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Trajectory Optimization for Full-Body Movements
with Complex Contacts
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Abstract—This paper presents the first method for full-body trajectory optimization of physics-based human motion that does not rely on motion
capture, specified key-poses, or periodic motion. Optimization is performed using a small set of simple goals, e.g., one hand should be on the
ground, or the center-of-mass should be above a particular height. These objectives are applied to short spacetime windows which can be
composed to express goals over an entire animation. Specific contact locations needed to achieve objectives are not required by our method. We
show that the method can synthesize many different kinds of movement, including walking, hand walking, breakdancing, flips, and crawling. Most
of these movements have never been previously synthesized by physics-based methods.

Index Terms—Physics-based Animation, Character Animation, Motion Control.
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1 INTRODUCTION

It has long been hypothesized that many human motions can
be described as optimizing simple objective functions based
on task goals and energy consumption. Optimality is appealing
as both a simple explanation for how we move, and a simple
parameterization for motion. For character animation, optimal-
ity could allow the creation of many types of natural human
movements from high-level specifications, without requiring
labor-intensive keyframing or motion capture. Optimization of
a movement is called trajectory optimization, or, equivalently,
spacetime optimization.

Unfortunately, progress on full-body trajectory optimiza-
tion has been limited, because the problem is very high-
dimensional and objectives are highly non-linear, which often
lead optimization procedures into bad local minima. The best
existing methods rely on motion capture data, which limits
their generality, apply only to periodic locomotion, or use
simplified character models (such as planar models with point
feet) that eliminate important degrees-of-freedom. Despite
recent progress in physics-based character animation, full-
body trajectory optimization remains an open problem.

This paper presents a method for full-body optimization of
human movement. Optimization is performed using a small
set of simple goals, e.g., specifying that a hand should be
on the ground or that the center-of-mass should be above
a particular height. These objectives are applied to short
spacetime windows, which can be composed to express goals
over an entire animation, such as achieving standing balance
or locomotion. Optimization is performed using Covariance
Matrix Adaptation.
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The main technical contribution of this work is in the design
of a set of modular and reusable objective functions for many
types of full-body motion. We show that just a few, easily-
interpretable—but carefully-chosen—objectives are sufficient
to describe and create many diverse types of motion, including
walking, exercise, and breakdancing maneuvers. These skills
include low and high-energy motions, as well as highly-
rotational behaviors. Adjusting constraint parameters yields
motions that are more superhuman or more typical of normal
human movements. All motions reuse the same straightfor-
ward initialization procedure. To our knowledge, many of the
presented motions have never been successfully synthesized
by previous trajectory optimization methods.

Our work focuses on the problem of generating full-body
motion, given a high-level plan, namely the sequence of
spacetime windows. In this work, we specify this sequence by
hand and leave higher-level plan generation as future work.
In many cases, results do not perfectly match natural human
motion. This may be due to the simplified nature of our
musculoskeletal model and lack of interlimb contact; more
accurate models [1] could help improve results. Though our
optimizations are expensive, they demonstrate for the first
time the feasibility of trajectory optimization for creation of
a diverse set of whole-body motions. Future research could
focus on accelerating the optimizations and improving realism.

2 RELATED WORK

An open question in computer graphics is how to automati-
cally synthesize physics-based character animation. To date,
two main approaches have emerged to tackle this problem,
trajectory optimization and controllers.

Trajectory optimization, or spacetime constraints [2], poses
motion synthesis as a constrained non-linear optimization.
Early motion synthesis work focused on examples with a small
number of joints and used key poses to direct animation [3],
[4]. To broaden the class of movements, several approaches
focused on highly-dynamic actions, dominated by a small
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set of constraints [5], [6]. With the exception of challenging
balancing scenarios [7], generalizing these methods to broader
classes of full-body three-dimensional characters has proven
difficult due to the high dimensional, non-linear, nature of
these problems. Defining good objectives for low-energy mo-
tions such as walking has also proven to be difficult.

