

Robotics 1

Position and orientation of rigid bodies

Prof. Alessandro De Luca

Dipartimento di Informatica e Sistemistica Antonio Ruberti

A CONTRACTOR

Position and orientation

- $x_A y_A z_A (x_B y_B z_B)$ are unit vectors (with unitary norm) of frame RF_A (RF_B)
- components in ${}^A\!R_B$ are the direction cosines of the axes of RF_B with respect to (w.r.t.) RF_A

Rotation matrix

NOTE: in general, the product of rotation matrices does not commute!

Change of coordinates

Ex: Orientation of frames in a plane

(elementary rotation around z-axis)

 $\begin{aligned} \mathbf{x} &= |\mathbf{v}| \cos \alpha \\ \mathbf{y} &= |\mathbf{v}| \sin \alpha \end{aligned}$ $\mathbf{x}' &= |\mathbf{v}| \cos (\alpha + \theta) = |\mathbf{v}| (\cos \alpha \cos \theta - \sin \alpha \sin \theta) \\ &= \mathbf{x} \cos \theta - \mathbf{y} \sin \theta \end{aligned}$

 $y' = |v| \sin (\alpha + \theta) = |v| (\sin \alpha \cos \theta + \cos \alpha \sin \theta)$ = x sin \theta + y cos \theta

z' = z

or...

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_z(\theta) \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

...as

before!

Equivalent interpretations of a rotation matrix

the same rotation matrix, e.g., $R_z(\theta)$, may represent:

Composition of rotations

Axis/angle representation

Axis/angle: Direct problem

Axis/angle: Direct problem solution $R(\theta,r) = C R_{\tau}(\theta) C^{T}$ $\mathbf{R}(\theta,\mathbf{r}) = \begin{vmatrix} \mathbf{c}\theta & -\mathbf{s}\theta & \mathbf{0} \\ \mathbf{n} & \mathbf{s} & \mathbf{r} \end{vmatrix} \begin{vmatrix} \mathbf{c}\theta & -\mathbf{s}\theta & \mathbf{0} \\ \mathbf{s}\theta & \mathbf{c}\theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{vmatrix} \begin{vmatrix} \mathbf{n}^{\mathsf{T}} \\ \mathbf{s}^{\mathsf{T}} \\ \mathbf{r}^{\mathsf{T}} \end{vmatrix}$ $= rr^{T} + (nn^{T} + ss^{T})c\theta + (sn^{T} - ns^{T})s\theta$ taking into account that $CC^{T} = nn^{T} + ss^{T} + rr^{T} = I$, and that $s n^{T} - n s^{T} = \begin{vmatrix} 0 & -r_{z} & r_{y} \\ s_{T_{O_{L}}} & 0 & -r_{x} \\ s_{V_{T_{D}}} & 0 \end{vmatrix} = S(r) \leftarrow \frac{skew-symmetric(r):}{r \times v = S(r)v = -S(v)r}$ depends only $\Rightarrow R(\theta,r) = rr^{T} + (I - rr^{T})c\theta + S(r)s\theta = R^{T}(-\theta,r) = R(-\theta,-r)$ on r and θ !!

Rodriguez formula

 $v' = R(\theta, r) v$

 $v' = v \cos \theta + (r \times v) \sin \theta + (1 - \cos \theta)(r^T v) r$

proof:

$$R(\theta,r) v = (rr^{T} + (I - rr^{T}) \cos \theta + S(r) \sin \theta)v$$

 $= r r^{T} v (1 - \cos \theta) + v \cos \theta + (r \times v) \sin \theta$

q.e.d.

