Ψt
∂tΨt,

∇xVt = −λ 1
Ψt
∇xΨt and ∇xxVt = λ 1

Ψ2
t
∇xΨt ∇xΨT

t −
λ 1

Ψt
∇xxΨt By inserting the logarithmic transformation

and the derivatives of the value function as well as consid-
ering the assumption λG(x)R−1G(x)T = B(x)ΣεB(x)T =
Σ(xt) = Σt the resulting PDE is formulated as follows:

−∂tΨt = − 1
λ
qtΨt + fTt (∇xΨt) +

1
2
tr ((∇xxΨt)Σt) (7)

with boundary condition: ΨtN = exp
(
− 1
λφtN

)
. The par-

tial differential equation (PDE) in (7) corresponds to the
so called Chapman Kolmogorov PDE, which is of second
order and linear. Analytical solutions of even linear PDEs
are plausible only in very special cases which correspond
to systems with trivial low dimensional dynamics. In this
work we compute the solution of the linear PDE above
with the use of the Feynman - Kac lemma Oksendal (2003).
The Feynman- Kac lemma provides a connection between
stochastic differential equations and PDEs and therefore
its use is twofold. On one side it can be used to find
probabilistic solutions of PDEs based on forward sampling
of diffusions while on the other side it can be used find
solution of SDEs based on deterministic methods that
numerically solve PDEs. The solution of the PDE above
can be found by evaluating the expectation:

Ψ (xti) = Eτ i

(
e
−
∫ tN
ti

1
λ q(x)dt

Ψ(xtN )
)

(8)

on sample paths τ i = (xi, ...,xtN ) generated with the
forward sampling of the diffusion equation dx = f(xt)dt+
B(x)dω. Under the use of the Feynman Kac lemma the
stochastic optimal control problem has been transformed
into an approximation problem of a path integral. With
a view towards a discrete time approximation, which will
be needed for numerical implementations, the solution (8)
can be formulated as:



Ψti = lim
dt→0

∫
p (τ i|xi) exp

− 1
λ

φtN +
N−1∑
j=i

qtjdt

dτ i
(9)

where τ i = (xti , .....,xtN ) is a sample path (or trajectory
piece) starting at state xti and the term p (τ i|xi) is the
probability of sample path τ i conditioned on the start
state xti . Since equation (9) provides the exponential cost
to go Ψti in state xti , the integration above is taken with
respect to sample paths τ i =

(
xti ,xti+1 , .....,xtN

)
. The

differential term dτ i is defined as dτ i = (dxti , ....., dxtN ).
After the exponentiated value function Ψ(x, t) has been
approximated, the optimal control are found according to
the equation that follows:

u = λR−1G(x)T
∇xΨ(x, t)

Ψ(x, t)
(10)

Clearly optimal controls in the equation above act such
that the stochastic dynamical system visits regions of the
state space with high exponentiated values function Ψ(x, t)
while in the optimal control formulation (5) controls will
move the system towards part of the state space with
minimum cost-to-go V (x, t). This observation is in com-
plete agreement with the exponentiation of value function
Ψ(x, t) = exp

(
− 1
λV (x, t)

)
. Essentially, the resulting value

function Ψ(x, t) can be thought as a probability of the
state and thus states with high cost to go V (x, t) will be
less probable(= small Ψ(x, t)) while state with small cost
to go will be most probable. In that sense the stochastic op-
timal control has been transformed from a minimization to
maximization optimization problem. Finally the intuition
behind the condition λG(x)R−1G(x)T = B(x)ΣεB(x)T
is that, since the weight control matrix R is inverse propor-
tional to the variance of the noise, a high variance control
input implies cheap control cost, while small variance con-
trol inputs have high control cost. From a control theoretic
stand point such a relationship makes sense due to the
fact that under a large disturbance (= high variance)
significant control authority is required to bring the system
back to a desirable state. This control authority can be
achieved with corresponding low control cost in R.