Recent work has used motion capture data to ease authoring
of new motions. Several editing methods have been proposed
that adapt recordings to new situations, while maintaining
physical properties [8], [9], [10], [11]. Safonova et al. [12]
learn low-dimensional bases from motion data, thereby making
optimization easier and capturing stylistic aspects of motion.
Liu et al. [13] learn objective function parameters from motion
data. Sok et al. [14] and Liu et al. [15] adapt reference
input motions using randomized search. Such strategies have
produced compelling results with many lifelike qualities.
However, their output is limited to remain near provided
input data. Our work requires neither good initialization nor
motion capture to synthesize complex, contact-rich motions.
The method can be used for both highly dynamic behaviors,
such as flips and spins, as well as less energetic motions,
including walking.

To keep problems tractable and limit the search space, a
number of methods focus on cyclic behaviors. Wampler et
al. [16] focus on periodic motions, for simplified charac-
ters with point feet, and optimize morphology along with
gait parameters. Nunes et al. [17] use a periodic trajectory
representation to generate a variety of running behaviors.
Others focus on behaviors without contact, such as flying [18],
and swimming [19], which further simplifies the optimization
landscape. Closely related to our work, Mordatch et al. [20]
simulatenously optimize for contact and behavior, for motions
with complex contacts including climbing and co-operative
motions. Their method currently optimizes motions according
to a simplified physics model, uses a “one-way” contact model,
and does not handle highly-dynamic motion.

As with several of these works, we also employ a shooting
strategy [21], which means that our method can be applied to
off-the-shelf dynamics simulators and requires no computation
of derivatives. Our approach works for a wide variety of
cyclic and acyclic movements, allows composition of long
motion sequences, and does not require any special treatment
of complex contacts. Although we focus on human motion,
our work can be easily extended to other types of creatures.

An alternative to trajectory optimization is to use action-
specific controllers. This approach has been used to synthesize
numerous locomotion and athletic behaviours [22], [23], [24],
[25] with recent methods focused on low-dimensional param-
eterizations [26], [27], [28], [29], [30], [31] and robust naviga-
tion of uneven terrain [32], [33]. Our method is complementary
to this work. Open-loop movements generated by our system
could be used as the basis for controllers or libraries of control
primitives. This would enable reuse of results from our system
in interactive applications. The proposed look-ahead strategy
is also closely related to model-predictive methods that plan
over short windows into the future [32], [34], [35], [36].

The objectives we propose could also be used by methods
that use optimization to tune settings for predefined controllers
[28], [37], [1], [38]. Though we generate open-loop behaviors
and leave addition of feedback for future work, our method
requires no design of action-specific controller before new
motions can be generated.

3 PARAMETERIZATION AND OPTIMIZATION

We optimize full-body character motion in a physically-
simulated environment, using only a small set of high-level
objectives. Goals for the motion are expressed in terms of
an objective function E, with energy terms Ei for motion
properties such as stride length and angular momentum. The
specific terms of the energy depend on the type of desired
motion.

We use a character with 41 degrees-of-freedom in the kine-
matic pose q, and represent a motion as time-varying poses
q1:T . Objectives Ei are combined by weighted combination
with weights wi:

E(q1:T ) =
∑
i

wiEi(q1:T ). (1)

Trajectory optimization applied directly to joint torques or
to poses is very difficult, due to the highly-discontinuous
relationship between these quantities and task completion. For
this reason, we parameterize the motion in terms of a reference
trajectory [19]. The reference trajectory q̂1:T is represented as
a cubic B-spline, with C0 continuity at key-poses x. The free
variables in optimization are the key-poses of the spline.

Given a reference trajectory:

q̂1:T = Bx (2)

where B is a spline basis matrix, the output motion q1:T is
computed by simulation. At each time index t, the control
torque τt for a 1D joint degree-of-freedom (DOF) is deter-
mined by linear control:

τt = kp(q̂t − qt)− kdq̇t (3)

where qt and q̂t are the current and reference values of the
joint angle.

The complete optimization for a given window is then:

x∗ = arg min
x
E(q1:T ). (4)

For brevity, we drop the dependence of the objective on
the motion in the remainder of the paper. Key-poses are
parametrized by Euler angles for spherical joints.

