Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Emo Todorov

Applied Mathematics and Computer Science \& Engineering
University of Washington

Spring 2014

Continuous-time formulation

Notation and terminology:

$$
\begin{aligned}
& \mathbf{x}(t) \in \mathbb{R}^{n} \\
& \mathbf{u}(t) \in \mathbb{R}^{m} \\
& \boldsymbol{\omega}(t) \in \mathbb{R}^{k} \\
& d \mathbf{x}=\mathbf{f}(\mathbf{x}, \mathbf{u}) d t \\
& \Sigma(\mathbf{x}, \mathbf{u})=G(\mathbf{x} \\
& \ell(\mathbf{x}, \mathbf{u}) \geq 0 \\
& q_{\mathcal{T}}(\mathbf{x}) \geq 0 \\
& \boldsymbol{\pi}(\mathbf{x}) \in \mathbb{R}^{m} \\
& v^{\pi}(\mathbf{x}) \geq 0 \\
& \boldsymbol{\pi}^{*}(\mathbf{x}), \mathbf{v}^{*}(\mathbf{x})
\end{aligned}
$$

state vector control vector
Brownian motion (integral of white noise)
cost for choosing control \mathbf{u} in state \mathbf{x} (optional) scalar cost at terminal states $\mathbf{x} \in \mathcal{T}$
control law
value/cost-to-go function
optimal control law and its value function

$$
d \mathbf{x}=\mathbf{f}(\mathbf{x}, \mathbf{u}) d t+G(\mathbf{x}, \mathbf{u}) d \boldsymbol{\omega} \quad \text { continuous-time dynamics }
$$

$$
\Sigma(\mathbf{x}, \mathbf{u})=G(\mathbf{x}, \mathbf{u}) G(\mathbf{x}, \mathbf{u})^{\top} \quad \text { noise covariance }
$$

Stochastic differential equations and integrals

Ito diffusion / stochastic differential equation (SDE):

$$
d x=f(x) d t+g(x) d \omega
$$

This cannot be written as $\dot{x}=f(x)+g(x) \dot{\omega}$ because $\dot{\omega}$ does not exist. The SDE means that the time-integrals of the two sides are equal:

$$
x(T)-x(0)=\int_{0}^{T} f(x(t)) d t+\int_{0}^{T} g(x(t)) d \omega(t)
$$

The last term is an Ito integral. For an Ito process $y(t)$ adapted to $\omega(t)$, i.e. depending on the sample path only up to time t, this integral is

Definition (Ito integral)

$$
\int_{0}^{T} y(t) d \omega(t) \triangleq \lim _{\substack{N \rightarrow \infty \\ 0=t_{0}<t_{1}<\cdots<t_{N}=T}} \sum_{i=0}^{N-1} y\left(t_{i}\right)\left(\omega\left(t_{i+1}\right)-\omega\left(t_{i}\right)\right)
$$

Replacing $y\left(t_{i}\right)$ with $y\left(\left(t_{i+1}+t_{i}\right) / 2\right)$ yields the Stratonovich integral.

Forward and backward equations, generator

Let $p(y, s \mid x, t), s \geq t$ denote the transition probability density under the Ito diffusion $d x=f(x) d t+g(x) d \omega$. Then p satisfies the following PDEs:

Theorem (Kolmogorov equations)

forward (FP) equation

$$
\begin{aligned}
& \frac{\partial}{\partial s} p=-\frac{\partial}{\partial y}(f p)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(g^{2} p\right) \\
& -\frac{\partial}{\partial t} p=f \frac{\partial}{\partial x}(p)+\frac{1}{2} g^{2} \frac{\partial^{2}}{\partial x^{2}}(p)=\mathcal{L}[p(y, s \mid \cdot, t)]
\end{aligned}
$$

Forward and backward equations, generator

Let $p(y, s \mid x, t), s \geq t$ denote the transition probability density under the Ito diffusion $d x=f(x) d t+g(x) d \omega$. Then p satisfies the following PDEs:

Theorem (Kolmogorov equations)

forward (FP) equation

$$
\begin{aligned}
& \frac{\partial}{\partial s} p=-\frac{\partial}{\partial y}(f p)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(g^{2} p\right) \\
& -\frac{\partial}{\partial t} p=f \frac{\partial}{\partial x}(p)+\frac{1}{2} g^{2} \frac{\partial^{2}}{\partial x^{2}}(p)=\mathcal{L}[p(y, s \mid \cdot, t)]
\end{aligned}
$$

