
Jacobian methods for inverse
kinematics and planning

Slides from Stefan Schaal

USC, Max Planck

The Inverse Kinematics
Problem
  Direct Kinematics

  Inverse Kinematics

  Possible Problems of Inverse Kinematics
  Multiple solutions
  Infinitely many solutions
  No solutions
  No closed-form (analytical solution)

x = f θ()

θ = f −1 x()

Analytical (Algebraic)
Solutions
  Analytically invert the direct kinematics equations and

enumerate all solution branches
  Note: this only works if the number of constraints is the same as

the number of degrees-of-freedom of the robot
  What if not?

  Iterative solutions
  Invent artificial constraints

  Examples
  2DOF arm
  See S&S textbook 2.11 ff

Analytical Inverse Kinematics
of a 2 DOF Arm

  Inverse Kinematics:

l1 l2

x

y

e
x = l1 cosθ1 + l2 cos θ1 +θ2()
y = l1 sinθ1 + l2 sin θ1 +θ2()

l = x2 + y2

l2
2 = l1

2 + l2 − 2l1l cosγ

⇒γ = arccos l2 + l1
2 − l2

2

2l1l
⎛
⎝⎜

⎞
⎠⎟

y
x
= tanε ⇒ θ1 = arctan y

x
− γ

θ2 = arctan y − l1 sinθ
x − l1 cosθ1

⎛
⎝⎜

⎞
⎠⎟
−θ1

γ

Iterative Solutions of
Inverse Kinematics
  Resolved Motion Rate Control

  Properties
  Only holds for high sampling rates or low Cartesian velocities
  “a local solution” that may be “globally” inappropriate
  Problems with singular postures
  Can be used in two ways:

  As an instantaneous solutions of “which way to take “
  As an “batch” iteration method to find the correct configuration at a target

x = J θ() θ ⇒
θ = J θ()#

x

Essential in Resolved Motion
Rate Methods: The Jacobian

  Jacobian of direct kinematics:

  In general, the Jacobian (for Cartesian positions and
orientations) has the following form (geometrical
Jacobian):

pi is the vector from the origin of the world coordinate system to the origin of the i-th link coordinate
system, p is the vector from the origin to the endeffector end, and z is the i-th joint axis (p.72 S&S)

Analytical
Jacobianx = f θ() ⇒

∂x
∂θ

=
∂f θ()
∂θ

= J θ()

The Jacobian Transpose
Method

  Operating Principle:

-  Project difference vector Dx on those dimensions q which can reduce it
the most

  Advantages:

-  Simple computation (numerically robust)
-  No matrix inversions

  Disadvantages:

-  Needs many iterations until convergence in certain configurations (e.g.,
Jacobian has very small coefficients)

  Unpredictable joint configurations
  Non conservative

Δθ =α JT θ()Δx

Jacobian Transpose
Derivation

Minimize cost function F = 1
2
xtarget − x()T xtarget − x()

= 1
2
xtarget − f (θ)()T xtarget − f (θ)()

with respect to θ by gradient descent:

Δθ = −α ∂F
∂θ

⎛
⎝⎜

⎞
⎠⎟
T

= α xtarget − x()T ∂ f (θ)
∂θ

⎛
⎝⎜

⎞
⎠⎟
T

= α JT (θ) xtarget − x()
= α JT (θ)Δx

Jacobian Transpose
Geometric Intuition

Target

 x

!1

!2

!3

The Pseudo Inverse
Method

  Operating Principle:

-  Shortest path in q-space

  Advantages:

-  Computationally fast (second order method)

  Disadvantages:

-  Matrix inversion necessary (numerical problems)
  Unpredictable joint configurations
  Non conservative

Δθ =α JT θ() J θ()JT θ()()−1Δx = J #Δx

Pseudo Inverse Method
Derivation

For a small step Δx, minimize with repect to Δθ the cost function:

F = 1
2
ΔθTΔθ + λT Δx − J(θ)Δθ()

where λT is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ ⇒ JΔθ = JJTλ

⇒ λ = JJT()−1
JΔθ

insert (1) into (2):

(3) λ = JJT()−1
Δx

insertion of (3) into (2) gives the final result:

Δθ = JTλ = JT JJT()−1
Δx

Pseudo Inverse
Geometric Intuition

Target
 x

start posture
=

desired posture
for optimization

Pseudo Inverse with explicit
Optimization Criterion

  Operating Principle:

-  Optimization in null-space of Jacobian using a kinematic cost function

  Advantages:

-  Computationally fast
-  Explicit optimization criterion provides control over arm configurations

  Disadvantages:

  Numerical problems at singularities
  Non conservative

F = g(θ), e.g., F = θi −θi,0()2
i=1

d

∑

Δθ =αJ #Δx + I − J #J() θΟ − θ()

Pseudo Inverse Method &
Optimization Derivation

For a small step Δx, minimize with repect to Δθ the cost function:

F = 1
2

Δθ + θ − θΟ()T Δθ + θ − θΟ() + λT Δx − J(θ)Δθ()
where λT is a vector of Lagrange multipliers.
Solution:

