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Robotics 1 

Position and orientation 
of rigid bodies 

Prof. Alessandro De Luca 



• position: ApAB (vector ! R3), 
expressed in RFA (use of coordinates 
other than Cartesian is possible, e.g. 
cylindrical or spherical) 

• orientation: 
  orthonormal 3x3 matrix 
  (RT = R-1 "  ARB 

BRA = I), with det = +1 

 I 

Position and orientation 

A 

B 
RFA 

RFB 

pAB 

rigid body right-handed orthogonal 
Reference Frames 

ARB = [AxB AyB AzB]  
•  xA yA zA (xB yB zB) are unit vectors (with unitary norm) of frame RFA (RFB) 

•  components in ARB are the direction cosines of the axes of RFB with respect 
to (w.r.t.) RFA 
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Rotation matrix 

 xA
T xB    xA

T yB    xA
T zB 

 yA
T xB    yA

T yB    yA
T zB 

 zA
T xB    zA

T yB    zA
T zB 

ARB = 

chain rule property 

direction cosine of  
zB w.r.t. xA 

kRi ! iRj = kRj 
orientation of RFi  

w.r.t. RFk 
orientation of RFj  

w.r.t. RFi 

orientation of RFj  
w.r.t. RFk 

NOTE: in general, the product of rotation matrices does not commute! 

algebraic structure  
of a group SO(3) 

(neutral element = I; 
inverse element = RT) 

orthonormal, 
with det = +1 
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Change of coordinates 

x0 

z0 

y0 

x1 

RF0 

RF1 

y1 

z1 •  P 

0px 
0py 
0pz 

= 1px 
0x1 + 1py 

0y1 + 1pz 
0z1 

=   0x1  0y1  0z1 

1px 
1py 
1pz 

0P = 

=  0R1 1P  

the rotation matrix 0R1 (i.e., the orientation of RF1 
w.r.t. RF0) represents also the change of 
coordinates of a vector from RF1 to RF0 
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Ex: Orientation of frames in a plane  
(elementary rotation around z-axis) 

O x 

y 

u 
v 

RF0 

RFC 

# 

# 

B 

C 

• P 
x = OB – xB = u cos # - v sin #$
y = OC + Cy = u sin # + v cos #$
z = w 

similarly: 

Rx(#) = 
   1        0          0 
    0      cos #    - sin #  
   0      sin #       cos #$

Ry(#) = 
 cos #     0     sin #   
    0         1       0 
- sin #    0    cos #$

Rz(-#) = Rz
T(#) 

0OP 

or… 

x 
y 
z 

cos # $-sin # $0 
sin # $ cos #     0 
 0     0  1 

= 
u 
v 
w 

= 
u 
v 
w 

Rz(#) 

COP 0xC       0yC      0zC 
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Ex: Rotation of a vector around z 

O x’ 

y’ 

# 
v 

x = |v| cos %$
y = |v| sin %$

v’ 

x 

y 

%$

x’ = |v| cos (% + #) = |v| (cos % cos # - sin % sin #) 
x’ =  x cos # - y sin # 

y’ = |v| sin (% + #) = |v| (sin % cos # + cos % sin #) 
x’ =  x sin # + y cos # 

z’ =  z 
or… 

 x’ 
 y’ 
 z’ 

cos #      - sin #    0 
 sin #        cos #     0 
   0           0       1 

= 
x 
y 
z 

= Rz(#) 
x 
y 
z 

…as 
before! 
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Equivalent interpretations  
of a rotation matrix 

the same rotation matrix, e.g., Rz(#), may represent: 

# 
RF0 

RFC 

the orientation of a rigid 
body with respect to a 
reference frame RF0 

ex: [0xc 0yc 0zc] = Rz(#)  

the change of coordinates 
from RFC to RF0 
ex: 0P = Rz(#) CP 

# 
RF0 

RFC # 
v 

v’ 

the vector 
rotation operator 
ex: v’ = Rz(#) v 

• P 

the rotation matrix 0RC is an operator  
superposing frame RF0 to frame RFC 
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Composition of rotations 

