
Robotics 1 1

Robotics 1

Position and orientation
of rigid bodies

Prof. Alessandro De Luca

• position: ApAB (vector ! R3),
expressed in RFA (use of coordinates
other than Cartesian is possible, e.g.
cylindrical or spherical)

• orientation:
 orthonormal 3x3 matrix
 (RT = R-1 " ARB

BRA = I), with det = +1

 I

Position and orientation

A

B
RFA

RFB

pAB

rigid body right-handed orthogonal
Reference Frames

ARB = [AxB AyB AzB]
•  xA yA zA (xB yB zB) are unit vectors (with unitary norm) of frame RFA (RFB)

•  components in ARB are the direction cosines of the axes of RFB with respect
to (w.r.t.) RFA

Robotics 1 2

Rotation matrix

 xA
T xB xA

T yB xA
T zB

 yA
T xB yA

T yB yA
T zB

 zA
T xB zA

T yB zA
T zB

ARB =

chain rule property

direction cosine of
zB w.r.t. xA

kRi ! iRj = kRj
orientation of RFi

w.r.t. RFk
orientation of RFj

w.r.t. RFi

orientation of RFj
w.r.t. RFk

NOTE: in general, the product of rotation matrices does not commute!

algebraic structure
of a group SO(3)

(neutral element = I;
inverse element = RT)

orthonormal,
with det = +1

Robotics 1 3

Change of coordinates

x0

z0

y0

x1

RF0

RF1

y1

z1 •  P

0px
0py
0pz

= 1px
0x1 + 1py

0y1 + 1pz
0z1

= 0x1 0y1 0z1

1px
1py
1pz

0P =

= 0R1 1P

the rotation matrix 0R1 (i.e., the orientation of RF1
w.r.t. RF0) represents also the change of
coordinates of a vector from RF1 to RF0

Robotics 1 4

Ex: Orientation of frames in a plane
(elementary rotation around z-axis)

O x

y

u
v

RF0

RFC

B

C

• P
x = OB – xB = u cos # - v sin #$
y = OC + Cy = u sin # + v cos #$
z = w

similarly:

Rx(#) =
 1 0 0
 0 cos # - sin #
 0 sin # cos #$

Ry(#) =
 cos # 0 sin #
 0 1 0
- sin # 0 cos #$

Rz(-#) = Rz
T(#)

0OP

or…

x
y
z

cos # $-sin # $0
sin # $ cos # 0
 0 0 1

=
u
v
w

=
u
v
w

Rz(#)

COP 0xC 0yC 0zC

Robotics 1 5

Ex: Rotation of a vector around z

O x’

y’

v

x = |v| cos %$
y = |v| sin %$

v’

x

y

%$

x’ = |v| cos (% + #) = |v| (cos % cos # - sin % sin #)
x’ = x cos # - y sin #

y’ = |v| sin (% + #) = |v| (sin % cos # + cos % sin #)
x’ = x sin # + y cos #

z’ = z
or…

 x’
 y’
 z’

cos # - sin # 0
 sin # cos # 0
 0 0 1

=
x
y
z

= Rz(#)
x
y
z

…as
before!

Robotics 1 6

Equivalent interpretations
of a rotation matrix

the same rotation matrix, e.g., Rz(#), may represent:

RF0

RFC

the orientation of a rigid
body with respect to a
reference frame RF0

ex: [0xc 0yc 0zc] = Rz(#)

the change of coordinates
from RFC to RF0
ex: 0P = Rz(#) CP

RF0

RFC #
v

v’

the vector
rotation operator
ex: v’ = Rz(#) v

• P

the rotation matrix 0RC is an operator
superposing frame RF0 to frame RFC

Robotics 1 7

Composition of rotations

• 3p

RF0

RF1

RF2
RF3

p01 = 0

0p = (0R1
1R2

2R3)
3p = 0R3

3p

0p = 0R1 (1R2 (2R3
3p))

a comment on computational complexity

2p

27 products
18 summations

63 products
42 summations

p12 = 0

p23 = 0

0R1

1R2
2R3 brings RF0 on RF1 brings RF1 on RF2 brings RF2 on RF3

Robotics 1 8
1p

Axis/angle representation

r

rx

x0

rz

z0

ry

y0

#$

•  unit vector r (!r! = 1)$
•  # (positive if counterclockwise, as

seen from an “observer” placed like r) v

v’

