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Robotics 1 

Position and orientation 
of rigid bodies 

Prof. Alessandro De Luca 



• position: ApAB (vector ! R3), 
expressed in RFA (use of coordinates 
other than Cartesian is possible, e.g. 
cylindrical or spherical) 

• orientation: 
  orthonormal 3x3 matrix 
  (RT = R-1 "  ARB 

BRA = I), with det = +1 

 I 

Position and orientation 

A 

B 
RFA 

RFB 

pAB 

rigid body right-handed orthogonal 
Reference Frames 

ARB = [AxB AyB AzB]  
•  xA yA zA (xB yB zB) are unit vectors (with unitary norm) of frame RFA (RFB) 

•  components in ARB are the direction cosines of the axes of RFB with respect 
to (w.r.t.) RFA 
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Rotation matrix 

 xA
T xB    xA

T yB    xA
T zB 

 yA
T xB    yA

T yB    yA
T zB 

 zA
T xB    zA

T yB    zA
T zB 

ARB = 

chain rule property 

direction cosine of  
zB w.r.t. xA 

kRi ! iRj = kRj 
orientation of RFi  

w.r.t. RFk 
orientation of RFj  

w.r.t. RFi 

orientation of RFj  
w.r.t. RFk 

NOTE: in general, the product of rotation matrices does not commute! 

algebraic structure  
of a group SO(3) 

(neutral element = I; 
inverse element = RT) 

orthonormal, 
with det = +1 
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Change of coordinates 

x0 

z0 

y0 

x1 

RF0 

RF1 

y1 

z1 •  P 

0px 
0py 
0pz 

= 1px 
0x1 + 1py 

0y1 + 1pz 
0z1 

=   0x1  0y1  0z1 

1px 
1py 
1pz 

0P = 

=  0R1 1P  

the rotation matrix 0R1 (i.e., the orientation of RF1 
w.r.t. RF0) represents also the change of 
coordinates of a vector from RF1 to RF0 
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Ex: Orientation of frames in a plane  
(elementary rotation around z-axis) 

O x 

y 

u 
v 

RF0 

RFC 

# 

# 

B 

C 

• P 
x = OB – xB = u cos # - v sin #$
y = OC + Cy = u sin # + v cos #$
z = w 

similarly: 

Rx(#) = 
   1        0          0 
    0      cos #    - sin #  
   0      sin #       cos #$

Ry(#) = 
 cos #     0     sin #   
    0         1       0 
- sin #    0    cos #$

Rz(-#) = Rz
T(#) 

0OP 

or… 

x 
y 
z 

cos # $-sin # $0 
sin # $ cos #     0 
 0     0  1 

= 
u 
v 
w 

= 
u 
v 
w 

Rz(#) 

COP 0xC       0yC      0zC 
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Ex: Rotation of a vector around z 

O x’ 

y’ 

# 
v 

x = |v| cos %$
y = |v| sin %$

v’ 

x 

y 

%$

x’ = |v| cos (% + #) = |v| (cos % cos # - sin % sin #) 
x’ =  x cos # - y sin # 

y’ = |v| sin (% + #) = |v| (sin % cos # + cos % sin #) 
x’ =  x sin # + y cos # 

z’ =  z 
or… 

 x’ 
 y’ 
 z’ 

cos #      - sin #    0 
 sin #        cos #     0 
   0           0       1 

= 
x 
y 
z 

= Rz(#) 
x 
y 
z 

…as 
before! 
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Equivalent interpretations  
of a rotation matrix 

the same rotation matrix, e.g., Rz(#), may represent: 

# 
RF0 

RFC 

the orientation of a rigid 
body with respect to a 
reference frame RF0 

ex: [0xc 0yc 0zc] = Rz(#)  

the change of coordinates 
from RFC to RF0 
ex: 0P = Rz(#) CP 

# 
RF0 

RFC # 
v 

v’ 

the vector 
rotation operator 
ex: v’ = Rz(#) v 

• P 

the rotation matrix 0RC is an operator  
superposing frame RF0 to frame RFC 
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Composition of rotations 