Unit quaternion

 to eliminate undetermined and singular cases arising in the axis/angle representation, one can use the *unit quaternion* representation

$$Q = \{\eta, \varepsilon\} = \{\cos(\theta/2), \sin(\theta/2) \mathbf{r}\}$$

- $\eta^2 + \|\epsilon\|^2 = 1$ (thus, "unit ...")
- (θ , **r**) and ($-\theta$, -**r**) gives the same quaternion Q
- the absence of rotation is associated to $Q = \{1, 0\}$
- unit quaternions can be composed with special rules (in a similar way as in the product of rotation matrices)

$$Q_1 * Q_2 = \{ \eta_1 \eta_2 - \varepsilon_1^{\mathsf{T}} \varepsilon_2, \eta_1 \varepsilon_2 + \eta_2 \varepsilon_1 + \varepsilon_1 \times \varepsilon_2 \}$$

Robotics 1

Minimal representations of orientation (Euler and roll-pitch-yaw angles) Homogeneous transformations

Prof. Alessandro De Luca

Dipartimento di Informatica e Sistemistica Antonio Ruberti

"Minimal" representations

rotation matrices:

- 9 elements
- 3 orthogonality relationships
- 3 unitary relationships
- 3 independent variables

- sequence of <u>3</u> rotations around independent axes
 - fixed (a_i) or moving/current (a'_i) axes
 - 12 + 12 possible different sequences (e.g., XYX)
 - actually, only 12 since

$\{(\mathsf{a}_1 \ \alpha_1), \, (\mathsf{a}_2 \ \alpha_2), \, (\mathsf{a}_3 \ \alpha_3)\} = \{ \, (\mathsf{a}'_3 \ \alpha_3) \, , \, (\mathsf{a}'_2 \ \alpha_2), \, (\mathsf{a}'_1 \ \alpha_1) \}$

ZX'Z" Euler angles

ZX'Z" Euler angles

• direct problem: given ϕ , θ , ψ ; find R

$$R_{ZX'Z''}(\phi, \theta, \psi) = R_{Z}(\phi) R_{X'}(\theta) R_{Z''}(\psi)$$

order of definition
in concatenation =
$$\begin{bmatrix} c\phi c\psi - s\phi c\theta s\psi - c\phi s\psi - s\phi c\theta c\psi & s\phi s\theta \\ s\phi c\psi + c\phi c\theta s\psi & s\phi s\psi + c\phi c\theta c\psi & -c\phi s\theta \\ s\theta s\psi & s\theta c\psi & c\theta \end{bmatrix}$$

given a vector v''' = (x''', y''', z''') expressed in RF''', its

$$\mathsf{v} = \mathsf{R}_{\mathsf{Z}\mathsf{X}'\mathsf{Z}''}(\phi,\,\theta,\,\psi)\,\mathsf{v}'''$$

 the orientation of RF["] is the same that would be obtained with the sequence of rotations:

 ψ around z, θ around x (fixed), ϕ around z (fixed)

Roll-Pitch-Yaw angles

Roll-Pitch-Yaw angles (fixed XYZ)

• direct problem: given ψ , θ , ϕ ; find R

$$R_{RPY}(\psi, \theta, \phi) = R_{Z}(\phi) R_{Y}(\theta) R_{X}(\psi) \quad \leftarrow \text{ note the order of products!}$$

order of definition
$$= \begin{bmatrix} c\phi c\theta c\phi s\theta s\psi - s\phi c\psi & c\phi s\theta c\psi + s\phi s\psi \\ s\phi c\theta s\phi s\theta s\psi + c\phi c\psi & s\phi s\theta c\psi - c\phi s\psi \\ -s\theta & c\theta s\psi & c\theta c\psi \end{bmatrix}$$

• inverse problem: given $R = \{r_{ij}\}$; find ψ , θ , ϕ

•
$$r_{32}^2 + r_{33}^2 = c^2\theta$$
, $r_{31} = -s\theta \implies \theta = \text{ATAN2}\{-r_{31}, \pm \sqrt{r_{32}^2 + r_{33}^2}\}$
• if $r_{32}^2 + r_{32}^2 \neq 0$ (i.e., $c\theta \neq 0$) two symmetric values w.r.t. $\pi/2$

 $\psi = \text{ATAN2}\{r_{32}/c\theta, r_{33}/c\theta\}$

 $\phi = \text{ATAN2}\{r_{21}/c\theta, r_{11}/c\theta\}$

$$r_{32}/c\theta = s\psi$$
, $r_{33}/c\theta = c\psi \Rightarrow$

- similarly...
- singularities for $\theta = \pm \pi/2$

Homogeneous transformations

- describes the relation between reference frames (relative pose = position & orientation)
- transforms the representation of a position vector (applied vector from the origin of the frame) from a given frame to another frame
- it is a roto-translation operator on vectors in the three-dimensional space
- it is always invertible $(^{A}T_{B})^{-1} = ^{B}T_{A}$
- can be composed, i.e., ${}^{A}T_{C} = {}^{A}T_{B} {}^{B}T_{C} \leftarrow$ note: it does not commute!

