Robotics 1

Position and orientation of rigid bodies

Prof. Alessandro De Luca

DIPARTIMENTO DI INFORMATICA
e Sistemistica Antonio Ruberti

SAPTENTZA

Position and orientation

- $x_{A} y_{A} z_{A}\left(x_{B} y_{B} z_{B}\right)$ are unit vectors (with unitary norm) of frame $R F_{A}\left(R F_{B}\right)$
- components in ${ }^{A} R_{B}$ are the direction cosines of the axes of $R F_{B}$ with respect to (w.r.t.) RF_{A}

Rotation matrix

NOTE: in general, the product of rotation matrices does not commute!

Change of coordinates

Ex: Orientation of frames in a plane

(elementary rotation around z-axis)

similarly:

$$
\mathrm{R}_{\mathrm{z}}(-\theta)=\mathrm{R}_{\mathrm{z}}{ }^{\top}(\theta)
$$

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Ex: Rotation of a vector around z

$$
\begin{aligned}
& x=|v| \cos \alpha \\
& y=|v| \sin \alpha
\end{aligned}
$$

$$
x^{\prime}=|v| \cos (\alpha+\theta)=|v|(\cos \alpha \cos \theta-\sin \alpha \sin \theta)
$$

$$
=x \cos \theta-y \sin \theta
$$

$$
\begin{aligned}
y^{\prime} & =|v| \sin (\alpha+\theta)=|v|(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

$$
z^{\prime}=z
$$

or...

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{z}(\theta)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { before! }
$$

Equivalent interpretations of a rotation matrix

the same rotation matrix, e.g., $R_{z}(\theta)$, may represent:

the orientation of a rigid body with respect to a reference frame $R F_{0}$ ex: $\left[{ }^{0} \mathrm{x}_{\mathrm{c}}{ }^{0} \mathrm{y}_{\mathrm{c}}{ }^{0} \mathrm{z}_{\mathrm{c}}\right]=\mathrm{R}_{\mathrm{z}}(\theta)$

the change of coordinates from RF_{C} to RF_{0} ex: ${ }^{0} P=R_{z}(\theta){ }^{C P}$

the vector rotation operator
$e x: v^{\prime}=R_{z}(\theta) v$ the rotation matrix ${ }^{0} R_{C}$ is an operator superposing frame RF_{0} to frame RF_{C}

Composition of rotations

Axis/angle representation

Axis/angle: Direct problem

Axis/angle: Direct problem

$$
\begin{aligned}
& R(\theta, r)=C R_{z}(\theta) C^{\top} \\
& R(\theta, r)=\left[\begin{array}{lrr}
n & s & r
\end{array}\right]\left[\begin{array}{ccc}
c \theta & -s \theta & 0 \\
s \theta & c \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
n^{\top} \\
s^{\top} \\
r^{\top}
\end{array}\right] \\
&=r r^{\top}+\left(n n^{\top}+s s^{\top}\right) c \theta+\left(s n^{\top}-n s^{\top}\right) s \theta
\end{aligned}
$$

taking into account that

$$
C C^{\top}=n n^{\top}+s s^{\top}+r r^{\top}=I, \quad \text { and that }
$$

$$
R(\theta, r)=r r^{\top}+\left(I-r r^{\top}\right) c \theta+S(r) s \theta=R^{\top}(-\theta, r)=R(-\theta,-r)
$$

Rodriguez formula

$$
v^{\prime}=R(\theta, r) v
$$

$$
v^{\prime}=v \cos \theta+(r \times v) \sin \theta+(1-\cos \theta)\left(r^{\top} v\right) r
$$

proof:

$$
\begin{aligned}
& R(\theta, r) v=\left(r r^{\top}+\left(I-r r^{\top}\right) \cos \theta+S(r) \sin \theta\right) v \\
&=r r^{\top} v(1-\cos \theta)+v \cos \theta+(r \times v) \sin \theta \\
& \text { q.e.d. }
\end{aligned}
$$