With the goal to find the Ψ(x, t) in equation (9), in the
next section we derive the distribution p (τ i|xi) based on
the passive dynamics. This is a generalization of results in
Kappen (2007); Broek et al. (2008) for more details see
Theodorou et al. (2010a), Theodorou (2011) .

2.1 Generalized Path Integral Formulation

In many stochastic dynamical systems, the diffusion tran-
sition matrix Bt is state depended and its structure de-
pends on the partition of the state in directly and non-
directly actuated parts. Since only some of the states
are directly actuated, the state vector is partitioned into
x = [x(m)T x(c)T ]T with x(m) ∈ <k×1 the non-directly
actuated part and x(c) ∈ <l×1the directly actuated part.
Subsequently, the passive dynamics term and the diffusion

transition matrix can be partitioned as ft = [f (m)
t

T
f (c)
t

T
]T

with fm ∈ <k×1, fc ∈ <l×1 and Bt = [0k×p B(c)
t

T
]T with

B(c)
t ∈ <l×p. The discretized state space representation of

such systems is given as:

(
x(m)
ti+1

x(c)
ti+1

)
=

(
x(m)
ti

x(c)
ti

)
+

(
f (m)
ti

f (c)
ti

)
dt+

(
0k×p
B(c)
ti

)√
dtdω

(11)

As it has been shown in Theodorou et al. (2010a),
Theodorou (2011) with the formulation above, (9) is ex-
pressed as:

Ψti = lim
dt→0

∫
1

D(τ i)
exp

(
− 1
λ
S(τ i)

)
dτ

(c)
i (12)

with:

S(τ i) = φtN +
∑N−1
j=i

qtj +
wwwwx

(c)
tj+1
−x

(c)
tj

dt − f (c)
tj

wwww2

H−1
tj

 dt

and D(τ i) = ΠN−1
j=i

(
(2π)l/2|Σtj |1/2

)
. Note that the inte-

gration is over dτ (c)
i =

(
dx(c)

ti , ....., dx
(c)
tN

)
. We can have a

more compact formulation of equation (12) formulated as:

Ψti = lim
dt→0

∫
exp

(
− 1
λ
Z(τ i)

)
dτ

(c)
i (13)

where Z(τ i) = S(τ i) + λ logD(τ i). It can be shown
that Z(τ i) = S̃(τ i) + λ(N−i)l

2 log (2πdtλ) where S̃(τ i) =
S(τ i) + λ

2

∑N−1
j=i log |Btj | and B = B(x)B(x)T . This

formula is a necessary step for the derivation of op-
timal controls in the next section. As it is shown in
Theodorou et al. (2010a); Theodorou (2011) the constant
term λNl

2 log (2πdtλ) drops from our calculations.

2.2 Optimal Controls

For every moment of time, the optimal controls are given
as u(xti) = −R−1GT

ti(∇xtiVti). Due to the exponential
transformation of the value function, the equation of the
optimal controls can be written as

u(xti) = λR−1Gti

∇xti
Ψti

Ψti

(14)

After substituting Ψti with (13) and canceling the state
independent terms of the cost we have:

u(xti) = lim
dt→0

λR−1GT
ti

∇
x

(c)
ti

(∫
e−

1
λ S̃(τ i)dτ

(c)
i

)
∫
e−

1
λ S̃(τ i)dτ

(c)
i


(15)

It has been shown in Theodorou et al. (2010a), Theodorou
(2011) the optimal controls are expressed as

u(xti) = lim
dt→0

∫
P (τ i) uL (τ i) dτ

(c)
i (16)

with the probability P (τ i) and local controls uL (τ i)
defined as

P (τ i) =
e−

1
λ S̃(τ i)∫

e−
1
λ S̃(τ i)dτ i

(17)

and the local control are expressed as:

uL(τ i)dt = R−1G(c)
ti
T
(
G(c)
ti R−1G(c)

ti
T
)−1

G(c)
ti dωti

(18)

The optimal control are computed with the evaluation of
(16) and (18),(17) on the sampled trajectories.