We divide the optimization problem into spacetime windows
[3], [39], because directly optimizing a long-duration motion
would be prohibitively expensive. We find that windows are
a convenient way to specify complex motions. Windows can
be used for specific phases of gait or the relevant phases of
other motions. Each window represents a fixed duration of the
motion; we use 0.5 s windows. We do not consider problems
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Fig. 1: Spacetime Window optimization schedule. We define
the objective function for a motion by creating a sequence
of spacetime windows. Each window defines the objective
function for a fixed interval. Optimization is performed with
an advancing schedule: the motion during windows 1 and 2
are optimized. Then the motion in windows 2 and 3 are jointly
optimized, and so on, until every window has been visited.

where a long-term look-ahead is required; hence, we employ
a simple, advancing optimization schedule. First, the first two
windows of the motion are optimized together. Then, results
for the second window are discarded and a new optimization is
performed over the second and third window, holding the first
window fixed. This process advances along pairs of windows
until the entire motion is complete. This pairwise schedule
allows each window to take the goals of the next window into
account. As we discuss later, although we use fixed duration
windows this approach enforces only a loose constraint on
motion timing. Multiple passes [3], [39] could be used for
problems requiring more look-ahead.

We use Covariance Matrix Adaption (CMA) [40] to perform
optimization, initializing all problems with a zero vector,
which corresponds to an upright standing posture (i.e., the
static pose q̂1:T = 0). Hence, unlike previous work, no user
effort or motion data is required for initialization. We run
CMA with a maximum of 18,000 generations and a population
size of 16. The optimization is performed in parallel on a dual
quad-core Intel E5355 CPUs and takes roughly 20 minutes
per window. We use OpenMP to parallelize CMA across all
cores. Examples described in this paper tooks between 1 and
15 hours, depending on the number of windows used. Once a
window has been optimized, we reset the subsequent window
and repeat the above described process. For the motions
described in this paper, all generations of CMA are typically
required for to converge on a solution.

We select servo gains kp, kd by hand and use the same values
for all motions described in this paper; consult the supplemen-
tal material for PD gains values and simulator details. For a
0.5s duration window, we place a spline knot every 0.1s. The
optimization limits the range of reference trajectories for all
joints (cf. Table 1 in the supplemental material). Torque limits
are enforced by clamping joint torques in the simulation; flips
use torque limits of ±400Nm, all other motions use ±200Nm.
The actual generated motion q has a joint limit only on the
toe. Since we jointly optimize two windows at a time, and
our character model has 35 actuated DOFs, the total number of
variables for each pairwise optimization is 350. Motions where
left-right body symmetry is enforced require 220 variables.

In the remainder of the paper, we describe objectives required

to produce a variety of different motions. We first introduce
objectives needed to generate variations of in-place balancing
behaviors. More complex locomotion and acrobatic motions
are described in subsequent sections. All motions can be seen
in the accompanying video.

4 BALANCING AND GETTING UP

We begin with a balance motion, which aims at placing the
character in standing balance. We then show how it can be
used to produce motions in which the character gets up from
lying-down positions. While the objectives we use are quite
simple, we believe it is surprising that these complex motions,
which involve many contact changes, can be achieved from
such simple specifications and optimizations.

4.1 Balancing

The standing balance goal entails optimizing the weighted sum
of four objective terms over a given window. The first term:

ECOM = (c− c̄)2 (5)

moves the center-of-mass (COM) c to a target position c̄ at
a user-specified height over the approximate centroid of the
base-of-support (we use the average positions of the centers
of the feet projected on the plane). In our examples, the target
height is 1.09m. The second term keeps the feet on the ground:

Efeet = y2leftFoot + y2rightFoot (6)

The position of the feet on the plane is not specified. These
first two terms are only active at the end of the window; that
is, these terms aim to produce a motion that ends in a balanced
state, without constraining how the character gets there. Note
that the exact instant that standing balance is attained is not
specified; the optimal motion could reach the final pose before
the end of the window.

The third term penalizes control torque over the entire window:

Etorque =
∑
j,t

τ2j,t (7)

where the summation is over all joint DOFs j and time indices
t within the window. This term is used in all motions in this
paper.

Finally, a rest pose term:

ErestPose =
∑
j∈J

∑
t

(θj,t − θ̄j,t)2 (8)

is used to ensure that the character is standing upright, with
arms in desirable positions. θj,t is the angle representation for
joint j at time t, and J = {lumbar, thorax, shoulder, elbow}.
We find that constraining this subset of joints, when combined
with the other terms, is sufficient to achieve a reasonable rest
pose. This term is only used when a balance window is used
as the final window of the optimization.
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Fig. 2: Getting up motions. Top row: Starting from a supine position, optimizing over a sequence of four balancing windows
yields a very athletic getting-up motion. The objective function is the same in each window, except for the rest pose term used
in the final window. For each window except the last, the first and middle frames are shown. For the last window, the first
and last frames are shown. Bottom row: A more normal getting-up motion from a prone position is produced by partially
specifying contacts, for various windows, as described in the text. Each image shows the first frame for the corresponding
window, except for the last image which shows the final frame.