DATA

DIRECT PROBLEM

find
R(#,r) = [0x1 0y1 0z1]

such that
0P= R(#,r)

1P 0v’ = R(#,r)
0v

x1

y1 z1

• P

RF0

RF1

RF1 is the result of rotating
RF0 by an angle # around
the unit vector r

Robotics 1 9

Axis/angle: Direct problem

r

x0

z0

y0

x1

y1 z1

RF0

RF1

C

C-1 = CT

Rz(#)

1

2
3

R(#,r) = C Rz(#) CT

C = n s r

after the first rotation
the z-axis coincides with r

n and s are orthogonal
unit vectors such that

n " s = r, or
nysz - synz = rx

nzsx - sznx = ry
nxsy - sxny = rz

sequence of 3 rotations that
bring frame RF0 to superpose
with frame RF1

concatenation of three rotations

Robotics 1 10

 c# - s# 0
 s# c# 0
 0 0 1

Axis/angle: Direct problem
solution

R(#,r) = C Rz(#) CT

R(#,r) = n s r
nT

sT

rT

= r rT + (n nT + s sT) c# + (s nT - n sT) s#

R(#,r) = r rT + (I - r rT) c# + S(r) s#

 0 -rz ry

s nT - n sT = 0 -rx = S(r)

 0

taking into account that
C CT = n nT + s sT + r rT = I , and that

skew-symmetric(r):

r " v = S(r)v = - S(v)r

depends only
on r and # !!

= RT(-#,r) = R(-#,-r)

Robotics 1 11

Rodriguez formula

R(#,r) v = (r rT + (I - r rT) cos # + S(r) sin #)v

 = r rT v (1 - cos #) + v cos # + (r " v) sin #

v’ = R(#,r) v

v’ = v cos # + (r " v) sin # + (1 - cos #)(rTv) r

proof:

q.e.d.

Robotics 1 14

Unit quaternion

"  to eliminate undetermined and singular cases arising in
the axis/angle representation, one can use the unit
quaternion representation

Q = {-, .} = {cos(#/2), sin(#/2) r}

"  -2 + !.!2 = 1 (thus, “unit ...”)
"  (#, r) and (-#, -r) gives the same quaternion Q
"  the absence of rotation is associated to Q = {1, 0}
"  unit quaternions can be composed with special rules (in

a similar way as in the product of rotation matrices)

a scalar 3-dim vector

Q 1*Q 2 = {-1-2 - .1
T.2, -1.2 + -2.1 + .1".2}

Robotics 1 20

Robotics 1 1

Robotics 1

Minimal representations
of orientation

(Euler and roll-pitch-yaw angles)
Homogeneous transformations

Prof. Alessandro De Luca

“Minimal” representations

  rotation matrices: 9 elements
 - 3 orthogonality relationships
 - 3 unitary relationships
 = 3 independent variables

  sequence of 3 rotations around independent axes
  fixed (ai) or moving/current (a’i) axes
  12 + 12 possible different sequences (e.g., XYX)
  actually, only 12 since

{(a1 α1), (a2 α2), (a3 α3)} ≡ { (a’3 α3) , (a’2 α2), (a’1 α1)}

inverse problem

 d
ire

ct
 p

ro
bl

em

Robotics 1 2

x’’

y’’

z’’≡z’’’

x’’’

y’’’

ψ

ψ

cos ψ 	

- 	

sin ψ 	

0
 sin ψ 	

 cos ψ 	

0
 0 0 1

Rz” (ψ) =

ZX’Z’’ Euler angles

x

z≡z’

y

x’

y’ φ

φ

cos φ 	

- 	

sin φ 	

0
 sin φ 	

 cos φ 	

0
 0 0 1

Rz(φ) =

y’
θ

θ

x’≡x’’

y’’

z’ z’’

Rx’(θ) =

 1 0 0
 0 cos θ -sin θ
 0 sin θ cos θ	

RF
RF’

RF”

RF”’