3. ITERATIVE PATH INTEGRAL STOCHASTIC
OPTIMAL CONTROL

In this section, we show how Path Integral Control is
transformed into an iterative process, which has several
advantages for use on a real robot. In particular, the
expectation (8) in the Feynman Kac Lemma is evaluated
over the trajectories τ i =

(
xti ,xti+1 , .....,xtN

)
sampled

with the forward propagation of uncontrolled diffusion
dx = f(xt)dt + B(x)dω. This sampling approach is in-
efficient since it is very likely that parts of the state space
relevant to the optimal control task may not be reached by
the sampled trajectories at once. In addition, it has poor
scalability properties when applied to high dimensional
robotic optimal control problems. Besides the reason of
poor sampling, it is very common in robotics applications
to have an initial controller-policy which is manually tuned
and found based on experience. In such cases, the goal
is to improve this initial policy by performing an itera-
tive process. At every iteration (i) the policy δu(i−1) is
applied to the dynamical system to generate state space
trajectories which are going to be used for improving the
current policy. The policy improvement results from the
evaluation of the expectation (9) of the Feynman - Kac
Lemma on the sampled trajectories and the use of the
path integral control formalism to find δu(i). The old
policy δu(i−1) is updated according to δu(i−1) + δu(i) and
the process repeats again with the generation of the new
state space trajectories according to the updated policy. In
mathematical terms the iterative version of Path Integral
Control is expressed as follows:

V (i)(x) = min
δu(i)

J(x,u) (19)

= min
δu(i)

E

(∫ tN

to

(
q(x, t) + δu(i)T R δu(i)

)
dt

)
subject to the stochastic dynamical constrains:

dx =
(
f (i)(xt) + G(x)δu(i)

)
dt+ B(x)Ldω (20)

where f (i)(xt) = f (i−1)(xt) +G(x)δu(i−1) where δu(i−1) is
the control correction found in the previous iteration. The
linear HJB equation is now formulated as:

−∂tΨ(i)
t = − 1

λ
qtΨ

(i)
t + f (i)

t
T (∇xΨ(i)

t ) +
1
2
tr
(

(∇xxΨ(i)
t )Σ

)
(21)

The solution of PDE above is given by: Ψ(i) (xt) =

Eτ (i)

(
e
−
∫ tN
ti

1
λ q(x)dt

Ψ(xtN )
)

, where the state trajecto-

ries τ (i) are sampled with the diffusion: dx = f (i)(xt)dt+
B(x)dω. The optimal control at iteration (i) is expressed
as:

δu(i) = λR−1G(x)T
∇xΨ(i)(x, t)

Ψ(i)(x, t)
(22)

and it is applied to the dynamics f (i)(xt). The application
of the new control results in updating the previous con-
trol δu(i−1) and creating the new dynamics f (i+1)(xt) =

f (i)(xt)+G(x)δu(i) = f (i−1)(xt)+G(x)
(
δu(i) + δu(i−1)

)
.

At the next iteration (i+ 1) of the iterative path integral
control, the corresponding exponentiated value function
Ψ(i+1) is given by the following PDE:

−∂tΨ(i+1)
t =− 1

λ
qtΨ

(i+1)
t + f (i+1)

t
T (∇xΨ(i+1)

t )

+
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(23)

The solution of the PDE is now expressed as : Ψ(i+1) (xt) =

Eτ (i+1)

(
e
−
∫ tN
ti

1
λ q(x)dt

Ψ(xtN )
)

where the state trajec-

tories τ (i+1) are sampled with the diffusion: dx =
f (i+1)(xt)dt+ B(x)dω.