Unit quaternion

- to eliminate undetermined and singular cases arising in the axis/angle representation, one can use the unit quaternion representation

$$
\begin{gathered}
Q=\{\eta, \varepsilon\}=\{\cos (\theta / 2), \sin (\theta / 2) \mathbf{r}\} \\
\text { a scalar } 3 \text {-dim vector }
\end{gathered}
$$

- $\eta^{2}+\|\varepsilon\|^{2}=1$ (thus, "unit ...")
- (θ, \mathbf{r}) and $(-\theta,-\mathbf{r})$ gives the same quaternion Q
- the absence of rotation is associated to $Q=\{1, \mathbf{0}\}$
- unit quaternions can be composed with special rules (in a similar way as in the product of rotation matrices)

$$
Q_{1} * Q_{2}=\left\{\eta_{1} \eta_{2}-\varepsilon_{1}^{\top} \varepsilon_{2}, \eta_{1} \varepsilon_{2}+\eta_{2} \varepsilon_{1}+\varepsilon_{1} \times \varepsilon_{2}\right\}
$$

Robotics 1

Minimal representations of orientation

(Euler and roll-pitch-yaw angles) Homogeneous transformations

Prof. Alessandro De Luca

DIPARTIMENTO DI INFORMATICA e Sistemistica Antonio Rubert

SAPIENZA
Universitì di Roma

"Minimal" representations

- rotation matrices:

9 elements

- 3 orthogonality relationships
- 3 unitary relationships
$=3$ independent variables
- sequence of 3 rotations around independent axes
- fixed (a_{i}) or moving/current (a_{i}) axes
- $12+12$ possible different sequences (e.g., XYX)
- actually, only 12 since

$$
\left\{\left(a_{1} \alpha_{1}\right),\left(a_{2} \alpha_{2}\right),\left(a_{3} \alpha_{3}\right)\right\} \equiv\left\{\left(a_{3}^{\prime} \alpha_{3}\right),\left(a_{2}^{\prime} \alpha_{2}\right),\left(a_{1}^{\prime} \alpha_{1}\right)\right\}
$$

ZX'Z'" Euler angles

ZX'Z" Euler angles

- direct problem: given ϕ, θ, ψ; find R

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ZX} Z^{\prime \prime}}(\phi, \theta, \psi)=\mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{X}^{\prime}}(\theta) \mathrm{R}_{\mathrm{Z}^{\prime \prime}}(\psi) \\
& \begin{array}{c}
\text { order of definition } \\
\text { in concatenation }
\end{array}=\left[\begin{array}{ccc}
c \phi c \psi-s \phi c \theta s \psi & -c \phi s \psi-s \phi c \theta c \psi & s \phi s \theta \\
s \phi c \psi+c \phi c \theta s \psi & -s \phi s \psi+c \phi c \theta c \psi & -c \phi s \theta \\
s \theta s \psi & s \theta c \psi & c \theta
\end{array}\right]
\end{aligned}
$$

- given a vector $v^{\prime \prime \prime}=\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}, z^{\prime \prime \prime}\right)$ expressed in RF"', its expression in the coordinates of RF is

$$
\mathrm{v}=\mathrm{R}_{\mathrm{ZX} \mathrm{Z}^{\prime \prime}}(\phi, \theta, \psi) \mathrm{v}^{\prime \prime \prime}
$$

- the orientation of $\mathrm{RF}^{\prime \prime \prime}$ is the same that would be obtained with the sequence of rotations:
ψ around z, θ around x (fixed), ϕ around z (fixed)

Roll-Pitch-Yaw angles

$R_{x}(\psi)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi\end{array}\right]$

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{R}_{\mathrm{z}}(\phi) \mathrm{C}_{2}^{\top} \\
& \text { with } \mathrm{R}_{\mathrm{z}}(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{Z}^{\prime \prime \prime} \\
& x^{\prime \prime} \phi^{\prime \prime} \mathrm{x}^{\prime \prime \prime}
\end{aligned}
$$