The operator \mathcal{L} which computes expected directional derivatives is called the generator of the stochastic process. It satisfies (in the vector case):

Theorem (generator)

$$
\mathcal{L}[v(\cdot)](\mathbf{x}) \triangleq \lim _{\Delta \rightarrow 0} \frac{E^{\mathbf{x}(0)=\mathbf{x}}[v(\mathbf{x}(\Delta))]-v(\mathbf{x})}{\Delta}=\mathbf{f}(\mathbf{x})^{T} v_{\mathbf{x}}(\mathbf{x})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}) v_{\mathbf{x x}}(\mathbf{x})\right)
$$

Discretizing the time axis

Consider the explicit Euler discretization with time step Δ :

$$
\mathbf{x}(t+\Delta)=\mathbf{x}(t)+\Delta \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))+\sqrt{\Delta} G(\mathbf{x}(t), \mathbf{u}(t)) \boldsymbol{\varepsilon}(t)
$$

where $\varepsilon(t) \sim N(0, I)$. The term $\sqrt{\Delta}$ appears because the variance grows linearly with time.

Thus the transition probability $p\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)$ is Gaussian, with mean $\mathbf{x}+\Delta \mathbf{f}(\mathbf{x}, \mathbf{u})$ and covariance matrix $\Delta \Sigma(\mathbf{x}, \mathbf{u})$. The one-step cost is $\Delta \ell(\mathbf{x}, \mathbf{u})$.

Now we can apply the Bellman equation (in the finite horizon setting):

$$
\begin{aligned}
v(\mathbf{x}, t)= & \min _{\mathbf{u}}\left\{\Delta \ell(\mathbf{x}, \mathbf{u})+E_{\mathbf{x}^{\prime} \sim p(\cdot \mid \mathbf{x}, \mathbf{u})}\left[v\left(\mathbf{x}^{\prime}, t+\Delta\right)\right]\right\}= \\
& \min _{\mathbf{u}}\left\{\Delta \ell(\mathbf{x}, \mathbf{u})+E_{\mathbf{d} \sim N(\Delta \mathbf{f}(\mathbf{x}, \mathbf{u}), \Delta \Sigma(\mathbf{x}, \mathbf{u}))}[v(\mathbf{x}+\mathbf{d}, t+\Delta)]\right\}
\end{aligned}
$$

Next we use the Taylor-series expansion of $v \ldots$

Hamilton-Jacobi-Bellman (HJB) equation

$$
\begin{aligned}
v(\mathbf{x}+\mathbf{d}, t+\Delta)= & v(\mathbf{x}, t)+\Delta v_{t}(\mathbf{x}, t)+o\left(\Delta^{2}\right)+ \\
& +\mathbf{d}^{\top} v_{\mathbf{x}}(\mathbf{x}, t)+\frac{1}{2} \mathbf{d}^{\top} v_{\mathbf{x} \mathbf{x}}(\mathbf{x}, t) \mathbf{d}+o\left(\mathbf{d}^{3}\right)
\end{aligned}
$$

Using the fact that $E\left[\mathbf{d}^{\top} M \mathbf{d}\right]=\operatorname{tr}(\operatorname{cov}[\mathbf{d}] M)+o\left(\Delta^{2}\right)$, the expectation is

$$
\begin{aligned}
E_{\mathbf{d}}[v(\mathbf{x}+\mathbf{d}, t+\Delta)]= & v(\mathbf{x}, t)+\Delta v_{t}(\mathbf{x}, t)+o\left(\Delta^{2}\right)+ \\
& +\Delta \mathbf{f}(\mathbf{x}, \mathbf{u})^{\top} v_{\mathbf{x}}(\mathbf{x}, t)+\frac{\Delta}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) v_{\mathbf{x x}}(\mathbf{x}, t)\right)
\end{aligned}
$$

Hamilton-Jacobi-Bellman (HJB) equation

$$
\begin{aligned}
v(\mathbf{x}+\mathbf{d}, t+\Delta)= & v(\mathbf{x}, t)+\Delta v_{t}(\mathbf{x}, t)+o\left(\Delta^{2}\right)+ \\
& +\mathbf{d}^{\top} v_{\mathbf{x}}(\mathbf{x}, t)+\frac{1}{2} \mathbf{d}^{\top} v_{\mathbf{x x}}(\mathbf{x}, t) \mathbf{d}+o\left(\mathbf{d}^{3}\right)
\end{aligned}
$$