Inverse of a homogeneous transformation

Defining a robot task

Final comments on T matrices

- they are the main tool for computing the direct kinematics of robot manipulators
- they are used in many application areas (in robotics and beyond)
 - in the positioning of a vision camera (matrix ${}^{b}T_{c}$ with the extrinsic parameters of the camera posture)
 - in computer graphics, for the real-time visualization of 3D solid objects when changing the observation point

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

 "study of geometric and time properties of the motion of robotic structures, without reference to the causes producing it"

robot seen as

"(open) kinematic chain of rigid bodies interconnected by (revolute or prismatic) joints"

Motivations

- functional aspects
 - definition of robot workspace
 - calibration
- operational aspects

task execution
(actuation by motors)task definition and
performance

two different "spaces" related by kinematic (and dynamic) maps

- trajectory planning
- programming
- motion control

Kinematics
formulation and parameterizationsformulation and parameterizationsf = f(q)f = f(q)

- choice of parameterization q
 - unambiguous and minimal characterization of the robot configuration
 - n = # degrees of freedom (dof) = # robot joints (rotational or translational)
- choice of parameterization r
 - compact description of positional and/or orientation (pose) components of interest to the required task
 - $m \le 6$, and usually $m \le n$ (but this is not strictly needed)

Open kinematic chains

- m = 2
 - pointing in space
 - positioning in the plane
- m = 3
 - orientation in space
 - positioning and orientation in the plane

 the structure of the direct kinematics function depends from the chosen r

 $r = f_r(q)$

- methods for computing f_r(q)
 - geometric/by inspection
 - systematic: assigning frames attached to the robot links and using homogeneous transformation matrices

Numbering links and joints

Relation between joint axes

Relation between link axes

Frame assignment by Denavit-Hartenberg (DH)

- unit vector z_i along axis of joint i+1
- unit vector x_i along the common normal to joint i and i+1 axes (i \rightarrow i+1)
- $a_i = \text{distance } DO_i \text{positive if oriented as } x_i \text{ (constant = "length" of link i)}$
- d_i = distance $O_{i-1}D$ positive if oriented as z_{i-1} (variable if joint i is PRISMATIC)
- α_i = twist angle between z_{i-1} and z_i around x_i (constant)
- θ_i = angle between x_{i-1} and x_i around z_{i-i} (variable if joint i is **REVOLUTE**)

Homogeneous transformation between DH frames (from frame_{i-1} to frame_i)

roto-translation around and along z_{i-1}

roto-translation around and along x_i

$${}^{i'}A_{i} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \begin{array}{c} always \ a \\ constant \ matrix \end{array}$$

Denavit-Hartenberg matrix

$${}^{i-1}A_i\left(q_i\right) = {}^{i-1}A_{i'}\left(q_i\right){}^{i'}A_i = \begin{bmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

compact notation: c = cos, s = sin

Example: SCARA robot

Step 1: joint axes

Step 2: link axes

the vertical "heights" of the link axes are arbitrary (for the time being)

Step 3: frames

 Z_1 $z_2 = z_3$ $\mathbf{X}_{\mathbf{2}}$ **X**₃ $\mathbf{z}_4 = \mathbf{a}$ axis Z₀ (approach) Yo X₀

y_i axes for i > 0
 are not shown
 (and not needed;
 they form
right-handed frames)