• 3p 

RF0 

RF1 

RF2 
RF3 

p01 = 0 

0p = (0R1 
1R2 

2R3) 
3p = 0R3 

3p 

0p = 0R1 (1R2 (2R3
3p)) 

a comment on computational complexity 

2p 

27 products 
18 summations 

63 products 
42 summations 

p12 = 0 

p23 = 0 

0R1 

1R2 
2R3 brings RF0 on RF1  brings RF1 on RF2  brings RF2 on RF3  
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Axis/angle representation 

r 

rx 

x0 

rz 

z0 

ry 

y0 

#$

•  unit vector r (!r! = 1)$
•  # (positive if counterclockwise, as        

seen from an “observer” placed like r) v 

v’ 

DATA 

DIRECT PROBLEM 

find  
R(#,r) = [0x1 0y1 0z1]  

such that 
0P= R(#,r) 

1P   0v’ = R(#,r) 
0v  

x1 

y1 z1 

• P 

RF0 

RF1 

RF1 is the result of rotating 
RF0 by an angle # around 
the unit vector r 
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Axis/angle: Direct problem 

r 

x0 

z0 

y0 

x1 

y1 z1 

RF0 

RF1 

C 

C-1 = CT 

Rz(#) 

1 

2 
3 

R(#,r) = C Rz(#) CT 

C =   n   s   r 

after the first rotation  
the z-axis coincides with r 

n and s are orthogonal 
unit vectors such that 

n " s = r, or 
nysz - synz = rx 

nzsx - sznx = ry 
nxsy - sxny = rz 

sequence of 3 rotations that 
bring frame RF0 to superpose 
with frame RF1 

concatenation of three rotations 
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   c#  - s#   0 
    s#    c#   0  
    0     0   1 

Axis/angle: Direct problem 
solution 

R(#,r) = C Rz(#) CT 

R(#,r) =   n  s   r  
nT 

sT 

rT 

= r rT + (n nT + s sT) c# + (s nT - n sT) s#  

R(#,r) = r rT + (I - r rT) c# + S(r) s#  

                    0     -rz     ry 

s nT - n sT =           0    -rx   =  S(r) 

                                   0 

taking into account that 
C CT = n nT + s sT + r rT = I ,     and that 

skew-symmetric(r): 

r " v = S(r)v = - S(v)r 

depends only 
on r and # !! 

=  RT(-#,r) = R(-#,-r) 
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Rodriguez formula 

R(#,r) v = (r rT + (I - r rT) cos # + S(r) sin #)v 

            = r rT v (1 - cos #) + v cos # + (r " v) sin #  

v’ = R(#,r) v 

v’ = v cos # + (r " v) sin # + (1 - cos #)(rTv) r  

proof: 

q.e.d. 
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Unit quaternion 

"  to eliminate undetermined and singular cases arising in 
the axis/angle representation, one can use the unit 
quaternion representation  

Q = {-, .} = {cos(#/2), sin(#/2) r} 

"  -2 + !.!2 = 1 (thus, “unit ...”) 
"  (#, r) and (-#, -r) gives the same quaternion Q 
"  the absence of rotation is associated to Q = {1, 0} 
"  unit quaternions can be composed with special rules (in 

a similar way as in the product of rotation matrices) 

a scalar 3-dim vector 

Q 1*Q 2 = {-1-2 - .1
T.2, -1.2 + -2.1 + .1".2}  
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Minimal representations 
of orientation 

(Euler and roll-pitch-yaw angles) 
Homogeneous transformations 

Prof. Alessandro De Luca 



“Minimal” representations  

  rotation matrices:  9 elements  
                              -  3 orthogonality relationships  
                              -  3 unitary relationships  
                             =  3 independent variables 

  sequence of 3 rotations around independent axes 
  fixed (ai) or moving/current (a’i) axes 
  12 + 12 possible different sequences (e.g., XYX) 
  actually, only 12 since 