4.2 Getting up: Athletic

The balance objective in the previous section can be used
directly for getting-up (Fig. 2, top row), since it aims to end
the window in standing balance. Despite the lack of explicit
contact planning, the optimization succesfully finds viable
contact sequences needed to produce standing-up motions. In
the accompanying video, we show examples of getting up from
prone and supine positions. The resulting motion is very quick
and exhibits highly-athletic abilities.

4.3 Getting up: Low-Energy

We can produce more typical getting-up motions by per-
forming the optimization in a sequence of four windows,
and by partially specifying the contacts for each window
(Fig. 2, bottom row). All windows include the torque-squared
efficiency term Etorque (Eq. 7) and use variants of the balance
objective. In the first window, we keep the character prone,
while raising his body. To accomplish this, three objectives
are used: torque minimization Etorque , contact constraints, and
target COM height:

Eground =
∑
t

(y2lhand + y2rhand + y2ltoe (9)

+ y2rtoe + y2lknee + y2rknee)

ECOMh = (yCOM − ȳCOM )2 (10)

The Eground objective penalizes non-zero height for each
corresponding point on the body during the entire window.
The ECOMh objective raises the COM to a target height
ȳCOM = 0.3 m at the end of the window. In the second
window, the character raises the right side of his body by
pushing off the ground with his left limbs. This is done with
the same objectives as above, but removing the left knee term,
and increasing the COM target height to 0.5 m. In the third
window, we deactivate all but the left hand, left toe, and left

knee constraints, and raise the COM target to 0.55m. The last
window is a normal balance window.

We use a similar approach to generate a getting-up motion
starting from a supine position. During the first window,
objectives are used that encourage the character to get his
back off the ground. We also place the hands and the feet
on the ground during the entire window. During the second
window, objectives keep the left hand on the ground and we
include ECOMh with a COM target height of 0.45m. The last
window uses the balance objective.

5 WALKING

In this section, we show that full-body walking can be pro-
duced entirely through optimization with simple and human-
interpretable objectives, and without relying on motion cap-
ture. We use one window for each swing phase (Fig. 3), i.e.,
one period from toe-off to heel-strike. The same objective
function is used for each window, with feet handling swing
and stance tasks alternating from window to window.

In total, six objective terms are used in each window. These
terms control the desired distance and direction of travel,
heading, balance, foot contact, angular momentum, and en-
ergetic efficiency. Different parameters to the heading and
distance/direction terms are used to produce forward walking,
backward walking, and turns.

We specify a desired step-length and direction, by a vector v.
For example, if we wish the character to move 0.5 m along
the x-direction in one swing phase, then v = [0.5, 0, 0]T . We
evaluate this as:

Estepdist = ||(cE − cS)− v||2 (11)

where cS and cE denote the center-of-mass (COM) location
at the start and end of the window.
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Fig. 3: Walking. First/middle frames of two successive walking
windows. The objective function is the same in each window,
except for swapping roles of stance/swing feet. Changing
parameters of relevant objective function terms gives backward
walking and turns, as shown in the accompanying video.

The character’s heading is controlled by:

Eheading = (α− ᾱ)2 (12)

where α and ᾱ are the actual and the desired character heading
of the character’s pelvis, at the end of the window. We define
heading as the right-handed angle about the axis perpendicular
to the ground plane, measured from the x-axis.

For heel-strike at the end of the window, we use:

EswingHeel = y2swingHeel (13)

where yswingHeel is the position of the swing foot heel.

We want the stance foot to stay in contact with the ground,
but we also want foot rolling, therefore we penalize vertical
displacement of the stance toe ystanceToe from the ground over
the whole window:

EstanceToe =
∑
t

y2stanceToe (14)

At heel-strike, the position of the COM projected on the plane
is roughly at the center of the base of support [41]. For this
reason, we include ECOM (Eq. 5), with a desired COM height
that depends on the desired step length.

