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Position and orientation

right-handed orthogonal RFg rigid body

Reference Frames e position: Ap,g (vector € R3),

expressed in RF, (use of coordinates
other than Cartesian is possible, e.g.
cylindrical or spherical)

¢ Orientation:

R orthonormal 3x3 matrix
(RT = R1= ARgBR, =1), with det = +1

"Rp = [AXB Vg AZB]

Xa Ya Za (Xg Yg Zg) are unit vectors (with unitary norm) of frame RF, (RFg)

components in ARy are the direction cosines of the axes of RFg with respect
to (w.r.t.) RF,
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Rotation matrix

- - T | direction cosine of
Xa' X Xa Y Xa Zg

Zg W.ILL. X,
AR — T X T T 7
orthonormal, B YA Xs Ya Ye Ya %8
- - algebraic structure
chain rule property of a group SO(3)
(neutral element = 1I;
kR iR — kR inverse element = RT)
: . R' RJ RJ _ _
orientation of RF. "~ orientation of RF,
w.r.t. RF, w.r.t. RF,
orientation of RF,
w.r.t. RF

NOTE: in general, the product of rotation matrices does not commute!
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Zo“ _ —
°Px
0
oP P=11"Py| ='p, "% +'p, %y +'p, %2z
P T
o Py
1 1
= 9% %y, %2, || Py
—————————————— = P
Ry Yo
_________________________ e RF, = OR, 1P
Xo
the rotation matrix R, (i.e., the orientation of RF,
w.r.t. RF,) represents also the change of
X1 coordinates of a vector from RF, to RF,
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Ex: Orientation of frames in a plane %(ﬁ—

(elementary rotation around z-axis)

X=0B—-xB=ucos6-vsino
y=0C+Cy=usin6+ vcos 6
Z=W

or...

OXc Oy 0z

v v v

'cos® -sin® 0 || u U
=|sinB cos® 0 [[v |=R,(0)|vV
0 0 1 W W

R,(-6) = R,T(6)

similarly:

1 0 0 ' cosO 0 sing |
R (0) = 0O cosO -sinB R/(0) = 0 1 0
0

sin® cos 6 -sin® 0 coso
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Ex: Rotation of a vector around z

X = |v| cos a

= |v]| sin a
X" = |v| cos (o + 6) = |v| (cos a cos 6 - sin a sin 0)
= XCosO-ysino
» V' = |v| sin (o +6) = |v| (sin a. cos 6 + cos o sin 6)
= XSin6+Yycoso
Z'= 2z

or...

x| |cos6 -sine 0 || x| X ...as
y'| =1 sin® cos® 0|y |= R(0) Y before!
Z’ O 0 1 Z
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Equivalent interpretations
of a rotation matrix

the same rotation matrix, e.g., R,(6), may represent:

14

\'
. RF.
D ;
S
RF, ]
the orientation of a rigid the change of coordinates the vector
body with respect to a from RF. to RF, rotation operator
reference frame RF, ex: 0P = R,(6) P ex:v' =R/ (0) v
ex: [9%. Y. %z.] = R,(6)

the rotation matrix %R is an operator

superposing frame RF, to frame RF.
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Composition of rotations

brings RF, on RF, IR, brings RF, on RF, 2R, brings RF, on RF,
0R,
3
Py =0 P
AP\ —
RF,

pp=0
RF;
RF,

a comment on computational complexity

RF,

63 products
0p = (OR. !R.2R.)3p = OR. 3
P=(CR;{'R;°R3)°p ="R3°p <«— 42 summations

Op = OR, (R, (2R,3p)) - 27 produc_:ts
18 summations

H—’zp

[ ) 1
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Axis/angle representation

- ZO

RF; is the result of rotating
RF, by an angle 6 around
the unit vector r

Robotics 1

DATA

« unit vector r (|[r|| = 1)

* 0 (positive if counterclockwise, as
seen from an “observer” placed like r)