Our ultimate goal for the iterative path integral control
is the sufficient conditions so that at every iteration the
value function improves V (i+1)(x, t) < V (i)(x, t) < .... <
V (0)(x, t). Since in the path integral control formalism we
make use of the transformation Ψ(x, t) = exp

(
− 1
λV (x, t)

)
it suffices to show that Ψ(i+1)(x, t) > Ψ(i)(x, t) > .... >
Ψ(0)(x, t). If the last condition is true then at every (i)
iteration the stochastic dynamical system visits to regions
of state space with more and more probable states( =
states with high Ψ(x, t)). These states correspond to small
value function V (x, t). To find the condition under which
the above is true, we proceed with the analysis that follows.
Since we know that f (i+1)(xt) = f (i)(xt) + G(x)δu(i) we
substitute in (23) and we will have that:

−∂tΨ(i+1)
t =− 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t )

+
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
+ δu(i)TGT (∇xΨ(i+1)

t ) (24)

substitution of δu results in:

−∂tΨ(i+1)
t =− 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t )

+
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
+ F(x, t)

where

F(x, t) =
λ

Ψ(i)(x, t)
∇xΨ(i)(x, t)T GRGT ∇xΨ(i+1)(x, t)

(25)
correspond to a force term which is the inner product of
the gradients of the value functions at iterations (i) and
(i + 1) under the metric M = λ

Ψ(i)(x,t)
GRGT . Clearly

M > 0 since the matrix product GRGT > 0 is positive
definite and λ > 0,Ψ(x, t) > 0. Comparing the two PDEs
at iteration (i) and (i+1) and by using the linear operator
L(i) = − 1

λqt + f (i)
t

T∇x + 1
2 tr(Σ∇xx) we have:

−∂tΨ(i+1)
t = L(i)Ψ(i+1)

t + F(x, t) (26)

−∂tΨ(i)
t = L(i)Ψ(i)

t (27)

under the same terminal condition Ψ(i)
tN = Ψ(i+1)

tN =
exp

(
− 1
λφ(xtN )

)
. We claim that Ψ(i+1) < Ψ(i) if F(x, t) >



0 ∀x, t. To see this result we rewrite equation (24) in the
following form:

−∂tΨ(i+1)
t =− 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t )

+
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
+

1
λ
δu(i)T R δu(i+1)TΨ(i+1)

t (28)

or in a more compact form:

−∂tΨ(i+1)
t =− 1

λ
q̃tΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t )

+
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(29)

where the term q̃ = q̃(x, t, δu(i), δu(i+1)) is defined as
q̃ = q(x, t)− 1

λδu
(i)T R δu(i+1)T . Clearly there are 3 cases

depending on the sign of F (x, t) and therefore the sign of
1
λδu

(i)T R δu(i+1)T . More precisely we will have that

• If F(x, t) > 0 ⇒ δu(i)T R δu(i+1)T > 0. By
comparing (21) with (29) we see that state cost q̃
subtracted from Ψ(i+1) is smaller than the state cost
q subtracted from Ψ(i) and therefore Ψ(i+1)(x, t) >
Ψ(i)(x, t).
• If F(x, t) = 0 ⇒ δu(i)T R δu(i+1)T = 0 the two

PDEs (21) and (29) are identical. Therefore under the
same boundary condition Ψ(i+1)(x, tN ) = Ψ(i)(x, tN )
we will have that Ψ(i+1)(x, t) = Ψ(i)(x, t).
• If F(x, t) < 0 ⇒ δu(i)T R δu(i+1)T < 0. By

comparing (21) with (29) we see that the state cost q̃
subtracted from Ψ(i+1) is bigger than the state cost
q subtracted from Ψ(i) and therefore Ψ(i+1)(x, t) <
Ψ(i)(x, t).

4. LEARNABLE NONLINEAR ATTRACTOR
SYSTEMS

The basic idea of our approach is to use an analytically well
understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such
that it achieves a desired attractor behavior. In the two
subsections that follows we present the nonlinear point
attractors and the nonlinear limit cycle attractors.

