
Robotics 1 1

Robotics 1

Position and orientation
of rigid bodies

Prof. Alessandro De Luca

• position: ApAB (vector ! R3),
expressed in RFA (use of coordinates
other than Cartesian is possible, e.g.
cylindrical or spherical)

• orientation:
 orthonormal 3x3 matrix
 (RT = R-1 " ARB

BRA = I), with det = +1

 I

Position and orientation

A

B
RFA

RFB

pAB

rigid body right-handed orthogonal
Reference Frames

ARB = [AxB AyB AzB]
•  xA yA zA (xB yB zB) are unit vectors (with unitary norm) of frame RFA (RFB)

•  components in ARB are the direction cosines of the axes of RFB with respect
to (w.r.t.) RFA

Robotics 1 2

Rotation matrix

 xA
T xB xA

T yB xA
T zB

 yA
T xB yA

T yB yA
T zB

 zA
T xB zA

T yB zA
T zB

ARB =

chain rule property

direction cosine of
zB w.r.t. xA

kRi ! iRj = kRj
orientation of RFi

w.r.t. RFk
orientation of RFj

w.r.t. RFi

orientation of RFj
w.r.t. RFk

NOTE: in general, the product of rotation matrices does not commute!

algebraic structure
of a group SO(3)

(neutral element = I;
inverse element = RT)

orthonormal,
with det = +1

Robotics 1 3

Change of coordinates

x0

z0

y0

x1

RF0

RF1

y1

z1 •  P

0px
0py
0pz

= 1px
0x1 + 1py

0y1 + 1pz
0z1

= 0x1 0y1 0z1

1px
1py
1pz

0P =

= 0R1 1P

the rotation matrix 0R1 (i.e., the orientation of RF1
w.r.t. RF0) represents also the change of
coordinates of a vector from RF1 to RF0

Robotics 1 4

Ex: Orientation of frames in a plane
(elementary rotation around z-axis)

O x

y

u
v

RF0

RFC

B

C

• P
x = OB – xB = u cos # - v sin #$
y = OC + Cy = u sin # + v cos #$
z = w

similarly:

Rx(#) =
 1 0 0
 0 cos # - sin #
 0 sin # cos #$

Ry(#) =
 cos # 0 sin #
 0 1 0
- sin # 0 cos #$

Rz(-#) = Rz
T(#)

0OP

or…

x
y
z

cos # $-sin # $0
sin # $ cos # 0
 0 0 1

=
u
v
w

=
u
v
w

Rz(#)

COP 0xC 0yC 0zC

Robotics 1 5

Ex: Rotation of a vector around z

O x’

y’

v

x = |v| cos %$
y = |v| sin %$

v’

x

y

%$

x’ = |v| cos (% + #) = |v| (cos % cos # - sin % sin #)
x’ = x cos # - y sin #

y’ = |v| sin (% + #) = |v| (sin % cos # + cos % sin #)
x’ = x sin # + y cos #

z’ = z
or…

 x’
 y’
 z’

cos # - sin # 0
 sin # cos # 0
 0 0 1

=
x
y
z

= Rz(#)
x
y
z

…as
before!

Robotics 1 6

Equivalent interpretations
of a rotation matrix

the same rotation matrix, e.g., Rz(#), may represent:

RF0

RFC

the orientation of a rigid
body with respect to a
reference frame RF0

ex: [0xc 0yc 0zc] = Rz(#)

the change of coordinates
from RFC to RF0
ex: 0P = Rz(#) CP

RF0

RFC #
v

v’

the vector
rotation operator
ex: v’ = Rz(#) v

• P

the rotation matrix 0RC is an operator
superposing frame RF0 to frame RFC

Robotics 1 7

Composition of rotations

• 3p

RF0

RF1

RF2
RF3

p01 = 0

0p = (0R1
1R2

2R3)
3p = 0R3

3p

0p = 0R1 (1R2 (2R3
3p))

a comment on computational complexity

2p

27 products
18 summations

63 products
42 summations

p12 = 0

p23 = 0

0R1

1R2
2R3 brings RF0 on RF1 brings RF1 on RF2 brings RF2 on RF3

Robotics 1 8
1p

Axis/angle representation

r

rx

x0

rz

z0

ry

y0

#$

•  unit vector r (!r! = 1)$
•  # (positive if counterclockwise, as

seen from an “observer” placed like r) v

v’