• 3p 

RF0 

RF1 

RF2 
RF3 

p01 = 0 

0p = (0R1 
1R2 

2R3) 
3p = 0R3 

3p 

0p = 0R1 (1R2 (2R3
3p)) 

a comment on computational complexity 

2p 

27 products 
18 summations 

63 products 
42 summations 

p12 = 0 

p23 = 0 

0R1 

1R2 
2R3 brings RF0 on RF1  brings RF1 on RF2  brings RF2 on RF3  

Robotics 1                8 
1p 



Axis/angle representation 

r 

rx 

x0 

rz 

z0 

ry 

y0 

#$

•  unit vector r (!r! = 1)$
•  # (positive if counterclockwise, as        

seen from an “observer” placed like r) v 

v’ 

DATA 

DIRECT PROBLEM 

find  
R(#,r) = [0x1 0y1 0z1]  

such that 
0P= R(#,r) 

1P   0v’ = R(#,r) 
0v  

x1 

y1 z1 

• P 

RF0 

RF1 

RF1 is the result of rotating 
RF0 by an angle # around 
the unit vector r 
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Axis/angle: Direct problem 

r 

x0 

z0 

y0 

x1 

y1 z1 

RF0 

RF1 

C 

C-1 = CT 

Rz(#) 

1 

2 
3 

R(#,r) = C Rz(#) CT 

C =   n   s   r 

after the first rotation  
the z-axis coincides with r 

n and s are orthogonal 
unit vectors such that 

n " s = r, or 
nysz - synz = rx 

nzsx - sznx = ry 
nxsy - sxny = rz 

sequence of 3 rotations that 
bring frame RF0 to superpose 
with frame RF1 

concatenation of three rotations 
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   c#  - s#   0 
    s#    c#   0  
    0     0   1 

Axis/angle: Direct problem 
solution 

R(#,r) = C Rz(#) CT 

R(#,r) =   n  s   r  
nT 

sT 

rT 

= r rT + (n nT + s sT) c# + (s nT - n sT) s#  

R(#,r) = r rT + (I - r rT) c# + S(r) s#  

                    0     -rz     ry 

s nT - n sT =           0    -rx   =  S(r) 

                                   0 

taking into account that 
C CT = n nT + s sT + r rT = I ,     and that 

skew-symmetric(r): 

r " v = S(r)v = - S(v)r 

depends only 
on r and # !! 

=  RT(-#,r) = R(-#,-r) 
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Rodriguez formula 

R(#,r) v = (r rT + (I - r rT) cos # + S(r) sin #)v 

            = r rT v (1 - cos #) + v cos # + (r " v) sin #  

v’ = R(#,r) v 

v’ = v cos # + (r " v) sin # + (1 - cos #)(rTv) r  

proof: 

q.e.d. 
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Unit quaternion 

"  to eliminate undetermined and singular cases arising in 
the axis/angle representation, one can use the unit 
quaternion representation  

Q = {-, .} = {cos(#/2), sin(#/2) r} 

"  -2 + !.!2 = 1 (thus, “unit ...”) 
"  (#, r) and (-#, -r) gives the same quaternion Q 
"  the absence of rotation is associated to Q = {1, 0} 
"  unit quaternions can be composed with special rules (in 

a similar way as in the product of rotation matrices) 

a scalar 3-dim vector 

Q 1*Q 2 = {-1-2 - .1
T.2, -1.2 + -2.1 + .1".2}  
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Minimal representations 
of orientation 

(Euler and roll-pitch-yaw angles) 
Homogeneous transformations 

Prof. Alessandro De Luca 



“Minimal” representations  

  rotation matrices:  9 elements  
                              -  3 orthogonality relationships  
                              -  3 unitary relationships  
                             =  3 independent variables 

  sequence of 3 rotations around independent axes 
  fixed (ai) or moving/current (a’i) axes 
  12 + 12 possible different sequences (e.g., XYX) 
  actually, only 12 since 