DIRECT PROBLEM

find
R(O,r) = [OX1 0Y1 021]
such that

OP=R(O,r)P O = R(8,r)%




Axis/angle: Direct problem

Cl=CT \\ I

-
- -\

sequence of 3 rotations that
bring frame RF, to superpose
with frame RF,

S

Robotics 1

R(6,r) = C Ry(8) CT

concatenation of three rotations

s

after the first rotation

the z-axis coincides with r
|

n and s are orthogonal
unit vectors such that
NxS=ror
ns, - s,n, = ry
n,S, - SN, =r,
n,s, - s,n, =,

10



Axis/angle: Direct problem

solution

R(6,r) = CR(6) CT

0 -s6 0| nT
R(6,r)=ns r|lse co O s
0 01 rt

=rrT+(nnT"+ss)cO+ (sn"-nsT) s

taking into account that
CCT=nnT+ss"+rrT=1I, andthat

) ) 3 RERY skew-symmetric(r):
>hi-ns'= 4%& 0 - |= 3 “Trxv=S(F)V =-SV)r
)%
T 0 |

depends only L, R(O,r) =rrT+ (I-rr")cé + S(r) s6 =| R7(-8,r) = R(-6,-r)

onrand9ol!l
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Rodriguez formula

v =R(6,r) v
Vi=vcos O+ (rxv)sind + (1-cos0)(r’'v)r

proof:

R(O,r)v=_(_rr"+ (I-rr") cos 6+ S(r) sin 0)v

=rrv(l-cos0)+vcosO+ (rxv)sino

g.e.d.
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Unit quaternion

= to eliminate undetermined and singular cases arising in
the axis/angle representation, one can use the unit
quaternion representation

Q= {n, e} = {cos(6/2), sin(6/2) r}
a scalar 3-dim vector
= 1?2+ |g|? =1 (thus, “unit ...”)
= (0, r) and (-6, -r) gives the same quaternion Q
= the absence of rotation is associated to ¢= {1, 0}

= Unit quaternions can be composed with special rules (in
a similar way as in the product of rotation matrices)

Q1*Q, = MMy - &1'ey, M€y + MyE; + EyxE,}

Robotics 1 20
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“Minimal” representations

= rotation matrices: O elements

- 3 orthogonality relationships
- 3 unitary relationships

= 3 independent variables

direct problem

<ua|qmd SSJaAUI

= sequence of 3 rotations around independent axes
= fixed (a;) or moving/current (a’;) axes
= 12 + 12 possible different sequences (e.g., XYX)
= actually, only 12 since

(3 oy), (8 0p), (33 a3)} =1 (33 03) , (37 ), (@) ag)}

- - ~ - -

Robotics 1 2



/X'Z" Euler angles

E' 7=7' 4 @
A Z
&‘/‘ 144
o e g ,
RF yt 6 //'y _Rx’(e) = B
1 0 0
X .4 Y m O cos6O -sin©
¢ x’ X'=x" ' 0 sin® cos 6
oS ¢ —-sin¢ 0 o
R(¢)=|sing cos¢ O @ Z =L y"”’
| O O 1 144
| P y
 COS P —sin 0 RF
Ry(w) =| siny cosy O VLD
0 0 1] P
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/X'Z" Euler angles

= direct problem: given ¢, 6, ¢ ; find R

Rzxz (4)1_9111)) = Rz (¢) Ry (0) Rz-(y)

order of definition CHCY -SHCOSY -CHSY -SpcOCy  Sp SO
in concatenation _ ShpCyp+chpcOSsy -SpSy + chpcoOCy - Chso

SO sy SO cy co

= given a vector v"'= (x",y",z"") expressed in RF", its
expression in the coordinates of RF is

V = Ry (9, 6, ) V"

= the orientation of RF"” is the same that would be obtained with
the sequence of rotations:

1 around z, 6 around X (fixed), ¢ around z (fixed)
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Roll-Pitch-Yaw angles

EI ROLL ” PITCH @
, L
Z A
P , C,R(6)C,T
y with Ry(8) =
. Lcos 6 0 sino J
Y 0 1 0
, v -sin® 0 cos 6
X=X
1 0 0
Ry(w) =| 0 cosy —sin y
0 siny cosy

GRADG" [cosp - sing 0
with R,(¢p) =| sind cos¢ O

_ 0 0 1
Robotics 1 — — 6




Roll-Pitch-Yaw angles (fixed XYZ)