{(a1 α1), (a2 α2), (a3 α3)} ≡ { (a’3 α3) , (a’2 α2), (a’1 α1)}  

inverse problem
 

 d
ire

ct
 p

ro
bl

em
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x’’ 

y’’ 

z’’≡z’’’ 

x’’’ 

y’’’ 

ψ 

ψ 

cos ψ 	

- 	

sin ψ 	

0 
 sin ψ 	

   cos ψ 	

0 
   0         0  1 

Rz” (ψ) = 

ZX’Z’’ Euler angles  

x 

z≡z’ 

y 

x’ 

y’ φ

φ

cos φ 	

- 	

sin φ 	

0 
 sin φ 	

   cos φ 	

0 
   0         0  1 

Rz(φ) = 

y’ 
θ

θ

x’≡x’’ 

y’’ 

z’ z’’ 

Rx’(θ) =  

   1      0        0 
    0    cos θ  -sin θ  
   0    sin θ    cos θ	



RF 
RF’ 

RF” 

RF”’ 

1 2 

3 
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ZX’Z’’ Euler angles  

  direct problem: given φ , θ , ψ ; find R 

    RZX’Z’’ (φ, θ, ψ) = RZ (φ) RX’ (θ) RZ’’ (ψ)  

  given a vector v”’= (x”’,y”’,z”’) expressed in RF”’, its 
expression in the coordinates of RF is 

v = RZX’Z’’ (φ, θ, ψ) v”’ 

  the orientation of RF”’ is the same that would be obtained with 
the sequence of rotations:  

ψ around z, θ around x (fixed), φ around z (fixed) 

cφ cψ - sφ cθ sψ  - cφ sψ - sφ cθ cψ    sφ sθ 
sφ cψ + cφ cθ sψ  - sφ sψ + cφ cθ cψ  - cφ sθ 
      sθ sψ                    sθ cψ               cθ 

= 
order of definition 
in concatenation 
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z’’’ 

x’’’ 

y’’’ 

Roll-Pitch-Yaw angles 

x≡x’ 

z 

y 

y’ 

φ

φ

cos φ 	

- 	

 sin φ  0 
 sin φ 	

  cos φ   0 
   0         0  1 

with RZ(φ) = 

θ
θ

y’’ 
z’’ 

RX(ψ) =  
   1      0         0 
    0    cos ψ  - sin ψ  
   0    sin ψ   cos ψ 

1 2 

3 

ψ 

ψ z’ 

z’ 

y’ 
y’ 

x’ x’’ 

y 

with RY(θ) = 

 cos θ      0   sin θ  
    0          1       0 
- sin θ    0   cos θ	



ROLL PITCH 

YAW 

y’’ 
z’’ 

x’’ 

z 

C1RY(θ)C1
T 

C2RZ(φ)C2
T 

Robotics 1                6 



Roll-Pitch-Yaw angles (fixed XYZ) 

  direct problem: given ψ , θ , φ ; find R 

    RRPY (ψ, θ, φ) = RZ (φ) RY (θ) RX (ψ)  

  inverse problem: given R = {rij}; find ψ , θ , φ  

  r32
2 + r33

2 = c2θ, r31 = -sθ  ⇒  θ = ATAN2{-r31, ± √ r32
2 + r33

2} 

  if r32
2 + r33

2 ≠ 0 (i.e., cθ ≠ 0) 

    r32/cθ = sψ,   r33/cθ = cψ   ⇒   ψ = ATAN2{r32/cθ, r33/cθ}  

  similarly...                              φ = ATAN2{ r21/cθ, r11/cθ } 
  singularities for θ = ± π/2 

cφ cθ  cφ sθ sψ - sφ cψ    cφ sθ cψ + sφ sψ   
sφ cθ  sφ sθ sψ + cφ cψ     sφ sθ cψ - cφ sψ 
- sθ            cθ sψ                  cθ cψ 