Step 4: DH parameters table

Step 5: transformation matrices

$${}^{0}A_{1}(q_{1}) = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{1}A_{2}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{2}A_{3}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$q = (q_{1}, q_{2}, q_{3}, q_{4})$$
$$= (\theta_{1}, \theta_{2}, d_{3}, \theta_{4})$$
$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c\theta_{4} & s\theta_{4} & 0 & 0 \\ s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 6: direct kinematics

$${}^{0}A_{3}(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{12} - s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & d_{1} + q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{3}A_{4}(q_{4}) = \begin{bmatrix} c_{4} & s_{4} & 0 & 0 \\ s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & -1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R(q_{1},q_{2},q_{3}) = \begin{bmatrix} c_{124} & s_{124} & 0 \\ s_{124} & -c_{124} & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ d_{1} + q_{3} + d_{4} \\ d_{1} + q_{3} + d_{4} \end{bmatrix} p = p(q_{1},q_{2},q_{3})$$

Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

- "relationship between motion (velocity) in the joint space and motion (linear and angular velocity) in the task (Cartesian) space"
- instantaneous velocity mappings can be obtained through time derivation of the direct kinematics function or geometrically at the differential level
 - different treatments arise for rotational quantities
 - establish the link between angular velocity and
 - time derivative of a rotation matrix
 - time derivative of the angles in a minimal representation of orientation

- v and
 or are "vectors", namely elements of vector spaces: they can be
 obtained as the sum of contributions of the joint velocities (in any order)
- on the other hand, φ (and dφ/dt) is not an element of a vector space: a minimal representation of a sequence of rotations is not obtained by summing the corresponding minimal representations (angles φ)

in general, $\omega \neq d\phi/dt$

Finite and infinitesimal translations

• finite Δx , Δy , Δz or infinitesimal dx, dy, dz translations (linear displacements) always commute

Finite rotations do not commute example

7

Infinitesimal rotations commute!

• infinitesimal rotations $d\phi_X$, $d\phi_Y$, $d\phi_Z$ around x,y,z axes

$$R_{X}(\phi_{X}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{X} & -\sin \phi_{X} \\ 0 & \sin \phi_{X} & \cos \phi_{X} \end{bmatrix} \implies R_{X}(d\phi_{X}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi_{X} \\ 0 & d\phi_{X} & 1 \end{bmatrix}$$

$$R_{Y}(\phi_{Y}) = \begin{bmatrix} \cos \phi_{Y} & 0 & \sin \phi_{Y} \\ 0 & 1 & 0 \\ -\sin \phi_{Y} & 0 & \cos \phi_{Y} \end{bmatrix} \implies R_{Y}(d\phi_{Y}) = \begin{bmatrix} 1 & 0 & d\phi_{Y} \\ 0 & 1 & 0 \\ -d\phi_{Y} & 0 & 1 \end{bmatrix}$$

$$R_{Z}(\phi_{Z}) = \begin{bmatrix} \cos \phi_{Z} & -\sin \phi_{Z} & 0 \\ \sin \phi_{Z} & \cos \phi_{Z} & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies R_{Z}(d\phi_{Z}) = \begin{bmatrix} 1 & -d\phi_{Z} & 0 \\ d\phi_{Z} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{Z}(\phi_{Z}) = R(d\phi_{X}, d\phi_{Y}, d\phi_{Z}) = \begin{bmatrix} 1 & -d\phi_{Z} & d\phi_{Y} \\ d\phi_{Z} & 1 & -d\phi_{X} \\ -d\phi_{Y} & d\phi_{X} & 1 \end{bmatrix} \xleftarrow{neglecting second- and third-order (infinitesimal) terms}$$

$$R(d\phi) = R(d\phi_{X}, d\phi_{Y}, d\phi_{Z}) = \begin{bmatrix} 1 & -d\phi_{Z} & d\phi_{Y} \\ d\phi_{Z} & 1 & -d\phi_{X} \\ -d\phi_{Y} & d\phi_{X} & 1 \end{bmatrix} \xleftarrow{neglecting second- and third-order (infinitesimal) terms}$$