DATA

DIRECT PROBLEM

find
R(#,r) = [0x1 0y1 0z1]

such that
0P= R(#,r)

1P 0v’ = R(#,r)
0v

x1

y1 z1

• P

RF0

RF1

RF1 is the result of rotating
RF0 by an angle # around
the unit vector r

Robotics 1 9

Axis/angle: Direct problem

r

x0

z0

y0

x1

y1 z1

RF0

RF1

C

C-1 = CT

Rz(#)

1

2
3

R(#,r) = C Rz(#) CT

C = n s r

after the first rotation
the z-axis coincides with r

n and s are orthogonal
unit vectors such that

n " s = r, or
nysz - synz = rx

nzsx - sznx = ry
nxsy - sxny = rz

sequence of 3 rotations that
bring frame RF0 to superpose
with frame RF1

concatenation of three rotations

Robotics 1 10

 c# - s# 0
 s# c# 0
 0 0 1

Axis/angle: Direct problem
solution

R(#,r) = C Rz(#) CT

R(#,r) = n s r
nT

sT

rT

= r rT + (n nT + s sT) c# + (s nT - n sT) s#

R(#,r) = r rT + (I - r rT) c# + S(r) s#

 0 -rz ry

s nT - n sT = 0 -rx = S(r)

 0

taking into account that
C CT = n nT + s sT + r rT = I , and that

skew-symmetric(r):

r " v = S(r)v = - S(v)r

depends only
on r and # !!

= RT(-#,r) = R(-#,-r)

Robotics 1 11

Rodriguez formula

R(#,r) v = (r rT + (I - r rT) cos # + S(r) sin #)v

 = r rT v (1 - cos #) + v cos # + (r " v) sin #

v’ = R(#,r) v

v’ = v cos # + (r " v) sin # + (1 - cos #)(rTv) r

proof:

q.e.d.

Robotics 1 14

Unit quaternion

"  to eliminate undetermined and singular cases arising in
the axis/angle representation, one can use the unit
quaternion representation

Q = {-, .} = {cos(#/2), sin(#/2) r}

"  -2 + !.!2 = 1 (thus, “unit ...”)
"  (#, r) and (-#, -r) gives the same quaternion Q
"  the absence of rotation is associated to Q = {1, 0}
"  unit quaternions can be composed with special rules (in

a similar way as in the product of rotation matrices)

a scalar 3-dim vector

Q 1*Q 2 = {-1-2 - .1
T.2, -1.2 + -2.1 + .1".2}

Robotics 1 20

Robotics 1 1

Robotics 1

Minimal representations
of orientation

(Euler and roll-pitch-yaw angles)
Homogeneous transformations

Prof. Alessandro De Luca

“Minimal” representations

  rotation matrices: 9 elements
 - 3 orthogonality relationships
 - 3 unitary relationships
 = 3 independent variables

  sequence of 3 rotations around independent axes
  fixed (ai) or moving/current (a’i) axes
  12 + 12 possible different sequences (e.g., XYX)
  actually, only 12 since

{(a1 α1), (a2 α2), (a3 α3)} ≡ { (a’3 α3) , (a’2 α2), (a’1 α1)}

inverse problem

 d
ire

ct
 p

ro
bl

em

Robotics 1 2

x’’

y’’

z’’≡z’’’

x’’’

y’’’

ψ

ψ

cos ψ 	
- 	
sin ψ 	
0
 sin ψ 	
 cos ψ 	
0
 0 0 1

Rz” (ψ) =

ZX’Z’’ Euler angles

x

z≡z’

y

x’

y’ φ

φ

cos φ 	
- 	
sin φ 	
0
 sin φ 	
 cos φ 	
0
 0 0 1

Rz(φ) =

y’
θ

θ

x’≡x’’

y’’

z’ z’’

Rx’(θ) =

 1 0 0
 0 cos θ -sin θ
 0 sin θ cos θ	

RF
RF’

RF”

RF”’