4.1 Nonlinear Point Attractors with adjustable attractor
Land-scape

The nonlinear point attractor consists of two sets of
differential equations, the canonical and transformation
system which are coupled through a nonlinearity (Ijspeert
et al., 2003). The canonical system is formulated as 1

τ ẋt =
−αxt. That is a first - order linear dynamical system for
which, starting from some arbitrarily chosen initial state
x0 , e.g., x0 = 1, the state x converges monotonically to
zero. x can be conceived of as a phase variable, where x = 1
would indicate the start of the time evolution, and x close
to zero means that the goal g (see below) has essentially
been achieved. The transformation system consist of the
following two differential equations:

τ ż =αzβz

((
g +

f

αzβz

)
− y
)
− αzz (30)

τ ẏ =z

Essentially, these 3 differential equations code a learn-
able point attractor for a movement from yt0 to the
goal g, where θ determines the shape of the attractor.
yt, ẏt denote the position and velocity of the trajectory,
while zt, xt are internal states. αz, βz, τ are time con-
stants. The nonlinear coupling or forcing term f is de-

fined as: f(x) =
∑N

i=1
K(xt,ci)θixt∑N

i=1
K(xt,ci)

(g − y0) = ΦP (x)Tθ.

The basis functions K (xt, ci) are defined as K (xt, ci) =
exp

(
−0.5hj(xt − cj)2

)
with bandwith hj and center cj

of the Gaussian kernels – for more details see (Ijspeert
et al., 2003). The full dynamics or the rhythmic movement
primitives have the form of dx = F (x)dt+G(x)udt where
the state x is specified as x = (x, y, z) while the controls
are specified as u = θ = (θ1, ..., θp)

T .The representation
above is advantageous as it guarantees attractor properties
towards the goal while remaining linear in the parameters
θ of the function approximator. By varying the parame-
ter θ the shape of the trajectory changes while the goal
state g and initial state yt0 remain fixed. These properties
facilitate learning (Peters and Schaal, 2008).

4.2 Nonlinear Limit Cycle Attractors with adjustable
attractor Land-scape

The canonical system for the case of limit cycle attractors
consist the differential equation τ φ̇ = 1 where the term
φ ∈ [0, 2π] correspond to the phase angle of the oscillator
in polar coordinates. The amplitude of the oscillation is
assumed to be r. This oscillator produces a stable limit
cycle when projected into Cartesian coordinated with v1 =
r cos(φ) and v2 = r sin(φ). In fact, it corresponds to form
of the (Hopf-like) oscillator equations

τ v̇1 = −µ
√
v2

1 + v2
2 − r√

v2
1 + v2

2

v1 − v2 (31)

τ v̇2 = −µ
√
v2

1 + v2
2 − r√

v2
1 + v2

2

v2 + v1 (32)

where µ is a positive time constant. The system above
evolve to the limit cycle v1 = r cos(t/τ + c) and v2 =
r sin(t/τ + c) with c a constant, given any initial condi-
tions except [v1, v2] = [0, 0] which is an unstable fixed
point. Therefore the canonical system provides the am-
plitude signal (r) and a phase signal (φ) to the forc-

ing term f(φ, r) =
∑N

i=1
K(φ,ci)θi∑N

i=1
K(φ,ci)

r = ΦR(φ)Tθ, where

the basis function K (φ, ci) are defined as K (φ, ci) =
exp (hi (cos(φ− ci)− 1)). The forcing term is incorporated
into the transformation system which is expressed by the
equations (30). The full dynamics of the rhythmic move-
ment primitives have the form of dx = F (x)dt+ G(x)udt
where the state x is specified as x = (φ, v1, v2, z, y) while
the controls are specified as u = θ = (θ1, ..., θp)

T . The
term g for the case of limit cycle attractors is interpreted
as an-anchor point (or set point) for the oscillatory trajec-
tory, which can be changed to accommodate any desired



baseline of the oscillation The complexity of attractors is
restricted only by the abilities of the function approxima-
tor used to generate the forcing term, which essentially
allows for almost arbitrarily complex (smooth) attractors
with modern function approximators