= 
order of definition 

two symmetric values w.r.t. π/2  

⇐ note the order of products! 
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Homogeneous transformations 

P 
•   

OA 

OB 

Ap 

Bp 

ApAB 

RFA 

RFB 

Ap = ApAB + ARB Bp 

‘affine’ relationship 

Ap         ARB    ApAB   
Bp 

       =     
  1          0  0  0    1        1 

= ATB Bphom 
Aphom = 

vector in homogeneous 
coordinates 

4x4 matrix of 
homogeneous transformation 

linear 
relationship 
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Properties of T matrix 

  describes the relation between reference frames 
(relative pose = position & orientation) 

  transforms the representation of a position vector 
(applied vector from the origin of the frame)      
from a given frame to another frame 

  it is a roto-translation operator on vectors in the 
three-dimensional space 

  it is always invertible  (ATB)-1 = BTA 

  can be composed, i.e.,  ATC = ATB BTC ← note: it does 
                                                                       not commute! 

Robotics 1                10 



Inverse of a  
homogeneous transformation 

Ap = ApAB + ARB Bp Bp = BpBA + BRA 
Ap = - ARB

T ApAB + ARB
T Ap 

  ARB    ApAB 

0  0  0     1 

    ARB
T    - ARB

T ApAB 

  0  0  0                      1 

  BRA    BpBA 

0  0  0     1 
= 

ATB (ATB)-1 BTA 
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Defining a robot task 

•   •   
•   1 

2 
3 

RFW 

RFB 

RFE 

RFT 

WTT = WTB BTE ETT 

absolute definition  
of task  

known, once  
the robot 
is placed  

task definition relative  
to the robot end-effector 

direct kinematics of the 
robot arm (function of q) 

BTE(q) = WTB
-1 WTT ETT

 -1 = cost  
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Final comments on T matrices 
  they are the main tool for computing the direct kinematics  

of robot manipulators 

  they are used in many application areas (in robotics and 
beyond) 

  in the positioning of a vision camera (matrix bTc  with the extrinsic 
parameters of the camera posture)  

  in computer graphics, for the real-time visualization of 3D solid 
objects when changing the observation point 

     ARB      ApAB 

    αx  αy  αz        σ 
ATB = 

coefficients of 
perspective 
deformation 

scaling 
coefficient 

all zero 
in robotics 

always unitary 
in robotics 
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Kinematics of robot manipulators 

!  “study of geometric and time properties of 
the motion of robotic structures, without 
reference to the causes producing it” 

!  robot seen as  
   “(open) kinematic chain of rigid bodies 

interconnected by (revolute or prismatic) 
joints” 
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Motivations 

!  functional aspects 
!  definition of robot workspace 
!  calibration 

!  operational aspects 

!  trajectory planning  
!  programming 
!  motion control 

task execution 
(actuation by motors) 

task definition and 
performance 

two different “spaces” related by kinematic (and dynamic) maps 
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Kinematics  
formulation and parameterizations 

!  choice of parameterization q 
!  unambiguous and minimal characterization of the robot configuration 
!  n = # degrees of freedom (dof) = # robot joints (rotational or 

translational) 

!  choice of parameterization r 
!  compact description of positional and/or orientation (pose) 

components of interest to the required task 
!  m ! 6, and usually m ! n (but this is not strictly needed)   

JOINT 
space 

TASK 
(Cartesian) 

space 

q = (q1,…,qn) r = (r1,…,rm) 

DIRECT 

INVERSE 

r = f(q) 

q = f -1(r) 
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Open kinematic chains 

!  m = 2 
!  pointing in space 
!  positioning in the plane 

!  m = 3 
!  orientation in space 
!  positioning and orientation in the plane 

q1 

q2 

q3 

q4 

qn 

r = (r1,…,rm) 

e.g., it describes the 
pose of frame RFE 

RFE 

e.g., the relative angle 
between a link and the 

following one 
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Classification by kinematic type 
(first 3 dofs) 

cartesian or 
gantry 
(PPP) 

cylindric 
(RPP) 