Roll-Pitch-Yaw angles (fixed XYZ)

- direct problem: given ψ, θ, ϕ; find R

$$
\begin{aligned}
\mathrm{R}_{\mathrm{RPY}}(\psi, \theta, \phi) & =\mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{\mathrm{X}}(\psi)
\end{aligned} \begin{aligned}
\text { order of definition } & \Leftarrow \text { note the order of products! } \\
& =\left[\begin{array}{ccc}
\mathrm{c} \phi \mathrm{c} \theta & \mathrm{c} \phi \mathrm{~s} \theta \mathrm{~s} \psi-\mathrm{s} \phi \mathrm{c} \psi & \mathrm{c} \phi \mathrm{~s} \theta \mathrm{c} \psi+\mathrm{s} \phi \mathrm{~s} \psi \\
\mathrm{~s} \phi \mathrm{c} \theta & \mathrm{~s} \phi \mathrm{~s} \theta \mathrm{~s} \psi+\mathrm{c} \phi \mathrm{c} \psi & \mathrm{~s} \phi \mathrm{~s} \theta \mathrm{c} \psi-\mathrm{c} \phi \mathrm{~s} \psi \\
-\mathrm{s} \theta & \mathrm{c} \theta \mathrm{~s} \psi & \mathrm{c} \theta \mathrm{c} \psi
\end{array}\right.
\end{aligned}
$$

- inverse problem: given $\mathrm{R}=\left\{\mathrm{r}_{\mathrm{ij}}\right\} ;$ find ψ, θ, ϕ
- $r_{32}{ }^{2}+r_{33}{ }^{2}=c^{2} \theta, r_{31}=-s \theta \Rightarrow \theta=\operatorname{ATAN} 2\left\{-r_{31} \pm \sqrt{r_{32}{ }^{2}+r_{33}{ }^{2}}\right\}$
- if $r_{32}^{2}+r_{33}{ }^{2} \neq 0$ (i.e., $c \theta \neq 0$)
two symmetric values w.r.t. $\pi / 2$
$r_{32} / c \theta=s \psi, \quad r_{33} / c \theta=c \psi \Rightarrow \psi=$ ATAN2 $\left.2 r_{32} / c \theta, r_{33} / c \theta\right\}$
similarly...
- singularities for $\theta= \pm \pi / 2$

Homogeneous transformations

Properties of T matrix

- describes the relation between reference frames (relative pose $=$ position \& orientation)
- transforms the representation of a position vector (applied vector from the origin of the frame) from a given frame to another frame
- it is a roto-translation operator on vectors in the three-dimensional space
- it is always invertible $\left({ }^{A} T_{B}\right)^{-1}={ }^{B} T_{A}$
- can be composed, i.e., ${ }^{A} T_{C}={ }^{A} T_{B}{ }^{B} T_{C} \leftarrow$ note: it does not commute!

Inverse of a

 homogeneous transformation$$
{ }^{A} p={ }^{A} p_{A B}+{ }^{A} R_{B}{ }^{B} p \quad{ }^{B} p={ }^{B} p_{B A}+{ }^{B} R_{A}{ }^{A} p=-{ }^{A} R_{B}{ }^{\top}{ }^{A} p_{A B}+{ }^{A} R_{B}{ }^{\top}{ }^{A} p
$$

${ }^{A} T_{B}$

${ }^{B} \mathrm{~T}_{\mathrm{A}}$
$\left({ }^{\left(T_{B}\right.}\right)^{-1}$

Defining a robot task

$$
{ }^{B} T_{E}(q)=\mathrm{W}_{\mathrm{B}}{ }^{-1} \mathrm{~W} \mathrm{~T}_{\mathrm{T}} \mathrm{E}_{\mathrm{T}}{ }^{-1}=\mathrm{cost}
$$