{(a1 α1), (a2 α2), (a3 α3)} ≡ { (a’3 α3) , (a’2 α2), (a’1 α1)}  

inverse problem
 

 d
ire

ct
 p

ro
bl

em
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x’’ 

y’’ 

z’’≡z’’’ 

x’’’ 

y’’’ 

ψ 

ψ 

cos ψ 	
- 	
sin ψ 	
0 
 sin ψ 	
   cos ψ 	
0 
   0         0  1 

Rz” (ψ) = 

ZX’Z’’ Euler angles  

x 

z≡z’ 

y 

x’ 

y’ φ

φ

cos φ 	
- 	
sin φ 	
0 
 sin φ 	
   cos φ 	
0 
   0         0  1 

Rz(φ) = 

y’ 
θ

θ

x’≡x’’ 

y’’ 

z’ z’’ 

Rx’(θ) =  

   1      0        0 
    0    cos θ  -sin θ  
   0    sin θ    cos θ	


RF 
RF’ 

RF” 

RF”’ 

1 2 

3 
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ZX’Z’’ Euler angles  

  direct problem: given φ , θ , ψ ; find R 

    RZX’Z’’ (φ, θ, ψ) = RZ (φ) RX’ (θ) RZ’’ (ψ)  

  given a vector v”’= (x”’,y”’,z”’) expressed in RF”’, its 
expression in the coordinates of RF is 

v = RZX’Z’’ (φ, θ, ψ) v”’ 

  the orientation of RF”’ is the same that would be obtained with 
the sequence of rotations:  

ψ around z, θ around x (fixed), φ around z (fixed) 

cφ cψ - sφ cθ sψ  - cφ sψ - sφ cθ cψ    sφ sθ 
sφ cψ + cφ cθ sψ  - sφ sψ + cφ cθ cψ  - cφ sθ 
      sθ sψ                    sθ cψ               cθ 

= 
order of definition 
in concatenation 
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z’’’ 

x’’’ 

y’’’ 

Roll-Pitch-Yaw angles 

x≡x’ 

z 

y 

y’ 

φ

φ

cos φ 	
- 	
 sin φ  0 
 sin φ 	
  cos φ   0 
   0         0  1 

with RZ(φ) = 

θ
θ

y’’ 
z’’ 

RX(ψ) =  
   1      0         0 
    0    cos ψ  - sin ψ  
   0    sin ψ   cos ψ 

1 2 

3 

ψ 

ψ z’ 

z’ 

y’ 
y’ 

x’ x’’ 

y 

with RY(θ) = 

 cos θ      0   sin θ  
    0          1       0 
- sin θ    0   cos θ	


ROLL PITCH 

YAW 

y’’ 
z’’ 

x’’ 

z 

C1RY(θ)C1
T 

C2RZ(φ)C2
T 
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Roll-Pitch-Yaw angles (fixed XYZ) 

  direct problem: given ψ , θ , φ ; find R 

    RRPY (ψ, θ, φ) = RZ (φ) RY (θ) RX (ψ)  

  inverse problem: given R = {rij}; find ψ , θ , φ  

  r32
2 + r33

2 = c2θ, r31 = -sθ  ⇒  θ = ATAN2{-r31, ± √ r32
2 + r33

2} 

  if r32
2 + r33

2 ≠ 0 (i.e., cθ ≠ 0) 

    r32/cθ = sψ,   r33/cθ = cψ   ⇒   ψ = ATAN2{r32/cθ, r33/cθ}  

  similarly...                              φ = ATAN2{ r21/cθ, r11/cθ } 
  singularities for θ = ± π/2 

cφ cθ  cφ sθ sψ - sφ cψ    cφ sθ cψ + sφ sψ   
sφ cθ  sφ sθ sψ + cφ cψ     sφ sθ cψ - cφ sψ 
- sθ            cθ sψ                  cθ cψ 