5. PI2 FOR SIMULTANEOUS ROBOT CONTROL
AND PLANNING

In this section we show how the Path integral optimal
control formalism in combination with the point and
limit cycle attractors can be used for optimal planning
Theodorou et al. (2010a) and gain scheduling Theodorou
(2011); Buchli et al. (2010) of robotic systems in high
dimensions. As an example, consider a robotic system
with rigid body dynamics (RBD) equations (Sciavicco and
Siciliano, 2000) using a parameterized policy:

q̈ = M(q)−1 (−C(q, q̇)− v(q)) + M(q)−1u (33)

u = KP (qd − q) + KD(q̇d − q̇) (34)
where M is the RBD inertia matrix, C are Coriolis
and centripetal forces, and v denotes gravity forces. The
state of the robot is described by the joint angles q
and joint velocities q̇. The proportional-Derivative (PD)
controller with positive definite gain matrices KP and
KD have the form KP = diag

(
K

(1)
p ,K

(2)
p , ...,K

(N)
p

)
and

KD = diag
(
K

(1)
d ,K

(2)
d , ...,K

(N)
d

)
where K

(i)
p ,K

(i)
d are

the proportional and derivative gains for every DOF i.
These gains converts a desired trajectory qd, q̇d into a
motor command u. The gains are parameterized as follows:

dK(i)
p = αK

(
Φ(i)
P
T
(
θ(i)dt+ dω(i)

)
−K(i)

p dt
)

(35)

This equation models the time course of the position gains
which are are represented by a basis function Φ(i)

P
Tθ(i) lin-

ear with respect to the learning parameter θ(i), and these
parameter can be learned with the (PI2). We will assume
that the time constant αK is so large, that for all practical
purposes we can assume that K(i)

P = Φ(i)
p
T
(
θ(i) + ε(i)

t

)
holds at all time where ε(i)

t = dω(i)

dt . In our experiments

KD gains are specified as K(i)
d = ξ

√
K

(i)
p where ξ is user

determined. Alternatively, for the case of optimal planing
we could create another form of control structure in which
we add for the RBD system (33) the following equation:

q̈d = G(qd, q̇d)(θ + εt) (36)

where we represent the desired trajectory with point or
limit cycle attractor. The control or learning parameter
for this case is the parameter θ in (36).

6. APPLICATIONS

6.1 Task 1: Learning to jump Little dog Robot

Goal: The task for the robot dog is to jump across as
gap. The jump should make forward progress as much
as possible, as it is a maneuver in a legged locomotion

competition which scores the speed of the robot. The
robot has three DOFs per leg, and thus a total of d = 12
DOFs. Each DOF was represented as a DMP with 50 basis
functions.

Initial Trajectories: An initial seed behavior was taught
by learning from demonstration, which allowed the robot
to barely reach the other side of the gap without falling
into the gap – the demonstration was generated from
a manual adjustment of spline nodes in a spline-based
trajectory plan for each leg.

Cost function: Iterative path integral control learning
used primarily the forward progress as a reward, and
slightly penalized the squared acceleration of each DOF,
and the length of the parameter vector. Additionally, a
penalty was incurred if the yaw or the roll exceeded a
threshold value – these penalties encouraged the robot to
jump straight forward and not to the side, and not to fall
over. The exact cost function was:

(a) Real &
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Robot Dog
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Fig. 1. Reinforcement learning of optimizing to jump over
a gap with a robot dog.

rt = rroll + ryaw +
d∑
i=1

(
a1f

2
i,t + 0.5a2 θ

T
i θ
)

(37)

where rroll = 100 ∗ (|rollt| − 0.3)2 if |rollt| > 0.3 and
rroll = 0 otherwise. Similarly ryaw = 100 ∗ (|yawt| − 0.1)2

if |yawt| > 0.1 and rroll = 0 otherwise .The terminal cost
φtN = 50000(goal− xnose)2 with xnose the position of the
front tip (the “nose”) of the robot in the forward direction,
which is the direction towards the goal.