For walking motions, we modify the pose parameterization
slightly, following Wang et al. [37]. Specifically the shoulder
angle in the sagittal plane is coupled to the hip angle as:

θlshoulder = ω(θrhip − θlhip) (15)
θrhsoulder = −θlshoulder (16)

where ω is determined by the optimization. This reduces the
number of free variables in the walking motion optimizations
to 348 variables. Torques are also penalized using Etorque .

As demonstrated in the accompanying video, changing the
heading direction and step distance can create forward walk-
ing, backward walking, and various sharp turns. Results are
not entirely natural, in ways that reflect the biomechanical
simplicity of the model.

6 INVERTED MOVEMENTS

In this section, we describe the objectives required to create a
simple handstand and hand walk.

6.1 Handstand

A handstand window requires 5 energy terms that are applied
over the entire window. Terms keep the hands on the ground
and encourage the feet and the COM to be as high as possible:

Ehands =
∑
t

y2lhand +
∑
t

y2rhand (17)

EfeetV = −
∑
t

ylfoot −
∑
t

yrfoot (18)

ECOMV = −
∑
t

yCOM (19)

To penalize motions with head/ground contact, we use an
objective:

EheadHeight =
∑
t

δ(yhead , ζhead) (20)

δ(y, ζ) =

{
C if y < ζ
0 otherwise (21)

that keeps the head height yhead above the threshold ζhead =
0.35 m for the entire window by applying a large penalty C
to frames that violate the constraint. We use C = 1000. The
Etorque (Eq. 7) term is also included.

In Fig. 4, we illustrate a case where the characters starts
from standing balance, goes to the handstand, and returns
to standing balance. The standing-balance-to-handstand transi-
tion window contains two terms, one to ensure that the COM
stays above a height threshold ζCOM = 0.6 m:

ECOMHeight =
∑
t

δ(yCOM , ζCOM ) (22)

and the torque penalty Etorque . This transition window allows
the character to enter a suitable position to begin the hand-
stand motion; omitting it leads to a motion that achieves the
handstand with superhuman speed and interpenetration. The
handstand-to-standing-balance transition windows contain the
same objectives as the balance motion with the addition of
the ECOMHeight term. We use a similar approach to create
transitions with other motions.

The handstand motion is achieved in an aggressive manner: the
character pivots entirely on his shoulders in order to achieve
an inverted position, rather than taking a step, to build up
momentum, as most humans would. An additional constraint
for this step could be added if desired. The handstand itself is
also more wobbly than a normal human handstand, which we
suspect is due to the high precision or stiffness required for
this motion. A longer look-ahead may also improve the style
of this motion.

6.2 One-Handstand

We also demonstrate the ability to stand on one hand. This is
achieved simply by removing the constraint on the right hand
in Ehands (Eq. 17). As shown in the accompanying video, the
character achieves a one-handed handstand, raising the right
hand in the air while remaining balanced.
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Fig. 4: Handstand. The character begins in standing balance. After a transition window, handstand windows (with the same
objective function) are used to achieve the task. Finally, the character returns to standing using two balance windows.

HAND WALK (L) HAND WALK (R)

Fig. 5: Hand walk. This motion combines objective terms from
the handstand and from regular walking. The first and middle
frames of each window are shown.

6.3 Hand walk

We can combine elements of the handstand and walking
objectives to generate a motion where the character walks on
his hands. To do this, we reuse the Ehands (Eq. 17) but only
consider a single contact hand in each window, alternating
hands between windows. Including Eheading (Eq. 12) and
Estepdist (Eq. 11) terms introduced in the walking objective
generates the hand walk (Fig. 5). Stylistically, the hand walk
and handstand are similar; transitions are somewhat athletic
and the character is wobbly once inverted.

7 ROTATIONAL MOVEMENTS

We now describe novel highly-rotational movements. In each
case, large rotations are achieved by using an objective which
encourages high angular momentum about a given axis.

7.1 Headspin

The headspin motion is a difficult behavior seen in breakdanc-
ing routines. During this motion the character spins quickly on
his head (Fig. 6). The headspin employs the same objectives
as the handstand, except that the EheadHeight (Eq. 20) term is
modified to ensure that the head remains close to the ground
(i.e., below 0.35 m).