1 2

3

Robotics 1 3

ZX’Z’’ Euler angles

  direct problem: given φ , θ , ψ ; find R

 RZX’Z’’ (φ, θ, ψ) = RZ (φ) RX’ (θ) RZ’’ (ψ)

  given a vector v”’= (x”’,y”’,z”’) expressed in RF”’, its
expression in the coordinates of RF is

v = RZX’Z’’ (φ, θ, ψ) v”’

  the orientation of RF”’ is the same that would be obtained with
the sequence of rotations:

ψ around z, θ around x (fixed), φ around z (fixed)

cφ cψ - sφ cθ sψ - cφ sψ - sφ cθ cψ sφ sθ
sφ cψ + cφ cθ sψ - sφ sψ + cφ cθ cψ - cφ sθ
 sθ sψ sθ cψ cθ

=
order of definition
in concatenation

Robotics 1 4

z’’’

x’’’

y’’’

Roll-Pitch-Yaw angles

x≡x’

z

y

y’

φ

φ

cos φ 	

- 	

 sin φ 0
 sin φ 	

 cos φ 0
 0 0 1

with RZ(φ) =

θ
θ

y’’
z’’

RX(ψ) =
 1 0 0
 0 cos ψ - sin ψ
 0 sin ψ cos ψ

1 2

3

ψ

ψ z’

z’

y’
y’

x’ x’’

y

with RY(θ) =

 cos θ 0 sin θ
 0 1 0
- sin θ 0 cos θ	

ROLL PITCH

YAW

y’’
z’’

x’’

z

C1RY(θ)C1
T

C2RZ(φ)C2
T

Robotics 1 6

Roll-Pitch-Yaw angles (fixed XYZ)

  direct problem: given ψ , θ , φ ; find R

 RRPY (ψ, θ, φ) = RZ (φ) RY (θ) RX (ψ)

  inverse problem: given R = {rij}; find ψ , θ , φ

  r32
2 + r33

2 = c2θ, r31 = -sθ ⇒ θ = ATAN2{-r31, ± √ r32
2 + r33

2}

  if r32
2 + r33

2 ≠ 0 (i.e., cθ ≠ 0)

 r32/cθ = sψ, r33/cθ = cψ ⇒ ψ = ATAN2{r32/cθ, r33/cθ}

  similarly... φ = ATAN2{ r21/cθ, r11/cθ }
  singularities for θ = ± π/2

cφ cθ cφ sθ sψ - sφ cψ cφ sθ cψ + sφ sψ
sφ cθ sφ sθ sψ + cφ cψ sφ sθ cψ - cφ sψ
- sθ cθ sψ cθ cψ

=
order of definition

two symmetric values w.r.t. π/2

⇐ note the order of products!

Robotics 1 7

Homogeneous transformations

P
• 

OA

OB

Ap

Bp

ApAB

RFA

RFB

Ap = ApAB + ARB Bp

‘affine’ relationship

Ap ARB ApAB
Bp

 =
 1 0 0 0 1 1

= ATB Bphom
Aphom =

vector in homogeneous
coordinates

4x4 matrix of
homogeneous transformation

linear
relationship

Robotics 1 9

Properties of T matrix

  describes the relation between reference frames
(relative pose = position & orientation)

  transforms the representation of a position vector
(applied vector from the origin of the frame)
from a given frame to another frame

  it is a roto-translation operator on vectors in the
three-dimensional space

  it is always invertible (ATB)-1 = BTA

  can be composed, i.e., ATC = ATB BTC ← note: it does
 not commute!

Robotics 1 10

Inverse of a
homogeneous transformation

Ap = ApAB + ARB Bp Bp = BpBA + BRA
Ap = - ARB

T ApAB + ARB
T Ap

 ARB ApAB

0 0 0 1

 ARB
T - ARB

T ApAB

 0 0 0 1

 BRA BpBA

0 0 0 1
=

ATB (ATB)-1 BTA

Robotics 1 11

Defining a robot task

•  • 
•  1

2
3

RFW

RFB

RFE

RFT

WTT = WTB BTE ETT

absolute definition
of task

known, once
the robot
is placed

task definition relative
to the robot end-effector

direct kinematics of the
robot arm (function of q)

BTE(q) = WTB
-1 WTT ETT

 -1 = cost

Robotics 1 12

zE

yE

Final comments on T matrices
  they are the main tool for computing the direct kinematics

of robot manipulators

  they are used in many application areas (in robotics and
beyond)

  in the positioning of a vision camera (matrix bTc with the extrinsic
parameters of the camera posture)

  in computer graphics, for the real-time visualization of 3D solid
objects when changing the observation point