$$Robotics 1$$

Time derivative of a rotation matrix

• let R = R(t) be a rotation matrix, given as a function of time

- since I = R(t)R^T(t), taking the time derivative of both sides yields 0 = d[R(t)R^T(t)]/dt = dR(t)/dt R^T(t) + R(t) dR^T(t)/dt = dR(t)/dt R^T(t) + [dR(t)/dt R^T(t)]^T thus dR(t)/dt R^T(t) = S(t) is a skew-symmetric matrix
- let p(t) = R(t)p' a vector (with constant norm) rotated over time
- comparing

dp(t)/dt = dR(t)/dt p' = S(t)R(t) p' = S(t) p(t) $dp(t)/dt = \omega(t) \times p(t) = S(\omega(t)) p(t)$

we get $S = S(\omega)$

$$\dot{R} = S(\omega) R$$
 \longleftrightarrow $S(\omega) = \dot{R} R^{T}$

analytical Jacobian (obtained by time differentiation)

geometric Jacobian (no derivatives)

$$\begin{pmatrix} \mathbf{v} \\ \mathbf{\omega} \end{pmatrix} = \begin{pmatrix} \dot{\mathbf{p}} \\ \mathbf{\omega} \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{\mathbf{q}} = J(q) \dot{\mathbf{q}}$$

A CONTRACTOR

Geometric Jacobian

Contribution of a prismatic joint

Contribution of a revolute joint

Expression of geometric Jacobian

$$\begin{pmatrix} \dot{p}_{0,E} \\ \omega_E \end{pmatrix} =) \quad \begin{pmatrix} v_E \\ \omega_E \end{pmatrix} = \begin{pmatrix} J_L(q) \\ J_A(q) \end{pmatrix} \dot{q} = \begin{pmatrix} J_{L1}(q) & \cdots & J_{Ln}(q) \\ J_{A1}(q) & \cdots & J_{An}(q) \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \vdots \\ \dot{q}_n \end{pmatrix}$$

	prismatic i-th joint	revolute i-th joint	this can be also computed as
J _{Li} (q)	Z _{i-1}	$z_{i-1} \times p_{i-1,E}$	$=\frac{\partial p_{0,E}}{\partial q_i}$
J _{Ai} (q)	0	Z _{i-1}	

$$z_{i-1} = {}^{0}R_{1}(q_{1})...{}^{i-2}R_{i-1}(q_{i-1}) \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$p_{i-1,E} = p_{0,E}(q_{1},...,q_{n}) - p_{0,i-1}(q_{1},...,q_{i-1})$$

all vectors should be expressed in the same reference frame (here, the base frame RF₀)

- $\rho(J) = \rho(J(q)), \Re(J) = \Re(J(q)), \varkappa(J^T) = \varkappa(J^T(q))$ are locally defined, i.e., they depend on the current configuration q
- ℜ(J(q)) = subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities in the configuration q
- if J(q) has max rank (typically = m) in the configuration q, the robot end-effector can be moved in any direction of the task space R^m
- if ρ(J(q)) < m, there exist directions in R^m along which the robot endeffector cannot instantaneously move
 - these directions lie in χ(J^T(q)), namely the complement of ℜ(J(q)) to the task space R^m, which is of dimension m ρ(J(q))
- when ×(J(q)) ≠ {0} (this is always the case if m<n, i.e., in robots that are redundant for the task), there exist non-zero joint velocities that produce zero end-effector velocity ("self motions")</p>

Kinematic singularities

configurations where the Jacobian loses rank

⇔ loss of instantaneous mobility of the robot end-effector

- for m=n, they correspond in general to Cartesian poses that lead to a number of inverse kinematic solutions that differs from the "generic" case
- "in" a singular configuration, one cannot find a joint velocity that realizes a desired end-effector velocity in an arbitrary direction of the task space
- "close" to a singularity, large joint velocities may be needed to realize some (even small) velocity of the end-effector
- finding and analyzing in advance all singularities of a robot helps in avoiding them during trajectory planning and motion control
 - when m = n: find the configurations q such that det J(q) = 0
 - when m < n: find the configurations q such that all m×m minors of J are singular (or, equivalently, such that det [J(q) J^T(q)] = 0)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a hard computational task