1 2

3

Robotics 1 3

ZX’Z’’ Euler angles

  direct problem: given φ , θ , ψ ; find R

 RZX’Z’’ (φ, θ, ψ) = RZ (φ) RX’ (θ) RZ’’ (ψ)

  given a vector v”’= (x”’,y”’,z”’) expressed in RF”’, its
expression in the coordinates of RF is

v = RZX’Z’’ (φ, θ, ψ) v”’

  the orientation of RF”’ is the same that would be obtained with
the sequence of rotations:

ψ around z, θ around x (fixed), φ around z (fixed)

cφ cψ - sφ cθ sψ - cφ sψ - sφ cθ cψ sφ sθ
sφ cψ + cφ cθ sψ - sφ sψ + cφ cθ cψ - cφ sθ
 sθ sψ sθ cψ cθ

=
order of definition
in concatenation

Robotics 1 4

z’’’

x’’’

y’’’

Roll-Pitch-Yaw angles

x≡x’

z

y

y’

φ

φ

cos φ 	
- 	
 sin φ 0
 sin φ 	
 cos φ 0
 0 0 1

with RZ(φ) =

θ
θ

y’’
z’’

RX(ψ) =
 1 0 0
 0 cos ψ - sin ψ
 0 sin ψ cos ψ

1 2

3

ψ

ψ z’

z’

y’
y’

x’ x’’

y

with RY(θ) =

 cos θ 0 sin θ
 0 1 0
- sin θ 0 cos θ	

ROLL PITCH

YAW

y’’
z’’

x’’

z

C1RY(θ)C1
T

C2RZ(φ)C2
T

Robotics 1 6

Roll-Pitch-Yaw angles (fixed XYZ)

  direct problem: given ψ , θ , φ ; find R

 RRPY (ψ, θ, φ) = RZ (φ) RY (θ) RX (ψ)

  inverse problem: given R = {rij}; find ψ , θ , φ

  r32
2 + r33

2 = c2θ, r31 = -sθ ⇒ θ = ATAN2{-r31, ± √ r32
2 + r33

2}

  if r32
2 + r33

2 ≠ 0 (i.e., cθ ≠ 0)

 r32/cθ = sψ, r33/cθ = cψ ⇒ ψ = ATAN2{r32/cθ, r33/cθ}

  similarly... φ = ATAN2{ r21/cθ, r11/cθ }
  singularities for θ = ± π/2

cφ cθ cφ sθ sψ - sφ cψ cφ sθ cψ + sφ sψ
sφ cθ sφ sθ sψ + cφ cψ sφ sθ cψ - cφ sψ
- sθ cθ sψ cθ cψ

=
order of definition

two symmetric values w.r.t. π/2

⇐ note the order of products!

Robotics 1 7

Homogeneous transformations

P
• 

OA

OB

Ap

Bp

ApAB

RFA

RFB

Ap = ApAB + ARB Bp

‘affine’ relationship

Ap ARB ApAB
Bp

 =
 1 0 0 0 1 1

= ATB Bphom
Aphom =

vector in homogeneous
coordinates

4x4 matrix of
homogeneous transformation

linear
relationship

Robotics 1 9

Properties of T matrix

  describes the relation between reference frames
(relative pose = position & orientation)

  transforms the representation of a position vector
(applied vector from the origin of the frame)
from a given frame to another frame

  it is a roto-translation operator on vectors in the
three-dimensional space

  it is always invertible (ATB)-1 = BTA

  can be composed, i.e., ATC = ATB BTC ← note: it does
 not commute!

Robotics 1 10

Inverse of a
homogeneous transformation

Ap = ApAB + ARB Bp Bp = BpBA + BRA
Ap = - ARB

T ApAB + ARB
T Ap

 ARB ApAB

0 0 0 1

 ARB
T - ARB

T ApAB

 0 0 0 1

 BRA BpBA

0 0 0 1
=

ATB (ATB)-1 BTA

Robotics 1 11

Defining a robot task

•  • 
•  1

2
3

RFW

RFB

RFE

RFT

WTT = WTB BTE ETT

absolute definition
of task

known, once
the robot
is placed

task definition relative
to the robot end-effector

direct kinematics of the
robot arm (function of q)

BTE(q) = WTB
-1 WTT ETT

 -1 = cost

Robotics 1 12

zE

yE

Final comments on T matrices
  they are the main tool for computing the direct kinematics

of robot manipulators

  they are used in many application areas (in robotics and
beyond)

  in the positioning of a vision camera (matrix bTc with the extrinsic
parameters of the camera posture)

  in computer graphics, for the real-time visualization of 3D solid
objects when changing the observation point