PI2 parameters: The parameters a1 and a2 are tuned
as (a1 = 1.e − 6, a2 = 1.e − 8) The multipliers for each
reward component were tuned to have a balanced influence
of all terms. Ten learning trials were performed initially
for the first parameter update. The best 5 trials were
kept, and five additional new trials were performed for
the second and all subsequent updates. Essentially, this
method performs importance sampling, as the rewards for
the 5 trials in memory were re-computed with the latest
parameter vectors. A total of 100 trials was performed
per run, and ten runs were collected for computing mean
and standard deviations of learning curves. Learning was
performed on a physical simulator of the robot dog, as the
real robot dog was not available for this experiment.

Results: Figure 1 illustrates that after about 30 trials
(i.e., 5 updates), the performance of the robot was signif-
icantly improved, such that after the jump, almost the



entire body was lying on the other side of the gap. It
should be noted that applying iterative path integral con-
trol was algorithmically very simple, and manual tuning
only focused on generated a good cost function, which is
a different research topic beyond the scope of this paper.

6.2 Task 2: Pushing open a door

Goal. In this task, the simulated CBi humanoid robot Cheng
et al. (2007) is required to open a door. This robot is
accurately simulated with the SL software Schaal (2009).
For this task, we not only learn the gain schedules, but also
improve the planned joint trajectories with PI2 simultane-
ously.

Initial trajectory. In this task, we fix the base of the
robot, and consider only the 7 degrees of freedom in the left
arm. The initial trajectory before learning is a minimum
jerk trajectory in joint space. In the initial state, the upper
arm is kept parallel to the body, and the lower arm is
pointing forward. The target state is depicted in Fig. 2.
With this task, we demonstrate that our approach can
not only be applied to imitation of observed behavior, but
also to manually specify trajectories, which are fine-tuned
along with the gain schedules.

Initial gains. The gains of the 7 joints are initialized
to 1/10th of their default values. This leads to extremely
compliant behavior, whereby the robot is not able to exert
enough force to overcome the static friction of the door,
and thus cannot move it. The minimum gain for all joints
was set to 5. Optimizing both joint trajectories and gains
leads to a 14-dimensional learning problem.

Cost function. The terminal cost is the degree to which
the door was opened, i.e. φtN = 104 · (ψmax − ψN ), where
the maximum door opening angle ψmax is 0.3rad (it is out
of reach otherwise). The immediate cost for the gains is
again qt = 1

N

∑3
i=1K

i
P .

PI2 parameters. The variance of the exploration noise
for the gains is again 10−4γn, and for the joint trajectories
10γn, both with decay parameter λ = 0.99 and n the
number of updates 1 .

Results. Fig. 2 (right) depicts the total cost of the noise-
less test trial after each update. The costs for the gains are
plotted separately. When all of the costs are due to gains,
i.e. the door is opened completely to ψmax and the task is
achieved, the graphs of the total cost and that of the gains
coincide. The joint trajectories and gain schedules after 0,
6 and 100 updates are depicted in Fig. 3.

6.3 Task 3: Learning limit cycle nonlinear attractors

Learning a complex rhythmic behavior is of critical im-
portance for tasks such as locomotion and squatting.
Therefore with goal towards learning locomotion in this
section we apply PI2 to learn a rhythmic trajectory which
result from the superposition of sinusoid functions. The
nominal behavior us for this task is generated as ynom(t) =
yoffset +

∑2
j=1Ajcos(ω t+ φ)

1 The relatively high exploration noise for the joint trajectories does
not express less exploration per se, but is rather due to numerical
differences in using the function approximator to model the gains
directly rather than as the non-linear component of a DMP.

Fig. 2. Left: Task scenario. Right: Learning curve for the
door task. The costs specific to the gains are plotted
separately.