Using the fact that $E\left[\mathbf{d}^{\top} M \mathbf{d}\right]=\operatorname{tr}(\operatorname{cov}[\mathbf{d}] M)+o\left(\Delta^{2}\right)$, the expectation is

$$
\begin{aligned}
E_{\mathbf{d}}[v(\mathbf{x}+\mathbf{d}, t+\Delta)]= & v(\mathbf{x}, t)+\Delta v_{t}(\mathbf{x}, t)+o\left(\Delta^{2}\right)+ \\
& +\Delta \mathbf{f}(\mathbf{x}, \mathbf{u})^{\top} v_{\mathbf{x}}(\mathbf{x}, t)+\frac{\Delta}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) v_{\mathbf{x x}}(\mathbf{x}, t)\right)
\end{aligned}
$$

Substituting in the Bellman equation,

$$
v(\mathbf{x}, t)=\min _{\mathbf{u}}\left\{\begin{array}{l}
\Delta \ell(\mathbf{x}, \mathbf{u})+v(\mathbf{x}, t)+\Delta v_{t}(\mathbf{x}, t)+o\left(\Delta^{2}\right)+ \\
+\Delta \mathbf{f}(\mathbf{x}, \mathbf{u})^{\top} v_{\mathbf{x}}(\mathbf{x}, t)+\frac{\Delta}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) v_{\mathbf{x x}}(\mathbf{x}, t)\right)
\end{array}\right\}
$$

Simplifying, dividing by Δ and taking $\Delta \rightarrow 0$ yields the HJB equation

$$
-v_{t}(\mathbf{x}, t)=\min _{\mathbf{u}}\left\{\ell(\mathbf{x}, \mathbf{u})+\mathbf{f}(\mathbf{x}, \mathbf{u})^{\top} v_{\mathbf{x}}(\mathbf{x})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) v_{\mathbf{x} \mathbf{x}}(\mathbf{x})\right)\right\}
$$

HJB equations for different problem formulations

Definition (Hamiltonian)

$$
H[\mathbf{x}, \mathbf{u}, v(\cdot)] \triangleq \ell(\mathbf{x}, \mathbf{u})+\mathbf{f}(\mathbf{x}, \mathbf{u})^{\top} v_{\mathbf{x}}(\mathbf{x})+\frac{1}{2} \operatorname{tr}\left(\Sigma(\mathbf{x}, \mathbf{u}) v_{\mathbf{x x}}(\mathbf{x})\right)=\ell+\mathcal{L}[v]
$$

The HJB equations for the optimal cost-to-go v^{*} are

Theorem (HJB equations)

$$
\begin{array}{lrl}
\text { first exit } & 0=\min _{\mathbf{u}} H\left[\mathbf{x}, \mathbf{u}, v^{*}(\cdot)\right] & v^{*}(\mathbf{x} \in \mathcal{T})=q_{\mathcal{T}}(\mathbf{x}) \\
\text { finite horizon } & -v_{t}^{*}(\mathbf{x}, t)=\min _{\mathbf{u}} H\left[\mathbf{x}, \mathbf{u}, v^{*}(\cdot, t)\right] & v^{*}(\mathbf{x}, T)=q_{\mathcal{T}}(\mathbf{x}) \\
\text { discounted } & \frac{1}{\tau} v^{*}(\mathbf{x})=\min _{\mathbf{u}} H\left[\mathbf{x}, \mathbf{u}, v^{*}(\cdot)\right] & \\
\text { average } & c=\min _{\mathbf{u}} H\left[\mathbf{x}, \mathbf{u}, \widetilde{v}^{*}(\cdot)\right] &
\end{array}
$$

Discounted cost-to-go: $v^{\pi}(\mathbf{x})=E \int_{0}^{\infty} \exp (-t / \tau) \ell(\mathbf{x}(t), \mathbf{u}(t)) d t$.

Existence and uniqueness of solutions

- The HJB equation has at most one classic solution (i.e. a function which satisfies the PDE everywhere.)
- If a classic solution exists then it is the optimal cost-to-go function.
- The HJB equation may not have a classic solution; in that case the optimal cost-to-go function is non-smooth (e.g. bang-bang control.)
- The HJB equation always has a unique viscosity solution which is the optimal cost-to-go function.
- Approximation schemes based on MDP discretization (see below) are guaranteed to converge to the unique viscosity solution / optimal cost-to-go function.
- Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions.
- All examples of non-smoothness seem to be deterministic; noise tends to smooth the optimal cost-to-go function.