 ARB ApAB

 αx αy αz σ
ATB =

coefficients of
perspective
deformation

scaling
coefficient

all zero
in robotics

always unitary
in robotics

Robotics 1 13

Robotics 1

Direct kinematics

Prof. Alessandro De Luca

Robotics 1 1

Kinematics of robot manipulators

!  “study of geometric and time properties of
the motion of robotic structures, without
reference to the causes producing it”

!  robot seen as
 “(open) kinematic chain of rigid bodies

interconnected by (revolute or prismatic)
joints”

Robotics 1 2

Motivations

!  functional aspects
!  definition of robot workspace
!  calibration

!  operational aspects

!  trajectory planning
!  programming
!  motion control

task execution
(actuation by motors)

task definition and
performance

two different “spaces” related by kinematic (and dynamic) maps

Robotics 1 3

Kinematics
formulation and parameterizations

!  choice of parameterization q
!  unambiguous and minimal characterization of the robot configuration
!  n = # degrees of freedom (dof) = # robot joints (rotational or

translational)

!  choice of parameterization r
!  compact description of positional and/or orientation (pose)

components of interest to the required task
!  m ! 6, and usually m ! n (but this is not strictly needed)

JOINT
space

TASK
(Cartesian)

space

q = (q1,…,qn) r = (r1,…,rm)

DIRECT

INVERSE

r = f(q)

q = f -1(r)

Robotics 1 4

Open kinematic chains

!  m = 2
!  pointing in space
!  positioning in the plane

!  m = 3
!  orientation in space
!  positioning and orientation in the plane

q1

q2

q3

q4

qn

r = (r1,…,rm)

e.g., it describes the
pose of frame RFE

RFE

e.g., the relative angle
between a link and the

following one

Robotics 1 5

Classification by kinematic type
(first 3 dofs)

cartesian or
gantry
(PPP)

cylindric
(RPP)

SCARA
(RRP)

polar or
spherical

(RRP)

articulated or
anthropomorphic
(RRR)

P = 1-dof translational (prismatic) joint
R = 1-dof rotational (revolute) joint

Robotics 1 6

Direct kinematic map

!  the structure of the direct kinematics function
depends from the chosen r

!  methods for computing fr(q)
!  geometric/by inspection
!  systematic: assigning frames attached to the robot

links and using homogeneous transformation matrices

r = fr(q)

Robotics 1 7

Example: direct kinematics of 2R arm

x

y

q1

q2

P
• 

l1

l2

px

py
" q = q =

q1

q2

r =
px
py
"

n = 2

m = 3

px = l1 cos q1 + l2 cos(q1+q2)

py = l1 sin q1 + l2 sin(q1+q2)

" = q1+ q2

for more general cases we need a “method”!
Robotics 1 8

Numbering links and joints

joint 1

link 0
(base)

link 1

joint 2

joint i-1
joint i

joint n
joint i+1 link i-1

link i link n

(end effector)

Robotics 1 9

revolute prismatic

Relation between joint axes

axis of joint i axis of joint i+1

common normal
(axis of link i)

90°

90°

A

B

a i = distance AB between joint axes (always well defined)

i$

% $

i = twist angle between joint axes
 [projected on a plane % orthogonal to the link axis]

with sign
(pos/neg)!

Robotics 1 10

Relation between link axes

link i-1

link i

axis of joint i

axis of link i axis of link i-1

C

D

d i = distance CD (a variable if joint i is prismatic)

& i = angle (a variable if joint i is revolute) between link axes
 [projected on a plane ' orthogonal to the joint axis]

&i
' $

with sign
(pos/neg)!