 ARB ApAB

 αx αy αz σ
ATB =

coefficients of
perspective
deformation

scaling
coefficient

all zero
in robotics

always unitary
in robotics

Robotics 1 13

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Robotics 1 1

Kinematics of robot manipulators

!  “study of geometric and time properties of
the motion of robotic structures, without
reference to the causes producing it”

!  robot seen as
 “(open) kinematic chain of rigid bodies

interconnected by (revolute or prismatic)
joints”

Robotics 1 2

Motivations

!  functional aspects
!  definition of robot workspace
!  calibration

!  operational aspects

!  trajectory planning
!  programming
!  motion control

task execution
(actuation by motors)

task definition and
performance

two different “spaces” related by kinematic (and dynamic) maps

Robotics 1 3

Kinematics
formulation and parameterizations

!  choice of parameterization q
!  unambiguous and minimal characterization of the robot configuration
!  n = # degrees of freedom (dof) = # robot joints (rotational or

translational)

!  choice of parameterization r
!  compact description of positional and/or orientation (pose)

components of interest to the required task
!  m ! 6, and usually m ! n (but this is not strictly needed)

JOINT
space

TASK
(Cartesian)

space

q = (q1,…,qn) r = (r1,…,rm)

DIRECT

INVERSE

r = f(q)

q = f -1(r)

Robotics 1 4

Open kinematic chains

!  m = 2
!  pointing in space
!  positioning in the plane

!  m = 3
!  orientation in space
!  positioning and orientation in the plane

q1

q2

q3

q4

qn

r = (r1,…,rm)

e.g., it describes the
pose of frame RFE

RFE

e.g., the relative angle
between a link and the

following one

Robotics 1 5

Classification by kinematic type
(first 3 dofs)

cartesian or
gantry
(PPP)

cylindric
(RPP)

SCARA
(RRP)

polar or
spherical

(RRP)

articulated or
anthropomorphic
(RRR)

P = 1-dof translational (prismatic) joint
R = 1-dof rotational (revolute) joint

Robotics 1 6

Direct kinematic map

!  the structure of the direct kinematics function
depends from the chosen r

!  methods for computing fr(q)
!  geometric/by inspection
!  systematic: assigning frames attached to the robot

links and using homogeneous transformation matrices

r = fr(q)

Robotics 1 7

Example: direct kinematics of 2R arm

x

y

q1

q2

P
• 

l1

l2

px

py
" q = q =

q1

q2

r =
px
py
"

n = 2

m = 3

px = l1 cos q1 + l2 cos(q1+q2)

py = l1 sin q1 + l2 sin(q1+q2)

" = q1+ q2

for more general cases we need a “method”!
Robotics 1 8

Numbering links and joints

joint 1

link 0
(base)

link 1

joint 2

joint i-1
joint i

joint n
joint i+1 link i-1

link i link n

(end effector)

Robotics 1 9

revolute prismatic

Relation between joint axes

axis of joint i axis of joint i+1

common normal
(axis of link i)

90°

90°

A

B

a i = distance AB between joint axes (always well defined)

i$

% $

i = twist angle between joint axes
 [projected on a plane % orthogonal to the link axis]

with sign
(pos/neg)!

Robotics 1 10

Relation between link axes

link i-1

link i

axis of joint i

axis of link i axis of link i-1

C

D

d i = distance CD (a variable if joint i is prismatic)

& i = angle (a variable if joint i is revolute) between link axes
 [projected on a plane ' orthogonal to the joint axis]

&i
' $

with sign
(pos/neg)!