SCARA 
(RRP) 

polar or 
spherical 

(RRP) 

articulated or 
anthropomorphic 
(RRR) 

P = 1-dof translational (prismatic) joint 
R = 1-dof rotational (revolute) joint 
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Direct kinematic map 

!  the structure of the direct kinematics function 
depends from the chosen r 

!  methods for computing fr(q) 
!  geometric/by inspection 
!  systematic: assigning frames attached to the robot 

links and using homogeneous transformation matrices  

r = fr(q) 
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Example: direct kinematics of 2R arm 

x 

y 

q1 

q2 

P 
•   

l1 

l2 

px 

py 
" q = q = 

q1 

q2 

r = 
px 
py 
" 

n = 2 

m = 3 

px = l1 cos q1 + l2 cos(q1+q2) 

py = l1 sin q1 + l2 sin(q1+q2) 

"  = q1+ q2 

for more general cases we need a “method”!  
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Numbering links and joints 

joint 1 

link 0 
(base) 

link 1 

joint 2 

joint i-1 
joint i 

joint n 
joint i+1 link i-1 

link i link n 

(end effector) 
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Relation between joint axes 

axis of joint i axis of joint i+1 

common normal  
(axis of link i) 

90° 

90° 

A 

B 

a i = distance AB between joint axes (always well defined) 

# i$

% $

# i = twist angle between joint axes 
         [projected on a plane % orthogonal to the link axis] 

with sign 
(pos/neg)! 
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Relation between link axes 

link i-1 

link i 

axis of joint i 

axis of link i axis of link i-1 

C 

D 

d i = distance CD (a variable if joint i is prismatic) 

& i = angle (a variable if joint i is revolute) between link axes        
         [projected on a plane '  orthogonal to the joint axis] 

&i 
' $

with sign 
(pos/neg)! 
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Frame assignment 
by Denavit-Hartenberg (DH) 

joint axis 
i-1 

joint axis 
i 

joint axis 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

&i 

#i 

zi-1 di 

common normal 
to joint axes 

i and i+1 axis around which the link rotates  
or along which the link slides  

Robotics 1              12 
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attached to link i 



Denavit-Hartenberg parameters 

!  unit vector zi along axis of joint i+1 
!  unit vector xi along the common normal to joint i and i+1 axes (i ( i+1) 
!  ai = distance DOi – positive if oriented as xi (constant = “length” of link i)  
!  di = distance Oi-1D – positive if oriented as zi-1 (variable if joint i is PRISMATIC) 
!  #i = twist angle between zi-1 and zi around xi (constant) 
!  &i = angle between xi-1 and xi around zi-i (variable if joint i is REVOLUTE)  

axis of joint 
i-1 

axis of joint 
i 

axis of joint 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

&i 

#i 

zi-1 di 

D 
•   
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Homogeneous transformation 
between DH frames (from framei-1 to framei) 

!  roto-translation around and along zi-1 

!  roto-translation around and along xi 

c&i -s&i  0   0 
s&i  c&i  0   0 
 0   0    1   0 

 0   0    0   1 

 1   0   0   0 
 0   1   0   0 
 0   0   1   di 

 0   0   0   1 

c&i -s&i  0   0 
s&i  c&i  0   0 
 0   0    1   di 

 0   0    0   1 

i-1Ai’ (qi) = = 

rotational joint )  qi = &i  prismatic joint )  qi = di  

1   0    0    ai 
0  c#i -s#i  0 
0  s#i  c#i  0 

0   0    0    1 

i’Ai = 
always a  

constant matrix 
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Denavit-Hartenberg matrix 

c&i     -c#i s&i        s#i s&i    aic&i  
s&i      c#i c&i       -s#i c&i    ais&i 
 0         s#i               c#i        di 