= 
order of definition 

two symmetric values w.r.t. π/2  

⇐ note the order of products! 
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Homogeneous transformations 

P 
•   

OA 

OB 

Ap 

Bp 

ApAB 

RFA 

RFB 

Ap = ApAB + ARB Bp 

‘affine’ relationship 

Ap         ARB    ApAB   
Bp 

       =     
  1          0  0  0    1        1 

= ATB Bphom 
Aphom = 

vector in homogeneous 
coordinates 

4x4 matrix of 
homogeneous transformation 

linear 
relationship 
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Properties of T matrix 

  describes the relation between reference frames 
(relative pose = position & orientation) 

  transforms the representation of a position vector 
(applied vector from the origin of the frame)      
from a given frame to another frame 

  it is a roto-translation operator on vectors in the 
three-dimensional space 

  it is always invertible  (ATB)-1 = BTA 

  can be composed, i.e.,  ATC = ATB BTC ← note: it does 
                                                                       not commute! 
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Inverse of a  
homogeneous transformation 

Ap = ApAB + ARB Bp Bp = BpBA + BRA 
Ap = - ARB

T ApAB + ARB
T Ap 

  ARB    ApAB 

0  0  0     1 

    ARB
T    - ARB

T ApAB 

  0  0  0                      1 

  BRA    BpBA 

0  0  0     1 
= 

ATB (ATB)-1 BTA 
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Defining a robot task 

•   •   
•   1 

2 
3 

RFW 

RFB 

RFE 

RFT 

WTT = WTB BTE ETT 

absolute definition  
of task  

known, once  
the robot 
is placed  

task definition relative  
to the robot end-effector 

direct kinematics of the 
robot arm (function of q) 

BTE(q) = WTB
-1 WTT ETT

 -1 = cost  
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Final comments on T matrices 
  they are the main tool for computing the direct kinematics  

of robot manipulators 

  they are used in many application areas (in robotics and 
beyond) 

  in the positioning of a vision camera (matrix bTc  with the extrinsic 
parameters of the camera posture)  

  in computer graphics, for the real-time visualization of 3D solid 
objects when changing the observation point 

     ARB      ApAB 

    αx  αy  αz        σ 
ATB = 

coefficients of 
perspective 
deformation 

scaling 
coefficient 

all zero 
in robotics 

always unitary 
in robotics 
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Kinematics of robot manipulators 

!  “study of geometric and time properties of 
the motion of robotic structures, without 
reference to the causes producing it” 

!  robot seen as  
   “(open) kinematic chain of rigid bodies 

interconnected by (revolute or prismatic) 
joints” 
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Motivations 

!  functional aspects 
!  definition of robot workspace 
!  calibration 

!  operational aspects 

!  trajectory planning  
!  programming 
!  motion control 

task execution 
(actuation by motors) 

task definition and 
performance 

two different “spaces” related by kinematic (and dynamic) maps 
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Kinematics  
formulation and parameterizations 

!  choice of parameterization q 
!  unambiguous and minimal characterization of the robot configuration 
!  n = # degrees of freedom (dof) = # robot joints (rotational or 

translational) 

!  choice of parameterization r 
!  compact description of positional and/or orientation (pose) 

components of interest to the required task 
!  m ! 6, and usually m ! n (but this is not strictly needed)   

JOINT 
space 

TASK 
(Cartesian) 

space 

q = (q1,…,qn) r = (r1,…,rm) 

DIRECT 

INVERSE 

r = f(q) 

q = f -1(r) 
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Open kinematic chains 

!  m = 2 
!  pointing in space 
!  positioning in the plane 

!  m = 3 
!  orientation in space 
!  positioning and orientation in the plane 

q1 

q2 

q3 

q4 

qn 

r = (r1,…,rm) 

e.g., it describes the 
pose of frame RFE 

RFE 

e.g., the relative angle 
between a link and the 

following one 
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Classification by kinematic type 
(first 3 dofs) 

cartesian or 
gantry 
(PPP) 

cylindric 
(RPP) 