Robotics 1 11

Frame assignment
by Denavit-Hartenberg (DH)

joint axis
i-1

joint axis
i

joint axis
i+1

link i-1
link i

xi-1

Oi-1

xi

zi

Oi

ai

&i

#i

zi-1 di

common normal
to joint axes

i and i+1 axis around which the link rotates
or along which the link slides

Robotics 1 12

frame RFi is
attached to link i

Denavit-Hartenberg parameters

!  unit vector zi along axis of joint i+1
!  unit vector xi along the common normal to joint i and i+1 axes (i (i+1)
!  ai = distance DOi – positive if oriented as xi (constant = “length” of link i)
!  di = distance Oi-1D – positive if oriented as zi-1 (variable if joint i is PRISMATIC)
!  #i = twist angle between zi-1 and zi around xi (constant)
!  &i = angle between xi-1 and xi around zi-i (variable if joint i is REVOLUTE)

axis of joint
i-1

axis of joint
i

axis of joint
i+1

link i-1
link i

xi-1

Oi-1

xi

zi

Oi

ai

&i

#i

zi-1 di

D
• 

Robotics 1 13

Homogeneous transformation
between DH frames (from framei-1 to framei)

!  roto-translation around and along zi-1

!  roto-translation around and along xi

c&i -s&i 0 0
s&i c&i 0 0
 0 0 1 0

 0 0 0 1

 1 0 0 0
 0 1 0 0
 0 0 1 di

 0 0 0 1

c&i -s&i 0 0
s&i c&i 0 0
 0 0 1 di

 0 0 0 1

i-1Ai’ (qi) = =

rotational joint) qi = &i prismatic joint) qi = di

1 0 0 ai
0 c#i -s#i 0
0 s#i c#i 0

0 0 0 1

i’Ai =
always a

constant matrix

Robotics 1 15

Denavit-Hartenberg matrix

c&i -c#i s&i s#i s&i aic&i
s&i c#i c&i -s#i c&i ais&i
 0 s#i c#i di

 0 0 0 1

i-1Ai (qi) = i-1Ai’ (qi) i’Ai =

compact notation: c = cos, s = sin

Robotics 1 16

Direct kinematics of manipulators

x0

y0

z0

xE

yE

zE approach a

slide s

normal n

description “internal”
to the robot

using:
•  product 0A1(q1) 1A2(q2)…n-1An(qn)
•  q=(q1,…,qn)

“external” description using
•  r = (r1,…,rm)

•  BTE= = R p

000 1

n s a p

0 0 0 1
BTE = BT0 0A1(q1) 1A2(q2) …n-1An(qn) nTE

 r = fr(q)

alternative descriptions of robot direct kinematics

RFB

Robotics 1 17

Example: SCARA robot

q1

q2

q3

q4

Robotics 1 18

J1 shoulder
J2 elbow

J3 prismatic
≡

J4 revolute

Step 1: joint axes

all parallel
(or coincident)

twists # i = 0
or %

Robotics 1 19

a1

Step 2: link axes

a2 a3 = 0

the vertical “heights”
of the link axes

are arbitrary
(for the time being)

Robotics 1 20

Step 3: frames

z1

x1 z2

x2

= a axis
(approach)

z0

x0
y0

= z3

x3

z4
x4

yi axes for i > 0
are not shown

(and not needed;
they form

right-handed frames)

Robotics 1 21

Step 4: DH parameters table

z1

x1 z2

x2

z0

x0
y0

= z3

x3

z4
x4

i # i$ ai di & i

1 0 a1 d1 q1

2 0 a2 0 q2

3 0 0 q3 0

4 % 0 d4 q4

note: d1 and d4 could have been chosen = 0 !
 moreover, here it is d4 < 0 !!

Robotics 1 22

Step 5: transformation matrices

c&4 s&4 0 0
s&4 -c&4 0 0
 0 0 -1 d4
 0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

c&2 - s&2 0 a2c&2
s&2 c&2 0 a2s&2
 0 0 1 0
 0 0 0 1

c&1 - s&1 0 a1c&1
s&1 c&1 0 a1s&1
 0 0 1 d1
 0 0 0 1

3A4(q4)=

2A3(q3)=
1A2(q2)=

0A1(q1)=

q = (q1, q2, q3, q4)

 = (&1, &2, d3, &4)

Robotics 1 23

Step 6: direct kinematics

c4 s4 0 0
s4 -c4 0 0
 0 0 -1 d4
 0 0 0 1

c12 -s12 0 a1c1+ a2c12
s12 c12 0 a1s1+ a2s12
 0 0 1 d1+q3
 0 0 0 1

3A4(q4)=

0A3(q1,q2,q3)=

c124 s124 0 a1c1+ a2c12
s124 -c124 0 a1s1+ a2s12
 0 0 -1 d1+q3+d4
 0 0 0 1

0A4(q1,q2,q3,q4)=
p = p(q1,q2,q3)