 0          0            0            1  

i-1Ai (qi) = i-1Ai’ (qi) i’Ai =  

compact notation: c = cos, s = sin 
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Direct kinematics of manipulators 

x0 

y0 

z0 

xE 

yE 

zE approach a 

slide s 

normal n 

description “internal”  
to the robot 

using:  
•  product 0A1(q1) 1A2(q2)…n-1An(qn) 
•  q=(q1,…,qn) 

“external” description using 
•   r = (r1,…,rm) 

•   BTE=             =   R   p 

000  1 

n s a   p 

0 0 0   1 
BTE = BT0 0A1(q1) 1A2(q2) …n-1An(qn) nTE 

  r = fr(q) 

alternative descriptions of robot direct kinematics 

RFB 
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Example: SCARA robot 

q1 

q2 

q3 

q4 
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J1 shoulder 
J2 elbow 

J3 prismatic  
≡ 

J4 revolute 

Step 1: joint axes 

all parallel 
(or coincident) 

twists # i = 0 
or %   
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a1 

Step 2: link axes 

a2 a3 = 0 

the vertical “heights” 
of the link axes 

are arbitrary 
(for the time being) 
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Step 3: frames 

z1 

x1 z2  

x2 

= a axis 
(approach) 

z0 

x0 
y0 

= z3 

x3 

z4 
x4 

yi axes for i > 0 
are not shown 

(and not needed;  
they form  

right-handed frames) 
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Step 4: DH parameters table 

z1 

x1 z2  

x2 

z0 

x0 
y0 

= z3 

x3 

z4 
x4 

i # i$ ai di & i 

1 0 a1 d1 q1 

2 0 a2 0 q2 

3 0 0 q3 0 

4 % 0 d4 q4 

note: d1 and d4 could have been chosen = 0 ! 
        moreover, here it is d4 < 0 !! 

Robotics 1              22 



Step 5: transformation matrices 

c&4     s&4       0     0 
s&4    -c&4        0     0 
 0        0         -1    d4 
 0        0  0     1  

1     0     0  0  
0     1     0  0 
0     0     1  d3  
0     0     0    1  

c&2   - s&2  0    a2c&2  
s&2     c&2  0    a2s&2 
 0       0            1     0 
 0       0        0     1  

c&1   - s&1  0    a1c&1  
s&1     c&1  0    a1s&1 
 0       0            1     d1 
 0       0        0     1  

3A4(q4)= 

2A3(q3)= 
1A2(q2)= 

0A1(q1)= 

q = (q1, q2, q3, q4)  

   = (&1, &2, d3, &4)   
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Step 6: direct kinematics 

c4     s4      0     0 
s4    -c4      0     0 
 0     0       -1    d4 
 0     0     0     1  

c12  -s12      0    a1c1+ a2c12 
s12   c12       0    a1s1+ a2s12 
 0     0         1       d1+q3 
 0     0      0          1  

3A4(q4)= 

0A3(q1,q2,q3)= 

c124    s124      0    a1c1+ a2c12 
s124   -c124      0    a1s1+ a2s12 
 0      0          -1    d1+q3+d4 
 0      0        0          1  

0A4(q1,q2,q3,q4)= 
p = p(q1,q2,q3) 

R(q1,q2,q4)=[ n s a ] 
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Differential kinematics 

  “relationship between motion (velocity) in the 
joint space and motion (linear and angular 
velocity) in the task (Cartesian) space” 

  instantaneous velocity mappings can be obtained 
through time derivation of the direct kinematics 
function or geometrically at the differential level 
  different treatments arise for rotational quantities 
  establish the link between angular velocity and  

  time derivative of a rotation matrix  
  time derivative of the angles in a minimal 

representation of orientation 
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Linear and angular velocity  
of the robot end-effector 

  v and ω are “vectors”, namely elements of vector spaces: they can be 
obtained as the sum of contributions of the joint velocities (in any order) 

  on the other hand, φ (and dφ/dt) is not an element of a vector space: a 
minimal representation of a sequence of rotations is not obtained by 
summing the corresponding minimal representations (angles φ) 

r = (p,φ) 

  R   p 

000  1 
T = 

ω   
v 

alternative definitions 
of the e-e direct kinematics 

in general, ω ≠ dφ/dt 
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ω1 = z0θ1 

. 
ω2 = z1θ2 

. 
ωn = zn-1θn 

. 