= direct problem: giveny , 06, ¢ ; find R
Repy (P, 0, &) = R,(d) Ry(0) Ry(yp) < note the order of products!

order of definition CHPCO CHPSOSY -SpCy ChSOCyY + Sh Sy
= |SHCO spsOsY+chpcy SHpSOCy - CH sy
- SO co sy CO cy

= inverse problem: given R = {r;}; findy , 6, ¢

n 32 + 332 = €20, ry; = -0 = |0 = ATAN2{-r3;, &V ;3,2 + 1332}

s ifr;2 + ry32 =0 (i.e., ¢ = 0) two symmetric values w.r.t. mt/2
r3»/CO = S, r33/CO = Cp = |y = ATAN2{r;3,/C6, r33/CO}

= similarly... ¢ = ATAN2{r,,/c6, r{;/C6 }

= Singularities for 6 = + /2

Robotics 1 7
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Homogeneous transformations

A
Pas

‘affine’ relatio

l

nship

p = "pag + "R °p

<«— |inear

relationship

vector in homogeneous
coordinates

4x4 matrix of
homogeneous transformation




Properties of T matrix

s describes the relation between reference frames
(relative pose = position & orientation)

= transforms the representation of a position vector
(applied vector from the origin of the frame)
from a given frame to another frame

= it is a roto-translation operator on vectors in the
three-dimensional space

= it is always invertible (ATg)?! = BT,

= can be composed, i.e., AT = ATy BT, < note: it does
not commute!

Robotics 1 10



Inverse of a
homogeneous transformation

"D ="pag + *Rg PP °p="pgs + "Rpy"p = - Rg" Appg + ARp Ap

4

g

(ATp)?

Robotics 1 11



Defining a robot task

WTT = ‘WTB BTE ETT

known, once
the robot
is placed

|

Robotics 1 12



Final comments on T matrices

= they are the main tool for computing the direct kinematics
of robot manipulators

= they are used in many application areas (in robotics and
beyond)
= in the positioning of a vision camera (matrix T . with the extrinsic
parameters of the camera posture)

= in computer graphics, for the real-time visualization of 3D solid
objects when changing the observation point

A An
AT, = Rs  "Pas
B~ --------
Oy OL a, o
all zero | COefficients of scaling always unitary
in robotics | perspective coefficient in robotics
Robotics 1 deformation .




Robotics 1

Direct kinematics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

UNIVERSITA DI ROMA

Robotics 1 1



Kinematics of robot manipulators

= 'study of geometric and time properties of
the motion of robotic structures, without
reference to the causes producing it”

s robot seen as

“(open) kinematic chain of rigid bodies

interconnected by (revolute or prismatic)
joints”

Robotics 1




Motivations

= functional aspects
» definition of robot workspace
= Calibration

= operational aspects

task execution *  task definition and
(actuation by motors) |« o performance

two different “spaces” related by kinematic (and dynamic) maps

« trajectory planning
= programming
= motion control

Robotics 1 3



Kinematics
formulation and parameterizations

r = f(q)
JOINT DIRECT VRS
J— (Cartesian)
P w_ INVERSE space
q — (qll"'lqn) q — f-l(r) r= (r]_l"'lrm)
= choice of parameterization g

= unambiguous and minimal characterization of the robot configuration

= N = # degrees of freedom (dof) = # robot joints (rotational or
translational)

= choice of parameterization r

= compact description of positional and/or orientation (pose)
components of interest to the required task

= M < 6, and usually m < n (but this is not strictly needed)

Robotics 1 4



d:

N\
A\

Robotics 1

~—~—

—
ds

AN

e.g., the relative angle
between a link and the
following one

e.g., it describes the
pose of frame RF

s Mm=2

= pointing in space

= positioning in the plane

s Mm=3

= orientation in space

= positioning and orientation in the plane




Classification by kinematic type

(first 3 dofs)
] SCARA
%R (RRP)K
1
cartesian or C)(I:Iqr;ir)lc v t
iy =

&~

articulated or
anthropomorphic f\

(RRR)
polar or
spherical

(RRP)

P = 1-dof translational (prismatic) joint
R

1-dof rotational (revolute) joint
Robotics 1




Direct kinematic map

a the structure of the direct kinematics function
depends from the chosen r

r = f(q)

= methods for computing f.(q)
= geometric/by inspection

= Systematic: assigning frames attached to the robot
links and using homogeneous transformation matrices

Robotics 1



r=1py m=3

p, = l; cosq; + |, cos(q;+q;,)
p, = |y sing; + |, sin(q;+qy)
¢ =0t Qq,

for more general cases we need a "method”!