R(q1,q2,q4)=[n s a]

Robotics 1 24

Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Robotics 1 1

Differential kinematics

  “relationship between motion (velocity) in the
joint space and motion (linear and angular
velocity) in the task (Cartesian) space”

  instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics
function or geometrically at the differential level
  different treatments arise for rotational quantities
  establish the link between angular velocity and

  time derivative of a rotation matrix
  time derivative of the angles in a minimal

representation of orientation

Robotics 1 2

Linear and angular velocity
of the robot end-effector

  v and ω are “vectors”, namely elements of vector spaces: they can be
obtained as the sum of contributions of the joint velocities (in any order)

  on the other hand, φ (and dφ/dt) is not an element of a vector space: a
minimal representation of a sequence of rotations is not obtained by
summing the corresponding minimal representations (angles φ)

r = (p,φ)

 R p

000 1
T =

ω
v

alternative definitions
of the e-e direct kinematics

in general, ω ≠ dφ/dt
Robotics 1 4

ω1 = z0θ1

.
ω2 = z1θ2

.
ωn = zn-1θn

.

ωi = zi-1θi

. v3 = z2 d3
.

Finite and infinitesimal translations
  finiteΔx, Δy, Δz or infinitesimal dx, dy, dz translations

(linear displacements) always commute

Robotics 1 5

x

y

z

x

y

z

same final
position

=

Δy

Δz

Δz

Δy

Finite rotations do not commute
example

φ X = 90°

x

y

z

x

y

z

x

y

z

x

y

z

x
y

z

φ X = 90°

φ Z = 90°

φ Z = 90°

mathematical fact: ω is
NOT an exact differential form
(the integral of ω over time

depends on the integration path!)

different final
orientations

initial
orientation

Robotics 1 6
note: finite rotations still commute when
made around the same fixed axis

Infinitesimal rotations commute!
  infinitesimal rotations dφX, dφY, dφZ around x,y,z axes

cos φZ -sin φZ 	

0
 sin φZ cos φZ 	

0
 0 0 1

RZ(φZ) =

RX(φX) =
 1 0 0
 0 cos φX -sin φX
 0 sin φX cos φX

RY(φY) =
 cos φY 0 sin φY
 0 1 0
-sin φY 0 cos φY

 1 -dφ Z 0
 dφ Z 1 0
 0 0 1

RZ(dφZ) =

RX(dφX) =
 1 0 0
 0 1 -dφX
 0 dφX 1

RY(dφY) =
 1 0 dφ Y
 0 1 0
-dφ Y 0 1

Robotics 1 7

  R(dφ) = R(dφX, dφY, dφZ) =

 = I + S(dφ)

 1 -dφz dφY
 dφz 1 -dφX
-dφY dφX 1

in any sequence

neglecting
second- and
third-order

(infinitesimal)
terms

Time derivative of a rotation matrix

  let R = R(t) be a rotation matrix, given as a function of time

  since I = R(t)RT(t), taking the time derivative of both sides yields

 0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt

 = dR(t)/dt RT(t) + [dR(t)/dt RT(t)]T
 thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix

  let p(t) = R(t)p’ a vector (with constant norm) rotated over time

  comparing

 dp(t)/dt = dR(t)/dt p’ = S(t)R(t) p’ = S(t) p(t)

 dp(t)/dt = ω(t) × p(t) = S(ω(t)) p(t)

 we get S = S(ω)

R = S(ω) R
.

S(ω) = R RT
.

Robotics 1 8

p

ω

p
.

Robot Jacobian matrices

  analytical Jacobian (obtained by time differentiation)

  geometric Jacobian (no derivatives)

p

φ
r = = fr(q)

Robotics 1 11

v

ω
= = J(q) q

. JL(q)

JA(q)
q
. p

ω

.
=

r = = = Jr(q) q
. . ∂fr(q)

∂q
q
. p

φ
.

Geometric Jacobian

vE

ωE

= JL(q)

JA(q)
q =
. JL1(q)

JA1(q)

JLn(q)

JAn(q)

…
…

q1

qn
…

 .