ωi = zi-1θi 

. v3 = z2 d3 
. 



Finite and infinitesimal translations 
  finiteΔx, Δy, Δz or infinitesimal dx, dy, dz translations 

(linear displacements) always commute 
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x 

y 

z 

x 

y 

z 

same final 
position 

= 

Δy 

Δz 

Δz 

Δy 



Finite rotations do not commute 
example 

φ X = 90° 

x 

y 

z 

x 

y 

z 

x 

y 

z 

x 

y 

z 

x 
y 

z 

φ X = 90° 

φ Z = 90° 

φ Z = 90° 

mathematical fact: ω is  
NOT an exact differential form 
(the integral of ω over time 

depends on the integration path!) 

different final 
orientations 

initial 
orientation 

Robotics 1                6 
note: finite rotations still commute when 
made around the same fixed axis 



Infinitesimal rotations commute! 
  infinitesimal rotations dφX, dφY, dφZ around x,y,z axes 

cos φZ  -sin φZ 	

0 
 sin φZ     cos φZ 	

0 
   0          0  1 

RZ(φZ) = 

RX(φX) =  
   1      0           0 
    0    cos φX  -sin φX  
   0    sin φX    cos φX 

RY(φY) = 
 cos φY    0   sin φY  
    0         1      0 
-sin φY      0   cos φY  

  1    -dφ Z     0 
  dφ Z      1      0 
  0       0     1 

RZ(dφZ) = 

RX(dφX) =  
   1      0       0 
    0        1     -dφX  
   0     dφX             1 

RY(dφY) = 
   1      0    dφ Y  
    0      1      0 
-dφ Y      0      1 
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  R(dφ) = R(dφX, dφY, dφZ) = 

        = I + S(dφ) 

   1     -dφz    dφY  
   dφz    1   -dφX  
-dφY     dφX    1 

in any sequence 

neglecting 
second- and 
third-order 

(infinitesimal) 
terms 



Time derivative of a rotation matrix 

  let R = R(t) be a rotation matrix, given as a function of time 

  since I = R(t)RT(t), taking the time derivative of both sides yields 

         0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt  

            = dR(t)/dt RT(t) + [dR(t)/dt RT(t)]T 
 thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix 

  let p(t) = R(t)p’ a vector (with constant norm) rotated over time 

  comparing 

       dp(t)/dt = dR(t)/dt p’ = S(t)R(t) p’ = S(t) p(t)  

       dp(t)/dt = ω(t) × p(t) = S(ω(t)) p(t) 

  we get S = S(ω) 

R = S(ω) R  
. 

S(ω) = R RT  
. 
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p 

ω 

p 
. 



Robot Jacobian matrices 

  analytical Jacobian (obtained by time differentiation) 

  geometric Jacobian (no derivatives) 

p 

φ 
r =        = fr(q)  
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v 

ω 
=                = J(q) q 

. JL(q) 

JA(q) 
q 
. p 

ω 

. 
= 

r =        =             = Jr(q) q  
. . ∂fr(q) 

∂q 
q 
. p 

φ 
. 



Geometric Jacobian 

vE 

ωE 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 
…

 . 

. 

vE = JL1(q) q1 +…+ JLn(q) qn 

. . 
ωE = JA1(q) q1 +…+ JAn(q) qn 

. . 

contribution to the linear 
e-e velocity due to q1 

. 

superposition of effects 

linear and angular velocity belong to  
(linear) vector spaces in R3 

end-effector 
instantaneous 

velocity 

always a 6 x n matrix 

contribution to the angular 
e-e velocity due to q1 

. 
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prismatic 
i-th joint 

JLi(q) qi zi-1 di 

JAi(q) qi 0 

Contribution of a prismatic joint 

. 