Robotics 1 11

Frame assignment
by Denavit-Hartenberg (DH)

joint axis
i-1

joint axis
i

joint axis
i+1

link i-1
link i

xi-1

Oi-1

xi

zi

Oi

ai

&i

#i

zi-1 di

common normal
to joint axes

i and i+1 axis around which the link rotates
or along which the link slides

Robotics 1 12

frame RFi is
attached to link i

Denavit-Hartenberg parameters

!  unit vector zi along axis of joint i+1
!  unit vector xi along the common normal to joint i and i+1 axes (i (i+1)
!  ai = distance DOi – positive if oriented as xi (constant = “length” of link i)
!  di = distance Oi-1D – positive if oriented as zi-1 (variable if joint i is PRISMATIC)
!  #i = twist angle between zi-1 and zi around xi (constant)
!  &i = angle between xi-1 and xi around zi-i (variable if joint i is REVOLUTE)

axis of joint
i-1

axis of joint
i

axis of joint
i+1

link i-1
link i

xi-1

Oi-1

xi

zi

Oi

ai

&i

#i

zi-1 di

D
• 

Robotics 1 13

Homogeneous transformation
between DH frames (from framei-1 to framei)

!  roto-translation around and along zi-1

!  roto-translation around and along xi

c&i -s&i 0 0
s&i c&i 0 0
 0 0 1 0

 0 0 0 1

 1 0 0 0
 0 1 0 0
 0 0 1 di

 0 0 0 1

c&i -s&i 0 0
s&i c&i 0 0
 0 0 1 di

 0 0 0 1

i-1Ai’ (qi) = =

rotational joint) qi = &i prismatic joint) qi = di

1 0 0 ai
0 c#i -s#i 0
0 s#i c#i 0

0 0 0 1

i’Ai =
always a

constant matrix

Robotics 1 15

Denavit-Hartenberg matrix

c&i -c#i s&i s#i s&i aic&i
s&i c#i c&i -s#i c&i ais&i
 0 s#i c#i di

 0 0 0 1

i-1Ai (qi) = i-1Ai’ (qi) i’Ai =

compact notation: c = cos, s = sin

Robotics 1 16

Direct kinematics of manipulators

x0

y0

z0

xE

yE

zE approach a

slide s

normal n

description “internal”
to the robot

using:
•  product 0A1(q1) 1A2(q2)…n-1An(qn)
•  q=(q1,…,qn)

“external” description using
•  r = (r1,…,rm)

•  BTE= = R p

000 1

n s a p

0 0 0 1
BTE = BT0 0A1(q1) 1A2(q2) …n-1An(qn) nTE

 r = fr(q)

alternative descriptions of robot direct kinematics

RFB

Robotics 1 17

Example: SCARA robot

q1

q2

q3

q4

Robotics 1 18

J1 shoulder
J2 elbow

J3 prismatic
≡

J4 revolute

Step 1: joint axes

all parallel
(or coincident)

twists # i = 0
or %

Robotics 1 19

a1

Step 2: link axes

a2 a3 = 0

the vertical “heights”
of the link axes

are arbitrary
(for the time being)

Robotics 1 20

Step 3: frames

z1

x1 z2

x2

= a axis
(approach)

z0

x0
y0

= z3

x3

z4
x4

yi axes for i > 0
are not shown

(and not needed;
they form

right-handed frames)

Robotics 1 21

Step 4: DH parameters table

z1

x1 z2

x2

z0

x0
y0

= z3

x3

z4
x4

i # i$ ai di & i

1 0 a1 d1 q1

2 0 a2 0 q2

3 0 0 q3 0

4 % 0 d4 q4

note: d1 and d4 could have been chosen = 0 !
 moreover, here it is d4 < 0 !!

Robotics 1 22

Step 5: transformation matrices

c&4 s&4 0 0
s&4 -c&4 0 0
 0 0 -1 d4
 0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

c&2 - s&2 0 a2c&2
s&2 c&2 0 a2s&2
 0 0 1 0
 0 0 0 1

c&1 - s&1 0 a1c&1
s&1 c&1 0 a1s&1
 0 0 1 d1
 0 0 0 1

3A4(q4)=

2A3(q3)=
1A2(q2)=

0A1(q1)=

q = (q1, q2, q3, q4)

 = (&1, &2, d3, &4)

Robotics 1 23

Step 6: direct kinematics

c4 s4 0 0
s4 -c4 0 0
 0 0 -1 d4
 0 0 0 1

c12 -s12 0 a1c1+ a2c12
s12 c12 0 a1s1+ a2s12
 0 0 1 d1+q3
 0 0 0 1

3A4(q4)=

0A3(q1,q2,q3)=

c124 s124 0 a1c1+ a2c12
s124 -c124 0 a1s1+ a2s12
 0 0 -1 d1+q3+d4
 0 0 0 1

0A4(q1,q2,q3,q4)=
p = p(q1,q2,q3)