.

vE = JL1(q) q1 +…+ JLn(q) qn

. .
ωE = JA1(q) q1 +…+ JAn(q) qn

. .

contribution to the linear
e-e velocity due to q1

.

superposition of effects

linear and angular velocity belong to
(linear) vector spaces in R3

end-effector
instantaneous

velocity

always a 6 x n matrix

contribution to the angular
e-e velocity due to q1

.

Robotics 1 14

prismatic
i-th joint

JLi(q) qi zi-1 di

JAi(q) qi 0

Contribution of a prismatic joint

.

.

.

RF0

zi-1

qi = di

E

JLi(q) qi = zi-1 di

. . Note: joints beyond the i-th one are considered to be “frozen”,
 so that the distal part of the robot is a single rigid body

Robotics 1 15

revolute
i-th joint

JLi(q) qi (zi-1 × pi-1,E) θi

JAi(q) qi zi-1 θi

Contribution of a revolute joint

RF0

.

.

.

.

zi-1

qi = θi

JAi(q) qi = zi-1 θi

. JLi(q) qi

.

•  Oi-1
pi-1,E

.

Robotics 1 16

Expression of geometric Jacobian

vE

ωE

= JL(q)

JA(q)
q =
. JL1(q)

JA1(q)

JLn(q)

JAn(q)

…
…

q1

qn
…

 .

.

prismatic
i-th joint

revolute
i-th joint

JLi(q) zi-1 zi-1 × pi-1,E

JAi(q) 0 zi-1

zi-1 = 0R1(q1)…i-2Ri-1(qi-1)
0
0
1

pi-1,E = p0,E(q1,…,qn) - p0,i-1(q1,…,qi-1)

all vectors should be
expressed in the same

reference frame
(here, the base frame RF0)

∂p0,E

∂qi

p0,E

ωE

(=)
.

Robotics 1 17

=

this can be also
computed as

Robot Jacobian
decomposition in linear subspaces and duality

0 0

space of
joint velocities

space of
task (Cartesian)

velocities

ℜ(J) ℵ(J)

J

0 0

space of
joint torques

space of
task (Cartesian)

forces

ℜ(JT) ℵ(JT)

JT

ℜ(J) + ℵ(JT) = Rm ℜ(JT) + ℵ(J) = Rn

(in a given configuration q)

dual spaces du
al

 s
pa

ce
s

Robotics 1 26

Mobility analysis

  ρ(J) = ρ(J(q)), ℜ(J) = ℜ(J(q)), ℵ(JT)= ℵ(JT(q)) are locally defined, i.e.,
they depend on the current configuration q

  ℜ(J(q)) = subspace of all “generalized” velocities (with linear and/or
angular components) that can be instantaneously realized by the robot
end-effector when varying the joint velocities in the configuration q

  if J(q) has max rank (typically = m) in the configuration q, the robot
end-effector can be moved in any direction of the task space Rm

  if ρ(J(q)) < m, there exist directions in Rm along which the robot end-
effector cannot instantaneously move
  these directions lie in ℵ(JT(q)), namely the complement of ℜ(J(q)) to the

task space Rm, which is of dimension m - ρ(J(q))

  when ℵ(J(q)) ≠ {0} (this is always the case if m<n, i.e., in robots that
are redundant for the task), there exist non-zero joint velocities that
produce zero end-effector velocity (“self motions”)

Robotics 1 27

Kinematic singularities

  configurations where the Jacobian loses rank
 ⇔ loss of instantaneous mobility of the robot end-effector
  for m=n, they correspond in general to Cartesian poses that lead to a

number of inverse kinematic solutions that differs from the “generic” case
  “in” a singular configuration, one cannot find a joint velocity that realizes

a desired end-effector velocity in an arbitrary direction of the task space
  “close” to a singularity, large joint velocities may be needed to realize

some (even small) velocity of the end-effector
  finding and analyzing in advance all singularities of a robot helps in

avoiding them during trajectory planning and motion control
  when m = n: find the configurations q such that det J(q) = 0
  when m < n: find the configurations q such that all m×m minors of J are

singular (or, equivalently, such that det [J(q) JT(q)] = 0)
  finding all singular configurations of a robot with a large number of joints,

or the actual “distance” from a singularity, is a hard computational task

Robotics 1 28