SCARA 
(RRP) 

polar or 
spherical 

(RRP) 

articulated or 
anthropomorphic 
(RRR) 

P = 1-dof translational (prismatic) joint 
R = 1-dof rotational (revolute) joint 
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Direct kinematic map 

!  the structure of the direct kinematics function 
depends from the chosen r 

!  methods for computing fr(q) 
!  geometric/by inspection 
!  systematic: assigning frames attached to the robot 

links and using homogeneous transformation matrices  

r = fr(q) 
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Example: direct kinematics of 2R arm 

x 

y 

q1 

q2 

P 
•   

l1 

l2 

px 

py 
" q = q = 

q1 

q2 

r = 
px 
py 
" 

n = 2 

m = 3 

px = l1 cos q1 + l2 cos(q1+q2) 

py = l1 sin q1 + l2 sin(q1+q2) 

"  = q1+ q2 

for more general cases we need a “method”!  
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Numbering links and joints 

joint 1 

link 0 
(base) 

link 1 

joint 2 

joint i-1 
joint i 

joint n 
joint i+1 link i-1 

link i link n 

(end effector) 

Robotics 1                9 

revolute prismatic 



Relation between joint axes 

axis of joint i axis of joint i+1 

common normal  
(axis of link i) 

90° 

90° 

A 

B 

a i = distance AB between joint axes (always well defined) 

# i$

% $

# i = twist angle between joint axes 
         [projected on a plane % orthogonal to the link axis] 

with sign 
(pos/neg)! 
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Relation between link axes 

link i-1 

link i 

axis of joint i 

axis of link i axis of link i-1 

C 

D 

d i = distance CD (a variable if joint i is prismatic) 

& i = angle (a variable if joint i is revolute) between link axes        
         [projected on a plane '  orthogonal to the joint axis] 

&i 
' $

with sign 
(pos/neg)! 
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Frame assignment 
by Denavit-Hartenberg (DH) 

joint axis 
i-1 

joint axis 
i 

joint axis 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

&i 

#i 

zi-1 di 

common normal 
to joint axes 

i and i+1 axis around which the link rotates  
or along which the link slides  
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attached to link i 



Denavit-Hartenberg parameters 

!  unit vector zi along axis of joint i+1 
!  unit vector xi along the common normal to joint i and i+1 axes (i ( i+1) 
!  ai = distance DOi – positive if oriented as xi (constant = “length” of link i)  
!  di = distance Oi-1D – positive if oriented as zi-1 (variable if joint i is PRISMATIC) 
!  #i = twist angle between zi-1 and zi around xi (constant) 
!  &i = angle between xi-1 and xi around zi-i (variable if joint i is REVOLUTE)  

axis of joint 
i-1 

axis of joint 
i 

axis of joint 
i+1 

link i-1 
link i 

xi-1 

Oi-1 

xi 

zi 

Oi 

ai 

&i 

#i 

zi-1 di 

D 
•   
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Homogeneous transformation 
between DH frames (from framei-1 to framei) 

!  roto-translation around and along zi-1 

!  roto-translation around and along xi 

c&i -s&i  0   0 
s&i  c&i  0   0 
 0   0    1   0 

 0   0    0   1 

 1   0   0   0 
 0   1   0   0 
 0   0   1   di 

 0   0   0   1 

c&i -s&i  0   0 
s&i  c&i  0   0 
 0   0    1   di 

 0   0    0   1 

i-1Ai’ (qi) = = 

rotational joint )  qi = &i  prismatic joint )  qi = di  

1   0    0    ai 
0  c#i -s#i  0 
0  s#i  c#i  0 

0   0    0    1 

i’Ai = 
always a  

constant matrix 
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Denavit-Hartenberg matrix 

c&i     -c#i s&i        s#i s&i    aic&i  
s&i      c#i c&i       -s#i c&i    ais&i 
 0         s#i               c#i        di 