Final comments on T matrices

- they are the main tool for computing the direct kinematics of robot manipulators
- they are used in many application areas (in robotics and beyond)
- in the positioning of a vision camera (matrix ${ }^{b} T_{c}$ with the extrinsic parameters of the camera posture)
- in computer graphics, for the real-time visualization of 3D solid objects when changing the observation point

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

SAPIENZA
Università di Roma

Kinematics of robot manipulators

- "study of geometric and time properties of the motion of robotic structures, without reference to the causes producing it"
- robot seen as
"(open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints"

Motivations

- functional aspects
- definition of robot workspace
- calibration
- operational aspects

task definition and performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

Kinematics
 formulation and parameterizations

- choice of parameterization q
- unambiguous and minimal characterization of the robot configuration
- $\mathrm{n}=$ \# degrees of freedom (dof) = \# robot joints (rotational or translational)
- choice of parameterization r
- compact description of positional and/or orientation (pose) components of interest to the required task
- $m \leq 6$, and usually $m \leq n$ (but this is not strictly needed)

Open kinematic chains

- $m=2$
- pointing in space
- positioning in the plane
- $m=3$
- orientation in space
- positioning and orientation in the plane

Classification by kinematic type (first 3 dofs)

cartesian
gantry
(PPP)

P = 1-dof translational (prismatic) joint
$R=1$-dof rotational (revolute) joint

Direct kinematic map

- the structure of the direct kinematics function depends from the chosen r

$$
r=f_{r}(q)
$$

- methods for computing $f_{r}(q)$
- geometric/by inspection
- systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

Example: direct kinematics of 2R arm

for more general cases we need a "method"!

Numbering links and joints

Relation between joint axes

$a_{i}=$ distance $A B$ between joint axes (always well defined)
$\alpha_{i}=$ twist angle between joint axes [projected on a plane π orthogonal to the link axis] \quad (pos/neg)!

Relation between link axes

Frame assignment by Denavit-Hartenberg (DH)

Denavit-Hartenberg parameters

- unit vector z_{i} along axis of joint $i+1$
- unit vector x_{i} along the common normal to joint i and $i+1$ axes ($i \rightarrow i+1$)
- $a_{i}=$ distance $D_{i}-$ positive if oriented as x_{i} (constant = "length" of link i)
- $\mathrm{d}_{\mathrm{i}}=$ distance $\mathrm{O}_{\mathrm{i}-1} \mathrm{D}$ - positive if oriented as $\mathrm{z}_{\mathrm{i}-1}$ (variable if joint i is PRISMATIC)
- $\alpha_{i}=$ twist angle between $\mathrm{z}_{\mathrm{i}-1}$ and z_{i} around x_{i} (constant)
- $\theta_{i}=$ angle between x_{i-1} and x_{i} around z_{i-i} (variable if joint i is REVOLUTE)

Homogeneous transformation between DH frames (from frame e_{i-1} to frame e_{i})

roto-translation around and along $\mathrm{z}_{\mathrm{i}-1}$

$$
{ }^{i-1} A_{i^{\prime}}\left(q_{i}\right)=\left[\begin{array}{ccc:c}
c \theta_{i}-s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc:c}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

rotational joint $\Rightarrow q_{i}=\theta_{i} \quad$ prismatic join roto-translation around and along x_{i}

$$
\mathrm{i}^{\prime} \mathrm{A}_{\mathrm{i}}=\left[\begin{array}{ccc:c}
1 & 0 & 0 & a_{i} \\
0 & \mathrm{C} \alpha_{i}-5 \alpha_{i} & 0 \\
0 & 5 \alpha_{i} & c \alpha_{i} & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right] \leftarrow \begin{gathered}
\text { always a } \\
\text { constant matrix }
\end{gathered}
$$