R(q1,q2,q4)=[n s a]

Robotics 1 24

Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Robotics 1 1

Differential kinematics

  “relationship between motion (velocity) in the
joint space and motion (linear and angular
velocity) in the task (Cartesian) space”

  instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics
function or geometrically at the differential level
  different treatments arise for rotational quantities
  establish the link between angular velocity and

  time derivative of a rotation matrix
  time derivative of the angles in a minimal

representation of orientation

Robotics 1 2

Linear and angular velocity
of the robot end-effector

  v and ω are “vectors”, namely elements of vector spaces: they can be
obtained as the sum of contributions of the joint velocities (in any order)

  on the other hand, φ (and dφ/dt) is not an element of a vector space: a
minimal representation of a sequence of rotations is not obtained by
summing the corresponding minimal representations (angles φ)

r = (p,φ)

 R p

000 1
T =

ω
v

alternative definitions
of the e-e direct kinematics

in general, ω ≠ dφ/dt
Robotics 1 4

ω1 = z0θ1

.
ω2 = z1θ2

.
ωn = zn-1θn

.

ωi = zi-1θi

. v3 = z2 d3
.

Finite and infinitesimal translations
  finiteΔx, Δy, Δz or infinitesimal dx, dy, dz translations

(linear displacements) always commute

Robotics 1 5

x

y

z

x

y

z

same final
position

=

Δy

Δz

Δz

Δy

Finite rotations do not commute
example

φ X = 90°

x

y

z

x

y

z

x

y

z

x

y

z

x
y

z

φ X = 90°

φ Z = 90°

φ Z = 90°

mathematical fact: ω is
NOT an exact differential form
(the integral of ω over time

depends on the integration path!)

different final
orientations

initial
orientation

Robotics 1 6
note: finite rotations still commute when
made around the same fixed axis

Infinitesimal rotations commute!
  infinitesimal rotations dφX, dφY, dφZ around x,y,z axes

cos φZ -sin φZ 	
0
 sin φZ cos φZ 	
0
 0 0 1

RZ(φZ) =

RX(φX) =
 1 0 0
 0 cos φX -sin φX
 0 sin φX cos φX

RY(φY) =
 cos φY 0 sin φY
 0 1 0
-sin φY 0 cos φY

 1 -dφ Z 0
 dφ Z 1 0
 0 0 1

RZ(dφZ) =

RX(dφX) =
 1 0 0
 0 1 -dφX
 0 dφX 1

RY(dφY) =
 1 0 dφ Y
 0 1 0
-dφ Y 0 1

Robotics 1 7

  R(dφ) = R(dφX, dφY, dφZ) =

 = I + S(dφ)

 1 -dφz dφY
 dφz 1 -dφX
-dφY dφX 1

in any sequence

neglecting
second- and
third-order

(infinitesimal)
terms

Time derivative of a rotation matrix

  let R = R(t) be a rotation matrix, given as a function of time

  since I = R(t)RT(t), taking the time derivative of both sides yields

 0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt

 = dR(t)/dt RT(t) + [dR(t)/dt RT(t)]T
 thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix

  let p(t) = R(t)p’ a vector (with constant norm) rotated over time

  comparing

 dp(t)/dt = dR(t)/dt p’ = S(t)R(t) p’ = S(t) p(t)

 dp(t)/dt = ω(t) × p(t) = S(ω(t)) p(t)

 we get S = S(ω)

R = S(ω) R
.

S(ω) = R RT
.

Robotics 1 8

p

ω

p
.

Robot Jacobian matrices

  analytical Jacobian (obtained by time differentiation)

  geometric Jacobian (no derivatives)

p

φ
r = = fr(q)

Robotics 1 11

v

ω
= = J(q) q

. JL(q)

JA(q)
q
. p

ω

.
=

r = = = Jr(q) q
. . ∂fr(q)

∂q
q
. p

φ
.

Geometric Jacobian

vE

ωE

= JL(q)

JA(q)
q =
. JL1(q)

JA1(q)

JLn(q)

JAn(q)

…
…

q1

qn
…

 .