In addition, we seek to maximize the angular momentum about
the vertical axis during the entire window:

EAM = −
∑
t

L2
y (23)

We also penalize horizontal motion of the COM between the
start and end of the window:

Ehoriz = ||choriz ,E − choriz ,S ||2 (24)

HEADSPIN HEADSPIN

Fig. 6: Headspin. The character keeps his head on the ground
while producing large angular momentum.

denoted with subscripts S and E respectively.

In the accompanying video, we show a sequence where the
character starts from standing balance, spins on his head, and
returns to standing balance. Two windows are necessary for the
character to transition from standing balance to the headspin.
The first window only contains the Etorque (Eq. 7) term. For
the second window we add the Ehands (Eq. 17) term. This has
the effect of lowering the character’s COM and encouraging
hand placement on the ground in preparation for the headspin.
To end the headspin motion, we use one window containing
Etorque only. This results in the character lying on the ground.
From that point on, balance windows (Sec. 4) are used to
transition to standing balance.

We note that the character transitions from standing balance
to the headspin very rapidly. A breakdancer would need more
time to carefully position himself to start the headspin. This
can be taken into account by designing additional transition
windows.

7.2 Handspin

The handspin motion is a breakdancing maneuver where the
character spins on his hands (Fig. 7). The handspin cost
function consist of 5 terms, each described below.

As with the headspin, the handspin requires building up sub-
stantial whole-body angular momentum about the vertical axis.
To accomplish this, we attempted to include objective terms
that maximize angular momentum (e.g., Eq. 23), however
this generated inhumanly fast spinning behaviors. Instead, we
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HANDSPIN HANDSPIN

Fig. 7: Handspin. The character keeps his hands on the
ground while producing large angular momentum.

found that using the objective:

EAMRange = −
∑
t

φ(Ly, ζl, ζu) (25)

φ(Ly, ζl, ζu) =

{
L2
y if ζl < Ly < ζu
0 otherwise (26)

whick seeks maximum thresholded cumulative angular mo-
mentum, over a window, produced more appealing results. In
all our demos we use ζl = −109 N m s and ζu = 0 N m s.

To ensure the head does not touch the ground during the
handspin, we use EheadHeight (Eq. 20) with a 0.35m threshold.
We need the Ehands (Eq. 17) term to force the hands on the
ground. With the objective terms covered so far, we found that
the body tended to be too close to the ground for a typical
handspin. We include ECOMV (Eq. 19) to address this. The
Etorque (Eq. 7) term is included.

Although most aspects of the motion are not explicitly
planned, many strategies for generating angular momentum,
matching those of breakdancers, emerge automatically. First,
the character drops to the ground and spreads his legs. Next,
legs are moved in opposite directions; the top leg is quickly
moved forward while the bottom leg simultaneously pushes
backwards off the ground. Once spinning, the character uses
his feet to push off the ground at intermittent intervals to
continue rotating.

7.3 Flips

The flip motions consist of a rotation in the sagittal plane
while the character is airborne (Fig. 8). This is the first time
that flips are generated without prior data; indeed, de Lasa et
al. [29] report being unable to identify suitable features for
creating flip controllers.

We divide the motion into 4 windows and enforce left-right
body symmetry in the reference trajectory. All the windows
include EheadHeight (Eq. 20) and ECOMHeight (Eq. 22) to
prevent the head and the COM from getting too close to the
ground (i.e., less than 0.6m). The Etorque (Eq. 7) term is also
included. No additional terms are included in the first and third
windows.

During the second window, we use ECOMh (Eq. 10) with a
target COM height between 1.4 m and 1.6 m, depending on
the desired style of the flip.

To generate a backwards flip, we include a term that maxi-
mizes angular momentum about the COM in the sagittal axis

d during the entire window:

EAMRange = −
∑
t

φ(Ld,−∞, 0) (27)

The only difference between the backwards and forwards flip
is the sign of the angular momentum term Ld.

This is a case where we found it difficult to resolve different
objectives “fighting” each other. Specifically, if a large weight
is used for EAMRange , the character rotates but does not
become airborne; however if a large weight is used for ECOMh

the character does not rotate sufficiently. Following Wang et
al. [37], we use a thresholded quadratic term:

ECOMhQ = Q(yCOM − ȳCOM , ε) (28)

Q(d, ε) =

{
d2 if |d| > ε
0 otherwise (29)

with ε = 0.05m and set the weight on Eq. 28 to be very
large (cf. Table 2 in the supplemental material). This objective
penalizes COM displacement over the threshold and provides
no penalty otherwise.