Robotics 1



joint 2 ink i-1 joint i+1

ik 1 . L joint n
joint 1 —— link i link n
joint i-1
link O joint i
(base) (end effector)
LT LV
revolute prismatic

Robotics 1



axis of joint i+1

common normal
(axis of link i)

with sign

o ; = twist angle between joint axes (pos/neg)!

a; = distance AB between joint axes (always well defined) }
[projected on a plane & orthogonal to the link axis]

Robotics 1 10



link i-1

link i

axis of link i-1 axis of link i

d; = distance CD (a variable if joint i is prismatic) L
with sign
angle (a variable if joint i is revolute) between link axes (pos/neg)!

[projected on a plane o orthogonal to the joint axis]
11
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Frame assignment
by Denavit-Hartenberg (DH)

joint axis joint axis joint axis
i-1 | i+1
link i-1
link i
|\
frame RF, is

attached to link i

common normal
to joint axes

axis around which the link rotates i and i+1

or along which the link slides

Robotics 1 12



Denavit-Hartenberg parameters

axis of joint axis of joint _ axis of joint
. — :
| 1 ||nk| ) ~ |+1
d;
Xi1
________ 16,

unit vector z along axis of joint i+1

unit vector x; along the common normal to joint i and i+1 axes (i — i+1)

a, = distance DO, — positive if oriented as x; (constant = “length” of link i)

d, = distance O,_,D — positive if oriented as z_, (variable if joint i is PRISMATIC)
o; = twist angle between z_, and z, around x; (constant)

0, = angle between x;_; and x; around z;; (variable if joint i is REVOLUTE)

Robotics 1 13



Homogeneous transformation
between DH frames (from frame, ; to frame;)

s roto-translation around and along z_,

“A (q) =

rotational joint = q; = 6,

s roto-translation around and a

Robotics 1

c0,-s6, 0 (0
s6; co; 0 |0

1
i'A_

O COLi 'SOLiE 0
| 0 so; coy;i0

_________________________

0 0 g

h

C@i 'S@i O E 0_
s, c6; 0. 0

_________________________

prismatic joint = @; = d;

ong X

always a
constant matrix

15



Denavit-Hartenberg matrix

compact notation: ¢ = cos, s = sin

Robotics 1 16



Direct kinematics of manipulators

description * mterna B Ye«—— slide s
to the robot e \
/
~ using:
Z- +— approach a

/< product 'A(q,) Po()-TAG) I

v *3=(qy--Qn) _ Xg «—— normal n
“external” description using

o r=(ry,..Mm)
=| Rip|_|nsaip
000: 1 000:1

alternative descriptions of robot direct kinematics

"Te = PT; °As(ay) 'Ax(ay) --"*AL(dn) "Te

r=1£/(q)

17
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Example: SCARA robot
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Step 1: joint axes

all parallel
(or coincident)

twists a; =0
or m

J3 prismatic

I-b-

.-—*
i
= (=
gﬁi : J4 revolute
, J2 elbow

Robotics 1 19



Step 2: link axes

the vertical “heights”
of the link axes
are arbitrary
(for the time being)

Robotics 1 20



Step 3: frames

y; axes fori > 0
are not shown

(and not needed; : X;
they form l X
- | 3
right-handed frames) l lox, |
'—z.ﬂi Tz aas
: (approach)

Robotics 1
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Step 4: DH parameters table

I
| I :3
—
EE I | o; | & | d | 6,
:il 110 |a |d | q
: Z
_ 12]0]a|0|aq
: > 3100 )|qg| O
| ! X
$ X |4 x| 0 ]daq
= Zn : A/lz4
o
— Yo note: d; and d4 could have been chosen = 0 !

moreover, here itisdy < 0 !