 0          0            0            1  

i-1Ai (qi) = i-1Ai’ (qi) i’Ai =  

compact notation: c = cos, s = sin 
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Direct kinematics of manipulators 

x0 

y0 

z0 

xE 

yE 

zE approach a 

slide s 

normal n 

description “internal”  
to the robot 

using:  
•  product 0A1(q1) 1A2(q2)…n-1An(qn) 
•  q=(q1,…,qn) 

“external” description using 
•   r = (r1,…,rm) 

•   BTE=             =   R   p 

000  1 

n s a   p 

0 0 0   1 
BTE = BT0 0A1(q1) 1A2(q2) …n-1An(qn) nTE 

  r = fr(q) 

alternative descriptions of robot direct kinematics 

RFB 
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Example: SCARA robot 

q1 

q2 

q3 

q4 
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J1 shoulder 
J2 elbow 

J3 prismatic  
≡ 

J4 revolute 

Step 1: joint axes 

all parallel 
(or coincident) 

twists # i = 0 
or %   
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a1 

Step 2: link axes 

a2 a3 = 0 

the vertical “heights” 
of the link axes 

are arbitrary 
(for the time being) 

Robotics 1              20 



Step 3: frames 

z1 

x1 z2  

x2 

= a axis 
(approach) 

z0 

x0 
y0 

= z3 

x3 

z4 
x4 

yi axes for i > 0 
are not shown 

(and not needed;  
they form  

right-handed frames) 

Robotics 1              21 



Step 4: DH parameters table 

z1 

x1 z2  

x2 

z0 

x0 
y0 

= z3 

x3 

z4 
x4 

i # i$ ai di & i 

1 0 a1 d1 q1 

2 0 a2 0 q2 

3 0 0 q3 0 

4 % 0 d4 q4 

note: d1 and d4 could have been chosen = 0 ! 
        moreover, here it is d4 < 0 !! 
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Step 5: transformation matrices 

c&4     s&4       0     0 
s&4    -c&4        0     0 
 0        0         -1    d4 
 0        0  0     1  

1     0     0  0  
0     1     0  0 
0     0     1  d3  
0     0     0    1  

c&2   - s&2  0    a2c&2  
s&2     c&2  0    a2s&2 
 0       0            1     0 
 0       0        0     1  

c&1   - s&1  0    a1c&1  
s&1     c&1  0    a1s&1 
 0       0            1     d1 
 0       0        0     1  

3A4(q4)= 

2A3(q3)= 
1A2(q2)= 

0A1(q1)= 

q = (q1, q2, q3, q4)  

   = (&1, &2, d3, &4)   
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Step 6: direct kinematics 

c4     s4      0     0 
s4    -c4      0     0 
 0     0       -1    d4 
 0     0     0     1  

c12  -s12      0    a1c1+ a2c12 
s12   c12       0    a1s1+ a2s12 
 0     0         1       d1+q3 
 0     0      0          1  

3A4(q4)= 

0A3(q1,q2,q3)= 

c124    s124      0    a1c1+ a2c12 
s124   -c124      0    a1s1+ a2s12 
 0      0          -1    d1+q3+d4 
 0      0        0          1  

0A4(q1,q2,q3,q4)= 
p = p(q1,q2,q3) 

R(q1,q2,q4)=[ n s a ] 
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Differential kinematics 

  “relationship between motion (velocity) in the 
joint space and motion (linear and angular 
velocity) in the task (Cartesian) space” 

  instantaneous velocity mappings can be obtained 
through time derivation of the direct kinematics 
function or geometrically at the differential level 
  different treatments arise for rotational quantities 
  establish the link between angular velocity and  

  time derivative of a rotation matrix  
  time derivative of the angles in a minimal 

representation of orientation 
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Linear and angular velocity  
of the robot end-effector 

  v and ω are “vectors”, namely elements of vector spaces: they can be 
obtained as the sum of contributions of the joint velocities (in any order) 

  on the other hand, φ (and dφ/dt) is not an element of a vector space: a 
minimal representation of a sequence of rotations is not obtained by 
summing the corresponding minimal representations (angles φ) 

r = (p,φ) 

  R   p 

000  1 
T = 

ω   
v 

alternative definitions 
of the e-e direct kinematics 

in general, ω ≠ dφ/dt 
Robotics 1                4 

ω1 = z0θ1 

. 
ω2 = z1θ2 

. 
ωn = zn-1θn 

. 