The fourth window uses the balancing objectives (Sec. 4.1).

The accompanying video shows several flip variations. When
flipping backwards arms swing forward quickly, during de-
compression, to generate needed angular momentum prior
to ballistic motion. Near the apex of the aerial phase, the
character tucks rapidly, to increase angular velocity, before
extending his legs for landing. Once he lands, arms counter-
rotate to aid balance. To generate needed rotations for the
forward flip, the character takes an in-place hop and enters a
tuck. The tuck (which resembles a sitting position) is held for
nearly the entire movement. Hence, the character lands with
bent knees and his hands can be seen touching the ground. A
tighter tuck might help avoid high-loads on joints exhibited
in the current motion. Alternatively, the forward flip could be
initiated once the character has a greater forward velocity.

8 GROUND MOVEMENTS

This section describes two novel motions that keep hands and
feet on the ground: push-ups and crawling.

8.1 Push-ups

Push-ups use 4 objectives. The first two encourage hand and
toe links to remain on the ground. For the hands we use Eq. 17
while:

Etoe =
∑
t

y2ltoe +
∑
t

y2rtoe (30)

is used for the toes. To lower and raise the character’s body,
we use:

ECOMh = (yCOM − ȳCOM )2 (31)

and vary the COM target height between windows. In our
examples, ȳCOM is set to 0.25 m and 0.45 m. The Etorque

(Eq. 7) term is also used.
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BACKFLIP 2 BACKFLIP 3 BALANCE

Fig. 8: The backflip is produced by controlling COM height, contacts, and maximizing angular momentum. The first and middle
frames of windows 2 to 4 are shown, together with the final frame.

CRAWL (L) CRAWL (R)

Fig. 9: First/middle frames of successive crawling windows.

8.2 Crawling

Crawling is a quadrupedal gait that uses both arms and legs
for locomotion (Fig. 9). We divide crawling into two phases.
In each phase, diagonally opposite limbs are considered to be
in either stance or swing, with roles alternating from phase-
to-phase. We optimize one window for each phase and use 8
objectives for each window.

To encourage stance limbs to remain firmly planted we use two
sets of objectives. Stance limb motion parallel to the ground
plane is penalized by objectives:

EstanceHand = ||phand,E − phand,S ||2 (32)

EstanceKnee = ||pknee,E − pknee,S ||2 (33)

EstanceToe = ||ptoe,E − ptoe,S ||2 (34)

where p denotes the position of each stance limb (i.e., hand,
knee, toe), projected onto the ground plane, at the start S and
end E of each window. Stance limb motion perpendicular to
the ground plane is penalized using Eground (see Eq. 9). We
reuse previously described objectives for other aspects of the
motion: EheadHeight (Eq. 20) and ECOMHeight (Eq. 22) ensure
the head and the COM are at least 0.3 m above the ground,
while Estepdist (Eq. 11) encourages movement in the desired
direction. The Etorque (Eq. 7) term is also included.

9 LONGER MOTIONS

It is straightforward to generate longer motions by concate-
nating different spacetime windows. Previous sections have
presented several combinations of getting-up with acrobatic
moves. Here we describe several longer sequences obtained
by cocatenating previously described windows. Concatenation
is simplest when one window ends in a good initial pose for
the next window; for example, the character can transition
directly from a handstand window to a hand walk window.
Other combinations require transition windows (Sec. 6.1).

9.1 Backflip-to-handstand

Fig. 10 demonstrates a backflip followed by a handstand,
followed by standing balance. No transition windows were
required to generate this sequence. It is interesting to note
that the character can enter the handstand phase even if he is
entirely airborne.

9.2 Multiple backflips

Fig. 11 demonstrates a challenging sequence of two backflips.
The transition from the first to the second backflip is achieved
by the balance objectives, with a COM target height of 0.8 m
for ECOM to ensure that the character is slightly crouched. At
this point, the character is in a good position to jump, hence
we proceed with window 2 of the backflip motion. A minor
modification is required to generate a flip motion where the
character uses his hands to rotate. Specifically, the EheadHeight

term is modified to allow the head to get as close to 0.35 m
from the ground.

9.3 Long sequence of moves

In the accompanying video, we demonstrate several long
motions sequences that combine many previously described
actions.