Denavit-Hartenberg matrix

compact notation: $\mathrm{c}=\cos , \mathrm{s}=\sin$

Direct kinematics of manipulators

Example: SCARA robot

Step 1: joint axes

Step 2: link axes

Step 3: frames

$\mathbf{y}_{\mathbf{i}}$ axes for $\mathrm{i}>0$ are not shown (and not needed; they form right-handed frames)

Step 4: DH parameters table

Step 5: transformation matrices

Step 6: direct kinematics

$$
\begin{aligned}
& { }^{0} \mathrm{~A}_{3}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right)=\left[\begin{array}{cccc}
\mathrm{c}_{12} & -\mathrm{s}_{12} & 0 & a_{1} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{c}_{12} \\
\mathrm{~s}_{12} & \mathrm{c}_{12} & 0 & a_{1} \mathrm{~s}_{1}+a_{2} \mathrm{~s}_{12} \\
0 & 0 & 1 & d_{1}+\mathrm{q}_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{3} \mathrm{~A}_{4}\left(\mathrm{q}_{4}\right)=\left[\begin{array}{cccc}
\mathrm{c}_{4} & \mathrm{~s}_{4} & 0 & 0 \\
\mathrm{~s}_{4} & -\mathrm{c}_{4} & 0 & 0 \\
0 & 0 & -1 & \mathrm{~d}_{4} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \left.\begin{array}{c}
R\left(q_{1}, q_{2}, q_{4}\right)=\left[\begin{array}{lll}
n & \text { s }
\end{array}\right]\left[\begin{array}{ccc}
0 \\
A_{4} & \left(q_{1}, q_{2}, q_{3}, q_{4}\right)
\end{array}\right]\left[\begin{array}{ccc}
c_{124} & s_{124} & 0 \\
s_{124} & -c_{124} & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right. \\
\begin{array}{ll}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
d_{1}+q_{3}+d_{4}
\end{array} \\
\hline 1
\end{array}\right] p=p\left(q_{1}, q_{2}, q_{3}\right)
\end{aligned}
$$

Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Differential kinematics

- "relationship between motion (velocity) in the joint space and motion (linear and angular velocity) in the task (Cartesian) space"
- instantaneous velocity mappings can be obtained through time derivation of the direct kinematics function or geometrically at the differential level
- different treatments arise for rotational quantities
- establish the link between angular velocity and
- time derivative of a rotation matrix
- time derivative of the angles in a minimal representation of orientation

Linear and angular velocity of the robot end-effector

- v and ω are "vectors", namely elements of vector spaces: they can be obtained as the sum of contributions of the joint velocities (in any order)
- on the other hand, ϕ (and d ϕ / dt) is not an element of a vector space: a minimal representation of a sequence of rotations is not obtained by summing the corresponding minimal representations (angles ϕ)

$$
\text { in general, } \omega \neq \mathrm{d} \phi / \mathrm{dt}
$$

Finite and infinitesimal translations

- finite $\Delta x, \Delta y, \Delta z$ or infinitesimal $d x, d y, d z$ translations (linear displacements) always commute

Finite rotations do not commute

example

Infinitesimal rotations commute!

- infinitesimal rotations $\mathrm{d} \phi_{\mathrm{x}}, \mathrm{d} \phi_{\mathrm{Y}}, \mathrm{d} \phi_{\mathrm{Z}}$ around $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes

$$
\begin{aligned}
& R_{x}\left(\phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{x} & -\sin \phi_{x} \\
0 & \sin \phi_{x} & \cos \phi_{x}
\end{array}\right] \quad \square R_{x}\left(d \phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -d \phi_{x} \\
0 & d \phi_{x} & 1
\end{array}\right] \\
& R_{Y}\left(\phi_{Y}\right)=\left[\begin{array}{ccc}
\cos \phi_{Y} & 0 & \sin \phi_{Y} \\
0 & 1 & 0 \\
-\sin \phi_{Y} & 0 & \cos \phi_{Y}
\end{array}\right] \quad \square R_{Y}\left(d \phi_{Y}\right)=\left[\begin{array}{ccc}
1 & 0 & d \phi_{Y} \\
0 & 1 & 0 \\
-d \phi_{Y} & 0 & 1
\end{array}\right] \\
& R_{Z}\left(\phi_{Z}\right)=\left[\begin{array}{ccc}
\cos \phi_{Z} & -\sin \phi_{z} & 0 \\
\sin \phi_{z} & \cos \phi_{z} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \square \quad R_{Z}\left(d \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{z} & 0 \\
d \phi_{Z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R(d)=R\left(d \phi_{L_{2}} d \phi_{Y} d \phi_{Z}\right)=\left[\begin{array}{lll}
1 & -d \phi_{Z} & d \phi_{Y}
\end{array}\right] \quad \begin{array}{c}
\text { neglecting } \\
\text { second- and }
\end{array} \\
& \text { - } R(\mathrm{~d} \phi)=\mathrm{R}\left(\mathrm{~d} \phi_{\mathrm{X}}, \mathrm{~d} \phi_{\mathrm{Y}}, \mathrm{~d} \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -\mathrm{d} \phi_{Z} & \mathrm{~d} \phi_{\mathrm{Y}} \\
\mathrm{~d} \phi_{\mathrm{Z}} & 1 & -\mathrm{d} \phi_{\mathrm{X}} \\
-\mathrm{d} \phi_{Y} & \mathrm{~d} \phi_{\mathrm{X}} & 1
\end{array}\right] \leftarrow \begin{array}{c}
\text { second- and } \\
\text { thind order } \\
\text { (ninititesimal) } \\
\text { terms }
\end{array}
\end{aligned}
$$

Time derivative of a rotation matrix

- let $R=R(t)$ be a rotation matrix, given as a function of time
- since $I=R(t) R^{\top}(t)$, taking the time derivative of both sides yields

$$
\begin{aligned}
0 & =\mathrm{d}\left[\mathrm{R}(\mathrm{t}) \mathrm{R}^{\top}(\mathrm{t})\right] / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\mathrm{R}(\mathrm{t}) \mathrm{dR}^{\top}(\mathrm{t}) / \mathrm{dt} \\
& =\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\left[\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})\right]^{\top}
\end{aligned}
$$

thus $d R(t) / d t R^{T}(t)=S(t)$ is a skew-symmetric matrix

- let $\mathrm{p}(\mathrm{t})=\mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}$ a vector (with constant norm) rotated over time
- comparing

$$
\begin{aligned}
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{p}(\mathrm{t}) \\
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\omega(\mathrm{t}) \times \mathrm{p}(\mathrm{t})=\mathrm{S}(\omega(\mathrm{t})) \mathrm{p}(\mathrm{t})
\end{aligned}
$$

we get $S=S(\omega)$

$$
\dot{\mathrm{R}}=\mathrm{S}(\omega) \mathrm{R} \quad \mathrm{~S}(\omega)=\dot{\mathrm{R}} \mathrm{R}^{\top}
$$

Robot Jacobian matrices

- analytical Jacobian (obtained by time differentiation)

$$
r=\binom{\mathrm{p}}{\phi}=\mathrm{f}_{\mathrm{r}}(\mathrm{q}) \quad \longleftrightarrow \dot{\mathrm{r}}=\binom{\mathrm{p}}{\dot{\phi}}=\frac{\partial \mathrm{f}_{\mathrm{r}}(\mathrm{q})}{\partial \mathrm{q}} \dot{\mathrm{q}}=\mathrm{J}_{\mathrm{r}}(\mathrm{q}) \dot{\mathrm{q}}
$$

- geometric Jacobian (no derivatives)

$$
\binom{v}{\omega}=\binom{\dot{p}}{\omega}=\binom{J_{\llcorner }(q)}{J_{A}(q)} \dot{q}=J(q) \dot{q}
$$