ωi = zi-1θi 

. v3 = z2 d3 
. 



Finite and infinitesimal translations 
  finiteΔx, Δy, Δz or infinitesimal dx, dy, dz translations 

(linear displacements) always commute 

Robotics 1                5 

x 

y 

z 

x 

y 

z 

same final 
position 

= 

Δy 

Δz 

Δz 

Δy 



Finite rotations do not commute 
example 

φ X = 90° 

x 

y 

z 

x 

y 

z 

x 

y 

z 

x 

y 

z 

x 
y 

z 

φ X = 90° 

φ Z = 90° 

φ Z = 90° 

mathematical fact: ω is  
NOT an exact differential form 
(the integral of ω over time 

depends on the integration path!) 

different final 
orientations 

initial 
orientation 

Robotics 1                6 
note: finite rotations still commute when 
made around the same fixed axis 



Infinitesimal rotations commute! 
  infinitesimal rotations dφX, dφY, dφZ around x,y,z axes 

cos φZ  -sin φZ 	
0 
 sin φZ     cos φZ 	
0 
   0          0  1 

RZ(φZ) = 

RX(φX) =  
   1      0           0 
    0    cos φX  -sin φX  
   0    sin φX    cos φX 

RY(φY) = 
 cos φY    0   sin φY  
    0         1      0 
-sin φY      0   cos φY  

  1    -dφ Z     0 
  dφ Z      1      0 
  0       0     1 

RZ(dφZ) = 

RX(dφX) =  
   1      0       0 
    0        1     -dφX  
   0     dφX             1 

RY(dφY) = 
   1      0    dφ Y  
    0      1      0 
-dφ Y      0      1 
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  R(dφ) = R(dφX, dφY, dφZ) = 

        = I + S(dφ) 

   1     -dφz    dφY  
   dφz    1   -dφX  
-dφY     dφX    1 

in any sequence 

neglecting 
second- and 
third-order 

(infinitesimal) 
terms 



Time derivative of a rotation matrix 

  let R = R(t) be a rotation matrix, given as a function of time 

  since I = R(t)RT(t), taking the time derivative of both sides yields 

         0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt  

            = dR(t)/dt RT(t) + [dR(t)/dt RT(t)]T 
 thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix 

  let p(t) = R(t)p’ a vector (with constant norm) rotated over time 

  comparing 

       dp(t)/dt = dR(t)/dt p’ = S(t)R(t) p’ = S(t) p(t)  

       dp(t)/dt = ω(t) × p(t) = S(ω(t)) p(t) 

  we get S = S(ω) 

R = S(ω) R  
. 

S(ω) = R RT  
. 
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p 

ω 

p 
. 



Robot Jacobian matrices 

  analytical Jacobian (obtained by time differentiation) 

  geometric Jacobian (no derivatives) 

p 

φ 
r =        = fr(q)  
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v 

ω 
=                = J(q) q 

. JL(q) 

JA(q) 
q 
. p 

ω 

. 
= 

r =        =             = Jr(q) q  
. . ∂fr(q) 

∂q 
q 
. p 

φ 
. 



Geometric Jacobian 

vE 

ωE 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 
…

 . 

. 

vE = JL1(q) q1 +…+ JLn(q) qn 

. . 
ωE = JA1(q) q1 +…+ JAn(q) qn 

. . 

contribution to the linear 
e-e velocity due to q1 

. 

superposition of effects 

linear and angular velocity belong to  
(linear) vector spaces in R3 

end-effector 
instantaneous 

velocity 

always a 6 x n matrix 

contribution to the angular 
e-e velocity due to q1 

. 
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prismatic 
i-th joint 

JLi(q) qi zi-1 di 

JAi(q) qi 0 

Contribution of a prismatic joint 

. 