(1) ∂F
∂λ

= 0 ⇒ Δx = JΔθ

(2) ∂F
∂Δθ

= 0 ⇒ Δθ = JTλ − θ − θΟ() ⇒ JΔθ = JJTλ − J θ − θΟ()

⇒ λ = JJT()−1
JΔθ + JJT()−1

J θ − θΟ()
insert (1) into (2):

(3) λ = JJT()−1
Δx + JJT()−1

J θ − θΟ()
insertion of (3) into (2) gives the final result:

Δθ = JTλ − θ − θΟ() = JT JJT()−1
Δx + JT JJT()−1

J θ − θΟ()− θ − θΟ()
= J #Δx + I − J #J() θΟ − θ()

The Extended Jacobian
Method

  Operating Principle:

-  Optimization in null-space of Jacobian using a kinematic cost function

  Advantages:

-  Computationally fast (second order method)
-  Explicit optimization criterion provides control over arm configurations
  Numerically robust
  Conservative

  Disadvantages:

  Computationally expensive matrix inversion necessary (singular value
decomposition)

  Note: new and better ext. Jac. algorithms exist

Δθ =α J ext. θ()()−1Δx ext.

F = g(θ), e.g., F = θi −θi,0()2
i=1

d

∑

Extended Jacobian Method
Derivation

The forward kinematics x = f (θ) is a mapping ℜn →ℜm , e.g., from a
n-dimensional joint space to a m-dimensional Cartesian space. The
singular value decomposition of the Jacobian of this mapping is:
 J θ() = USVT

The rows V[]i whose corresponding entry in the diagonal matrix S is
zero are the vectors which span the Null space of J θ(). There must be
(at least) n-m such vectors (n ≥ m). Denote these vectors ni , i ∈ 1,n − m[].
The goal of the extended Jacobian method is to augment the rank
deficient Jacobian such that it becomes properly invertible. In order
to do this, a cost function F=g θ() has to be defined which is to be
minimized with respect to θ in the Null space. Minimization of F
must always yield:

 ∂F
∂θ

= ∂g
∂θ

= 0

Since we are only interested in zeroing the gradient in Null space,
we project this gradient onto the Null space basis vectors:

Gi =
∂g
∂θ
ni

If all Gi equal zero, the cost function F is minimized in Null space.
Thus we obtain the following set of equations which are to be
fulfilled by the inverse kinematics solution:

f θ()
G1

...
Gn−m

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

For an incremental step Δx, this system can be linearized:
J θ()
∂G1

∂θ
...

∂Gn−m

∂θ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

Δθ =

Δx
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

or J ext .Δθ = Δxext ..

The unique solution of these equations is: Δθ = J ext .()−1
Δxext ..

Extended Jacobian
Geometric Intuition

 x

start posture

Target

desired posture
for optimization

What makes control hard?

Emo Todorov

Applied Mathematics
Computer Science and Engineering

University of Washington

What makes control hard?

Some of the usual suspects are:

• non-linearity
• high dimensionality
• redundancy
• noise and uncertainty

These properties can make an already hard problem harder,
however none of them is a root cause of difficulty.

A control problem can have all these properties and still be easy,
in the sense that there exists a simple strategy that always works:

Push towards the goal!

The problem is hard when this strategy is infeasible, due to constraints.

Easy example: Reaching with a redundant arm

 qN

q

qy
qJ

qy

q

space nullJacobian

Jacobianeffector end

positioneffector end

ionconfigurat spacejoint

Pneumatic robot (Diego-san)
air pressure similar to muscle activation,
but with longer time constant (~ 80 ms)

 qyyqJku
T

 *

Push hand towards target:

Push hand towards target,
while staying close to default configuration:

 qqqNkqyyqJku
T

 *

2

*

1

The controller does not need to worry about
the path, or the speed profile, or stability, or
anything else - it all emerges from the nicely
damped dynamics.

../../DiegoSan/Movies/spatial1.MOV
../../DiegoSan/Movies/spatial1.MOV

Easy example: Trajectory tracking with PD control

1 minute of tracking

reference trajectory

actual trajectory

../../DiegoSan/Movies/recorded.MTS
../../DiegoSan/Movies/recorded.MTS
../Movies/Faces.MOV
../Movies/Faces.MOV

Constraints that are (mostly) benign

Joint limits
The goal is inside the convex feasible region, so pushing towards
the goal will not violate the joint limits.

Actuation limits
This is a big problem for under-powered systems,
but most robots are sufficiently strong.

Equality constraints
Such constraints restrict the state to a manifold. If the simple
push-towards-the-goal action projected on the manifold
always gets us closer to the goal, then the problem is still easy.
Gently curved manifolds are likely to have this property.

easyhard

Constraints that make the problem hard

Under-actuation
In tasks such as locomotion and object manipulation,
some DOFs cannot be controlled directly. These un-actuated
DOFs are precisely the ones we would like to control.

Obstacles
Obstacles can turn a control problem into a complicated
maze. Solving such problems requires path planning,
along with dynamic consistency.

Contact dynamics
Physical contacts change the plant dynamics qualitatively.
Making and breaking contacts is usually required for the task,
thus the controller has to operate in many dynamic regimes,
and handle abrupt transitions.