10 DISCUSSION

We have presented the first method for full-body trajectory
optimization without relying on motion capture, specified key-
poses, or periodicity. We show that a small set of simple ob-
jectives is sufficient to synthesize a wide range of movements.
Some of the most complex movements, such as breakdancing
maneuvers and flips, have not previously been generated by
any other physics-based method.

An important characteristic of our method is that it does not
require contacts to be pre-defined; contacts that are specified
are of the form “this end-effector should touch the ground
somewhere at the end of this window.” Additionally, our
method does not require the user to specify complete full-
body pose at regular intervals. Combined, these factors makes
it easier to generate a large variety of behaviors.
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BACKFLIP 1 BACKFLIP 2 HANDSTAND HANDSTAND

HANDSTAND BALANCE BALANCE

Fig. 10: Backflip-to-Handstand. The first and middle frames of each window in a backflip followed by handstand and balance.
The last figure is the final frame.

BACKFLIP 1 BACKFLIP 2 BACKFLIP 3 BALANCE

BACKFLIP 2 BACKFLIP 3 BALANCE BALANCE

Fig. 11: Multiple Backflips. A sequence of backflips is generated by combining windows from the backflip and balance motions.
The first and middle frames of each window of the sequence are shown. The last image is the final frame.

Overall, we did not find tuning the parameters to be partic-
ularly time-consuming. As can be seen in the supplemental
material, most of the weights are powers of 10, and many of
the objectives have the same weight across different motions.
We believe it should be straightforward to apply our approach
to other problems, such as for other types of animals [28],
[16], and other types of terrain [28], [32], [33]. To create new
motions, we first define the approximate sequence of required
windows and objectives, starting from the end state of an
existing behavior, and optimize each window in sequence. We
author each window in sequence, caching results for previous
windows, avoiding costly recomputation. As we gained expe-
rienced designing motions using this approach, we found that
we could reuse the small set of objectives we described in the
paper for a wide range of motions.

One limitation of our work is that the optimization is over
a short time horizon. Some motions, like running to make
a long jump over an obstacle, require longer-term planning.
Future work could involve combining our approach with long-
term planning so that the character can autonomously navigate
complex environments. Another possibility is to design an
interactive system where an animator can build long sequences

of motions by combining individual motions as building blocks
[3]. The animator could have control over the timing of the
spacetime windows and the parameters of a particular motion
(e.g., the height of a backflip).

In most cases, we have not achieved perfectly natural human
movement. For example, the synthesized walking motion
includes some awkward hip movement. This can be avoided
by restricting the hip joint limits in the reference trajectories
(Table 1 in the supplemental material) for walking, but not
for the other motions that need a larger range of movement
(e.g., flips). Such hand-tuning may no longer be necessary
if we use biologically-inspired objectives and musculotendon
models [1]. We suspect that doing so can greatly improve
the style of the motions in our work, as we currently use a
very rough approximation of physical energy as an objective
(Eq. 7). Enabling inter-limb contacts in our simulator would
also remove interpenetration artifacts from results.

At present, it remains unclear what is the best way to stylize
physics-based animation. Previous methods, such as specifying
specific poses (e.g., [27]), or learning styles from examples
[13] should be applicable in our approach as well. Another
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possibility is to include additional objectives that seek to
replicate reference recordings (e.g., [15]).

Our approach shows that full-body trajectory optimization is
feasible, but currently quite slow. We did not at any point
attempt to make the optimization faster. An exciting open
problem is how to speed-up the trajectory optimization so that
it can be used in a real-time setting, either in model predictive
control or in combination with a controller. For example,
our method could be optimized by the concurrently-developed
method of Tassa et al. [42]. This would be an important step
towards the synthesis of complex movements in games and
humanoid robots.
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ear Control of Dynamic Characters,” ACM Trans. Graph., vol. 28, no. 3,
p. 81, 2009.

[37] J. Wang, D. Fleet, and A. Hertzmann, “Optimizing Walking Controllers,”
ACM Trans. Graph., vol. 28, no. 5, p. 168, 2009.

[38] K. Yin, S. Coros, P. Beaudoin, and M. van de Panne, “Continuation
Methods for Adapting Simulated Skills,” ACM Trans. Graphics, vol. 27,
no. 3, p. 81, 2008.

[39] C. K. Liu, A. Hertzmann, and Z. Popović, “Composition of Complex
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