.

vE = JL1(q) q1 +…+ JLn(q) qn

. .
ωE = JA1(q) q1 +…+ JAn(q) qn

. .

contribution to the linear
e-e velocity due to q1

.

superposition of effects

linear and angular velocity belong to
(linear) vector spaces in R3

end-effector
instantaneous

velocity

always a 6 x n matrix

contribution to the angular
e-e velocity due to q1

.

Robotics 1 14

prismatic
i-th joint

JLi(q) qi zi-1 di

JAi(q) qi 0

Contribution of a prismatic joint

.

.

.

RF0

zi-1

qi = di

E

JLi(q) qi = zi-1 di

. . Note: joints beyond the i-th one are considered to be “frozen”,
 so that the distal part of the robot is a single rigid body

Robotics 1 15

revolute
i-th joint

JLi(q) qi (zi-1 × pi-1,E) θi

JAi(q) qi zi-1 θi

Contribution of a revolute joint

RF0

.

.

.

.

zi-1

qi = θi

JAi(q) qi = zi-1 θi

. JLi(q) qi

.

•  Oi-1
pi-1,E

.

Robotics 1 16

Expression of geometric Jacobian

vE

ωE

= JL(q)

JA(q)
q =
. JL1(q)

JA1(q)

JLn(q)

JAn(q)

…
…

q1

qn
…

 .

.

prismatic
i-th joint

revolute
i-th joint

JLi(q) zi-1 zi-1 × pi-1,E

JAi(q) 0 zi-1

zi-1 = 0R1(q1)…i-2Ri-1(qi-1)
0
0
1

pi-1,E = p0,E(q1,…,qn) - p0,i-1(q1,…,qi-1)

all vectors should be
expressed in the same

reference frame
(here, the base frame RF0)

∂p0,E

∂qi

p0,E

ωE

(=)
.

Robotics 1 17

=

this can be also
computed as

Robot Jacobian
decomposition in linear subspaces and duality

0 0

space of
joint velocities

space of
task (Cartesian)

velocities

ℜ(J) ℵ(J)

J

0 0

space of
joint torques

space of
task (Cartesian)

forces

ℜ(JT) ℵ(JT)

JT

ℜ(J) + ℵ(JT) = Rm ℜ(JT) + ℵ(J) = Rn

(in a given configuration q)

dual spaces du
al

 s
pa

ce
s

Robotics 1 26

Mobility analysis

  ρ(J) = ρ(J(q)), ℜ(J) = ℜ(J(q)), ℵ(JT)= ℵ(JT(q)) are locally defined, i.e.,
they depend on the current configuration q

  ℜ(J(q)) = subspace of all “generalized” velocities (with linear and/or
angular components) that can be instantaneously realized by the robot
end-effector when varying the joint velocities in the configuration q

  if J(q) has max rank (typically = m) in the configuration q, the robot
end-effector can be moved in any direction of the task space Rm

  if ρ(J(q)) < m, there exist directions in Rm along which the robot end-
effector cannot instantaneously move
  these directions lie in ℵ(JT(q)), namely the complement of ℜ(J(q)) to the

task space Rm, which is of dimension m - ρ(J(q))

  when ℵ(J(q)) ≠ {0} (this is always the case if m<n, i.e., in robots that
are redundant for the task), there exist non-zero joint velocities that
produce zero end-effector velocity (“self motions”)

Robotics 1 27

Kinematic singularities

  configurations where the Jacobian loses rank
 ⇔ loss of instantaneous mobility of the robot end-effector
  for m=n, they correspond in general to Cartesian poses that lead to a

number of inverse kinematic solutions that differs from the “generic” case
  “in” a singular configuration, one cannot find a joint velocity that realizes

a desired end-effector velocity in an arbitrary direction of the task space
  “close” to a singularity, large joint velocities may be needed to realize

some (even small) velocity of the end-effector
  finding and analyzing in advance all singularities of a robot helps in

avoiding them during trajectory planning and motion control
  when m = n: find the configurations q such that det J(q) = 0
  when m < n: find the configurations q such that all m×m minors of J are

singular (or, equivalently, such that det [J(q) JT(q)] = 0)
  finding all singular configurations of a robot with a large number of joints,

or the actual “distance” from a singularity, is a hard computational task

Robotics 1 28