Robotics 1 22



Step 5: transformation matrices

_cel -s6;, O alcel_
wgap= % D9 2
0 0 0 1
_cez -s6, O azcez_
S
0 0 0 1

q = (q]_l q2/ q3l q4)
= (611 62/ d3l 64)

Robotics 1

A3(03)=

co.,

SO
3A4(C|4) = 0 4

0

O OO -

OO+ OoO

50,
-co,
0
0

OO0 o~roOO

= 0O O O

0 o O

 —

23



Step 6: direct kinematics

0A3(q11q21q3)=

A4(q4)=

R(q;,0204)=[nsa]
OA4(q1,q2,C|3,C|4)=

Robotics 1

Cp S 0 a6+ acy,
S € 0 a5+ a5,
0O 0 1 d,+q;

0 O 0 1
¢, s, 0 O

s, ¢ 0 O

0 0 -1 d,

O 0 O 1

Cioa Sia 0 |[31C1+ a5Cy)
Si24 “Cioq 0 |35+ @55,
0 0 -1 | |d;+qg5+d,
0 0 0 1

P = p(d4,9,,93)

24
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Differential kinematics

= relationship between motion (velocity) in the
joint space and motion (linear and angular
velocity) in the task (Cartesian) space”

= instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics
function or geometrically at the differential level
» different treatments arise for rotational quantities
= establish the link between angular velocity and
= time derivative of a rotation matrix
= time derivative of the angles in a minimal
representation of orientation

Robotics 1



Linear and angular velocity
of the robot end-effector

. . w
wy =216, Wy =716 v
01=2,6, %&
=216, = (p,9)
alternative definitions |
W of the e-e direct kinematics T _ {OOROﬂ

= Vv and w are “vectors”, namely elements of vector spaces: they can be
obtained as the sum of contributions of the joint velocities (in any order)

= on the other hand, ¢ (and d¢/dt) is not an element of a vector space: a
minimal representation of a sequence of rotations is not obtained by
summing the corresponding minimal representations (angles ¢)

in general, o = d¢/dt
Robotics 1



Finite and infinitesimal translations

= finiteAx, Ay, Az or infinitesimal dx, dy, dz translations
(linear displacements) always commute

I

A

/

Robotics 1

Az
\ -
/(

Ay

same final
position



Finite rotations do not commute

example
Z Z A
— o
initial ¢x =30
orientation
Y,
X
mathematical fact: w is
‘ NOT an exact differential form 5 ¢, =90°
V4 (the integral of w over time
depends on the integration path!)
¢, = 90° ‘ . Y
Y
Xy

different final
y= orientations

note: finite rotations still commute when
Robotics 1 made around the same fixed axis 6



Infinitesimal rotations commute!

= infinitesimal rotations d¢y, d¢y, d¢, around X,y,z axes

1 0 0 1 0 0
Re(0y) = | 0 cosady -sindy | oy Rdo) =10 1 ~dgy
| 0 sin ¢y COS ¢y | 0 dox 1]
cosdy 0 sindy 1 0 dpy

Ry(dy) =| O ' 1 0 ! |:> Ry(ddy) = L 0 1 0
| -singy 0 cOS ¢y | —d¢y 0 1 |
cos ¢, -sing, 0 1 -d¢, 0

RAdz) = | sing, cos¢d, O :> RAdd,) = | dp, 1 O
0 0 1 0 0 1

= R(dp) = R(dq)x, d(i)Yr dq)z) =

1

In any sequence

Robotics 1 = I + S(d(l))

<€— third-order
(infinitesimal)
terms

— — neglecting
L 1 _dq)z dq)YJ second- and



Time derivative of a rotation matrix

= let R = R(t) be a rotation matrix, given as a function of time
= since I = R(t)RT(t), taking the time derivative of both sides yields
0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt
= dR(t)/dt RT(t) + [dR(t)/dt RT(t)]"
thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix

= let p(t) = R(t)p’ a vector (with constant norm) rotated over time

= comparing A .
dp(t)/dt = dR(t)/dt p" = S(t)R(t) p* = S(t) p(t) s
dp(t)/dt = w(t) x p(t) = S(w(t)) p(t) D

we get S = S(w) &"p

R=5(w)R| 4= | S(w) =RRT

Robotics 1 8




Robot Jacobian matrices

= analytical Jacobian (obtained by time differentiation)

_ p= - _ p:‘m)=J .
r h} (q) ) i {q}} Lo A=)

= geometric Jacobian (no derivatives)
v p J(q) | . .