. 

. 

RF0 

zi-1 

qi = di 

E 

JLi(q) qi = zi-1 di 

. . Note: joints beyond the i-th one are considered to be “frozen”, 
         so that the distal part of the robot is a single rigid body 
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revolute 
i-th joint 

JLi(q) qi (zi-1 × pi-1,E) θi 

JAi(q) qi zi-1 θi 

Contribution of a revolute joint 

RF0 

. 

. 

. 

. 

zi-1 

qi = θi 

JAi(q) qi = zi-1 θi 

. JLi(q) qi 

. 

•    Oi-1 
pi-1,E 

. 
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Expression of geometric Jacobian 

vE 

ωE 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 
…

 . 

. 

prismatic  
i-th joint 

revolute 
i-th joint 

JLi(q) zi-1 zi-1 × pi-1,E 

JAi(q) 0 zi-1 

zi-1 = 0R1(q1)…i-2Ri-1(qi-1) 
0 
0 
1 

pi-1,E = p0,E(q1,…,qn) - p0,i-1(q1,…,qi-1) 

all vectors should be  
expressed in the same 

reference frame 
(here, the base frame RF0) 

∂p0,E 

∂qi 

p0,E 

ωE 

(         =) 
. 
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= 

this can be also  
computed as 



Robot Jacobian 
decomposition in linear subspaces and duality 

0 0 

space of  
joint velocities 

space of 
task (Cartesian) 

velocities 

ℜ(J) ℵ(J) 

J 

0 0 

space of  
joint torques 

space of 
task (Cartesian) 

forces 

ℜ(JT) ℵ(JT) 

JT 

ℜ(J) + ℵ(JT) = Rm ℜ(JT) + ℵ(J) = Rn 

(in a given configuration q) 

dual spaces du
al

 s
pa

ce
s 
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Mobility analysis 

  ρ(J) = ρ(J(q)), ℜ(J) = ℜ(J(q)), ℵ(JT)= ℵ(JT(q)) are locally defined, i.e., 
they depend on the current configuration q 

  ℜ(J(q)) = subspace of all “generalized” velocities (with linear and/or 
angular components) that can be instantaneously realized by the robot 
end-effector when varying the joint velocities in the configuration q  

  if J(q) has max rank (typically = m) in the configuration q, the robot 
end-effector can be moved in any direction of the task space Rm 

  if ρ(J(q)) < m, there exist directions in Rm along which the robot end-
effector cannot instantaneously move  
  these directions lie in ℵ(JT(q)), namely the complement of ℜ(J(q)) to the 

task space Rm, which is of dimension m - ρ(J(q)) 

  when ℵ(J(q)) ≠ {0} (this is always the case if m<n, i.e., in robots that 
are redundant for the task), there exist non-zero joint velocities that 
produce zero end-effector velocity (“self motions”) 
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Kinematic singularities 

  configurations where the Jacobian loses rank  
    ⇔  loss of instantaneous mobility of the robot end-effector 
  for m=n, they correspond in general to Cartesian poses that lead to a 

number of inverse kinematic solutions that differs from the “generic” case 
  “in” a singular configuration, one cannot find a joint velocity that realizes 

a desired end-effector velocity in an arbitrary direction of the task space 
  “close” to a singularity, large joint velocities may be needed to realize 

some (even small) velocity of the end-effector  
  finding and analyzing in advance all singularities of a robot helps in 

avoiding them during trajectory planning and motion control 
  when m = n: find the configurations q such that det J(q) = 0 
  when m < n: find the configurations q such that all m×m minors of J are 

singular (or, equivalently, such that det [J(q) JT(q)] = 0) 
  finding all singular configurations of a robot with a large number of joints, 

or the actual “distance” from a singularity, is a hard computational task 

Robotics 1                28 