. 

. 

RF0 

zi-1 

qi = di 

E 

JLi(q) qi = zi-1 di 

. . Note: joints beyond the i-th one are considered to be “frozen”, 
         so that the distal part of the robot is a single rigid body 
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revolute 
i-th joint 

JLi(q) qi (zi-1 × pi-1,E) θi 

JAi(q) qi zi-1 θi 

Contribution of a revolute joint 

RF0 

. 

. 

. 

. 

zi-1 

qi = θi 

JAi(q) qi = zi-1 θi 

. JLi(q) qi 

. 

•    Oi-1 
pi-1,E 

. 
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Expression of geometric Jacobian 

vE 

ωE 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 
…

 . 

. 

prismatic  
i-th joint 

revolute 
i-th joint 

JLi(q) zi-1 zi-1 × pi-1,E 

JAi(q) 0 zi-1 

zi-1 = 0R1(q1)…i-2Ri-1(qi-1) 
0 
0 
1 

pi-1,E = p0,E(q1,…,qn) - p0,i-1(q1,…,qi-1) 

all vectors should be  
expressed in the same 

reference frame 
(here, the base frame RF0) 

∂p0,E 

∂qi 

p0,E 

ωE 

(         =) 
. 
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= 

this can be also  
computed as 



Robot Jacobian 
decomposition in linear subspaces and duality 

0 0 

space of  
joint velocities 

space of 
task (Cartesian) 

velocities 

ℜ(J) ℵ(J) 

J 

0 0 

space of  
joint torques 

space of 
task (Cartesian) 

forces 

ℜ(JT) ℵ(JT) 

JT 

ℜ(J) + ℵ(JT) = Rm ℜ(JT) + ℵ(J) = Rn 

(in a given configuration q) 

dual spaces du
al

 s
pa

ce
s 
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Mobility analysis 

  ρ(J) = ρ(J(q)), ℜ(J) = ℜ(J(q)), ℵ(JT)= ℵ(JT(q)) are locally defined, i.e., 
they depend on the current configuration q 

  ℜ(J(q)) = subspace of all “generalized” velocities (with linear and/or 
angular components) that can be instantaneously realized by the robot 
end-effector when varying the joint velocities in the configuration q  

  if J(q) has max rank (typically = m) in the configuration q, the robot 
end-effector can be moved in any direction of the task space Rm 

  if ρ(J(q)) < m, there exist directions in Rm along which the robot end-
effector cannot instantaneously move  
  these directions lie in ℵ(JT(q)), namely the complement of ℜ(J(q)) to the 

task space Rm, which is of dimension m - ρ(J(q)) 

  when ℵ(J(q)) ≠ {0} (this is always the case if m<n, i.e., in robots that 
are redundant for the task), there exist non-zero joint velocities that 
produce zero end-effector velocity (“self motions”) 
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Kinematic singularities 

  configurations where the Jacobian loses rank  
    ⇔  loss of instantaneous mobility of the robot end-effector 
  for m=n, they correspond in general to Cartesian poses that lead to a 

number of inverse kinematic solutions that differs from the “generic” case 
  “in” a singular configuration, one cannot find a joint velocity that realizes 

a desired end-effector velocity in an arbitrary direction of the task space 
  “close” to a singularity, large joint velocities may be needed to realize 

some (even small) velocity of the end-effector  
  finding and analyzing in advance all singularities of a robot helps in 

avoiding them during trajectory planning and motion control 
  when m = n: find the configurations q such that det J(q) = 0 
  when m < n: find the configurations q such that all m×m minors of J are 

singular (or, equivalently, such that det [J(q) JT(q)] = 0) 
  finding all singular configurations of a robot with a large number of joints, 

or the actual “distance” from a singularity, is a hard computational task 
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