Geometric Jacobian

linear and angular velocity belong to
(linear) vector spaces in R^{3}

Contribution of a prismatic joint

Note: joints beyond the i-th one are considered to be "frozen", so that the distal part of the robot is a single rigid body $\quad J_{L i}(q) \dot{q}_{i}=z_{i-1} \dot{d}_{i}$

Contribution of a revolute joint

Expression of geometric Jacobian

	prismatic i-th joint	revolute i-th joint	this can be also computed as
$\mathrm{J}_{\mathrm{Li}}(\mathrm{q})$	$\mathrm{z}_{\mathrm{i}-1}$	$z_{i-1} \times p$	
$\mathrm{J}_{\text {Ai }}(\mathrm{q})$	0	$z_{\text {i-1 }}$	

$$
\begin{aligned}
z_{i-1} & ={ }^{0} \mathrm{R}_{1}\left(\mathrm{q}_{1}\right) \ldots{ }^{\mathrm{i}-2} \mathrm{R}_{\mathrm{i}-1}\left(\mathrm{q}_{\mathrm{i}-1}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\mathrm{p}_{\mathrm{i}-1, \mathrm{E}} & =\mathrm{p}_{0, \mathrm{E}}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)-\mathrm{p}_{0, \mathrm{i}-1}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{i}-1}\right)
\end{aligned}
$$

all vectors should be expressed in the same reference frame (here, the base frame RF_{0})

Robot Jacobian

decomposition in linear subspaces and duality

(in a given configuration q)

Mobility analysis

- $\rho(J)=\rho(J(q)), \mathfrak{R}(J)=\mathfrak{R}(J(q)), \kappa\left(J^{\top}\right)=\kappa\left(J^{\top}(q)\right)$ are locally defined, i.e., they depend on the current configuration q
- $\mathfrak{R}(\mathrm{J}(\mathrm{q}))=$ subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities in the configuration q
- if $\mathrm{J}(\mathrm{q})$ has max rank (typically $=\mathrm{m}$) in the configuration q , the robot end-effector can be moved in any direction of the task space R^{m}
- if $\rho(\mathrm{J}(\mathrm{q}))<\mathrm{m}$, there exist directions in R^{m} along which the robot endeffector cannot instantaneously move
- these directions lie in $\mathcal{K}\left(\mathrm{J}^{\top}(\mathrm{q})\right)$, namely the complement of $\Re(\mathrm{J}(\mathrm{q}))$ to the task space R^{m}, which is of dimension $\mathrm{m}-\rho(\mathrm{J}(\mathrm{q})$)
- when $\mathcal{N}(\mathrm{J}(\mathrm{q})) \neq\{0\}$ (this is always the case if $\mathrm{m}<$ n, i.e., in robots that are redundant for the task), there exist non-zero joint velocities that produce zero end-effector velocity ("self motions")

Kinematic singularities

- configurations where the Jacobian loses rank
\Leftrightarrow loss of instantaneous mobility of the robot end-effector
- for $m=n$, they correspond in general to Cartesian poses that lead to a number of inverse kinematic solutions that differs from the "generic" case
- "in" a singular configuration, one cannot find a joint velocity that realizes a desired end-effector velocity in an arbitrary direction of the task space
- "close" to a singularity, large joint velocities may be needed to realize some (even small) velocity of the end-effector
- finding and analyzing in advance all singularities of a robot helps in avoiding them during trajectory planning and motion control
- when $\mathrm{m}=\mathrm{n}$: find the configurations q such that $\operatorname{det} \mathrm{J}(\mathrm{q})=0$
- when $m<n$: find the configurations q such that all $m \times m$ minors of J are singular (or, equivalently, such that det $\left[\mathrm{J}(\mathrm{q}) \mathrm{J}^{\top}(\mathrm{q})\right]=0$)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a hard computational task