= = q=]
U U {JA@} @

Robotics 1 11



Geometric Jacobian

always a 6 x n matrix

V
end-effector :
instantaneous[vEJ = | D] = [J“(q) JL”(q)} C|1
velocity WEg JA(Q) UNTC) IR (¢)) d,

Ve = J(a) 9, @..+ 1.,(9) g, wg = Ja1(q) 9; @+ 150(9) q,

contribution to the Iin_ear contribution to the angular
e-e velocity due to ¢, e-e velocity due to g,

Robotics 1 14



Contribution of a prismatic joint

Note: joints beyond the i-th one are considered to be “frozen”, _ _
so that the distal part of the robot is a single rigid body J(a@)g=2z,d

L Zig

prismatic
i-th joint

Ji(q) q Zi 4 Cii

Jai(Q) éli 0

RF,

Robotics 1 15



RF,

Robotics 1

-

q = 9. revolute
| i-th joint

3@ G | (21 X Pi1e) 0,

INGe)) é|i Zi_ 4 éi

16



Expression of geometric Jacobian

([bo,EJ =) [VEJ _ [JL(q)Jd _ [Ju(CI) JLn(q)} CI1
WE WE JA(q) JAl(q) JAn(q) (::|n

prismatic revolute this can be also
i-th joint i-th joint computed as
9Po,e
Ju(a) Ziq Zi.1 X Pi-1E T
|
JAi(q) O Zl'l

all vectors should be
expressed in the same
reference frame
pl 1,E — pO E(qll an) pOI l(qll Iql 1) (here’ the base frame RFO)

z.; = °Ry(qy)..."?R;.1(q;.4) {ﬂ

Robotics 1 17



Robot Jacobian
decomposition in linear subspaces and duality
space of

/ \ space of
joint velocities J task (Cartesian)

- / > velocities

KA + X(I) =R" RAI) + XA =R™

dual spaces
sooeds |enp

space of space of

. T task (Cartesian)
joint torques % J / forces

(in a given configuration q)

Robotics 1 26



Mobility analysis

= p(J) = p(3(q), RA) = RA(q)), X(AN)= XA'(q)) are locally defined, i.e.,
they depend on the current configuration g

= R(J(q)) = subspace of all “generalized” velocities (with linear and/or
angular components) that can be instantaneously realized by the robot
end-effector when varying the joint velocities in the configuration g

= if J(g) has max rank (typically = m) in the configuration q, the robot
end-effector can be moved in any direction of the task space R™

= if p(J(q)) < m, there exist directions in R™ along which the robot end-
effector cannot instantaneously move
= these directions lie in X(J7(q)), namely the complement of $(J(q)) to the
task space R™, which is of dimension m - p(J(q))

= when X(J(q)) = {0} (this is always the case if m<n, i.e., in robots that
are redundant for the task), there exist non-zero joint velocities that
produce zero end-effector velocity (“self motions”)

Robotics 1 27



Kinematic singularities

= configurations where the Jacobian loses rank
< |oss of instantaneous mobility of the robot end-effector

= for m=n, they correspond in general to Cartesian poses that lead to a
number of inverse kinematic solutions that differs from the “generic” case

\\: 77

= "in” a singular configuration, one cannot find a joint velocity that realizes
a desired end-effector velocity in an arbitrary direction of the task space

= close” to a singularity, large joint velocities may be needed to realize
some (even small) velocity of the end-effector

= finding and analyzing in advance all singularities of a robot helps in
avoiding them during trajectory planning and motion control
= when m = n: find the configurations g such that det J(q) = 0

= when m < n: find the configurations g such that all mxm minors of ] are
singular (or, equivalently, such that det [J(q) J'(q)] = 0)

finding all singular configurations of a robot with a large nhumber of joints,
or the actual “distance” from a singularity, is a hard computational task

Robotics 1 28