Fig. 3. Learned joint angle trajectories (center) and gain
schedules (right) of the CBi arm after 0/6/100 up-
dates. The gain schedules of only three joints have
been depicted for sake of clarity.
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Fig. 4. Learning a rhythmic task with dynamic movement
primitives. On figure (a) the desired(blue) and the
learned(red) behaviors are illustrated. Figure (b) il-
lustrates the convergence of iterative path integral
control.

where yoffset is the offset of the rhythmic behavior, A1,2

are the amplitudes, ω1,2 are the frequencies and φ1,2 the
phases. For our particular simulation we picked yoffset =
30, A1 = A2 = 20,ω1 = 1, ω2 = 2 and φ1 = φ2 = 0.
The cost used for this task is defined as rt =

∑tN
to
δ(t −

ts) (ynom(t)− y(t))2 where δ(t − ts) = 1 for t = ts and
δ(t − ts) = 0 otherwise. We use a rhythmic movement
primitive with 10 basis functions, sufficient to match
complex rhythmic behaviors. The results are illustrated
in figure 4. The baseline of the limit cycle attractor g = 0
was initialized far away from the offset of the desired task
yoffset = 30. PI2 learns the desired behavior under any
initialization of the baseline g.



6.4 Discussion

In Task 1, jumping over the gap, the improvement in
cost corresponds to about 15 cm improvement in jump
distance, which changed the robot’s behavior from an
initial barely successful jump to jump that completely
traversed the gap with entire body. This learned behavior
allowed the robot to traverse a gap at much higher speed in
a competition on learning locomotion. It is worth noticing
that the jumping task involves contact with the ground
which results in non-smooth dynamics and cost function.
That is actually the reason of the high variability in the
first updates of PI2 which is reduced as PI2 settles to the
optimal solution in which the little dog robot completely
traverses the gap.

For the task of opening the door there are two distinct
phases during learning. In the first few updates, the gains
are increased in order to achieve the task, i.e. flip the
light switch, or open the door. This leads to a strong
decrease in the cost for not achieving the task, which is
traded off against a higher cost for higher gains. This is
clearly seen in Fig. 2, where the cost due to the gains
increases dramatically in the first few updates, whereas
the overall cost decreases. Essentially, the robot is learning
that it is able to solve the task with high-gain control 2 . In
the second phase, the exact timing and magnitudes of the
gains required to achieve the task are determined. On the
CBi robot, there is a peak in the elbow joint before contact,
as the elbow must be lifted to reach the door. During door
opening, the gains of the shoulder flexor-extensor joint
(SFE) increase, again to exert the force necessary to open
the door. Too much compliance during this time will not
allow the robot to achieve its task. After 100 updates, the
sum of the gains (i.e. the ‘cost due to gains’ in Fig. 2) for
the CBi robot is actually 25% lower than at initialization,
when it could not open the door. But by timing and tuning
the gains appropriately as depicted in Fig. 3, the robot is
now able to open the door.

Learning rhythmic behaviors is an essential step towards
learning robotic tasks such as locomotion and squatting.
Task 3 demonstrates that PI2 is able to learn complex
rhythmic tasks under any initialization of the baseline of
the nonlinear limit cycle attractor. Moreover PI2 learns
rhythmic task in multi-agent scenarios in which every DOF
corresponds to a nonlinear limit cycle attractor. Due to
space limitations we do not show these results here.

7. CONCLUSIONS

In summary, in this paper we have presented PI2 an itera-
tive version of Path Integral Control capable of scaling to
high dimensional optimal control and planning problems.
We have presented an analysis on iterative version of Path
Integral Control PI2 and find the sufficient conditions
under which convergence is achieved. Moreover we have
demonstrated the applicability of PI2 to the robotics tasks
of jumping over a gap and opening a door. Finally with
the goal towards learning locomotion we have shown learn-
ing of nonlinear limit cycle attractors. Future work will

2 This is also apparent when inspecting the (dashed) gain schedules
after a few updates (2/4/6) Fig. 3: the gains are much higher than
their low values with which they are initialized

continue applications of PI2 to limit cycle attractors for
learning locomotion as well as object manipulation tasks.
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