Example of noise smoothing

Noisy dynamics

Deterministic dynamics

Tassa and Erez (2007)

More tractable problems

Consider a restricted family of problems with dynamics and cost

$$
\begin{aligned}
d \mathbf{x} & =(\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u}) d t+C(\mathbf{x}) d \boldsymbol{\omega} \\
\ell(\mathbf{x}, \mathbf{u}) & =q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}
\end{aligned}
$$

For such problems the Hamiltonian can be minimized analytically w.r.t. u. Suppressing the dependence on \mathbf{x} for clarity, we have

$$
\min _{\mathbf{u}} H=\min _{\mathbf{u}}\left\{q+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}+(\mathbf{a}+B \mathbf{u})^{\top} v_{\mathbf{x}}+\frac{1}{2} \operatorname{tr}\left(C C^{\top} v_{\mathbf{x x}}\right)\right\}
$$

The minimum is achieved at $\mathbf{u}^{*}=-R^{-1} B^{\top} v_{\mathbf{x}}$ and the result is

$$
\min _{\mathbf{u}} H=q+\mathbf{a}^{\top} v_{\mathbf{x}}+\frac{1}{2} \operatorname{tr}\left(C C^{\top} v_{\mathbf{x x}}\right)-\frac{1}{2} v_{\mathbf{x}}^{\top} B R^{-1} B^{\top} v_{\mathbf{x}}
$$

Thus the HJB equations become 2nd-order quadratic PDEs, no longer involving the min operator.

Pendulum example

$$
\ddot{\theta}=k \sin (\theta)+u
$$

First-order form:

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\dot{\theta}
\end{array}\right] \\
\mathbf{a}(\mathbf{x}) & =\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right] \\
B & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Stochastic dynamics:

$$
d \mathbf{x}=\mathbf{a}(\mathbf{x}) d t+B(u d t+\sigma d \omega)
$$

Cost and optimal control:

$$
\begin{aligned}
\ell(\mathbf{x}, u) & =q(\mathbf{x})+\frac{r}{2} u^{2} \\
u^{*}(\mathbf{x}) & =-r^{-1} v_{x_{2}}(\mathbf{x})
\end{aligned}
$$

HJB equation (discounted):

$$
\begin{aligned}
\frac{1}{\tau} v= & q+x_{2} v_{x_{1}}+k \sin \left(x_{1}\right) v_{x_{2}} \\
& +\frac{\sigma^{2}}{2} v_{x_{2} x_{2}}-\frac{1}{2 r} v_{x_{2}}^{2}
\end{aligned}
$$

Pendulum example continued

Parameters: $k=\sigma=r=1, \quad \tau=0.3, \quad q=1-\exp \left(-2 \theta^{2}\right), \quad \beta=0.99$
Dicretize state space, approximate derivatives via finite differences, iterate:

$$
v^{(n+1)}=\beta v^{(n)}+(1-\beta) \tau \min _{u} H^{(n)}
$$

$\mathrm{u}(\mathrm{x})$

MDP discretization

Define discrete state and control spaces $\mathcal{X}_{(h)} \subset \mathbb{R}^{n}, \mathcal{U}_{(h)} \subset \mathbb{R}^{m}$ and discrete time step $\Delta_{(h)}$, where h is a "coarseness" parameter and $h \rightarrow 0$ corresponds to infinitely dense discretization. Construct $p_{(h)}\left(\mathbf{x}_{(h)}^{\prime} \mid \mathbf{x}_{(h)}, \mathbf{u}_{(h)}\right)$ s.t.

Definition (local consistency)

$$
\begin{aligned}
\mathbf{d} & \triangleq \mathbf{x}_{(h)}^{\prime}-\mathbf{x}_{(h)} \\
E[\mathbf{d}] & =\Delta_{(h)} \mathbf{f}\left(\mathbf{x}_{(h)}, \mathbf{u}_{(h)}\right)+o\left(\Delta_{(h)}\right) \\
\operatorname{cov}[\mathbf{d}] & =\Delta_{(h)} \Sigma\left(\mathbf{x}_{(h)}, \mathbf{u}_{(h)}\right)+o\left(\Delta_{(h)}\right)
\end{aligned}
$$

In the limit $h \rightarrow 0$ the MDP solution $v_{(h)}^{*}$ converges to the solution v^{*} of the continuous problem, even when v^{*} is non-smooth (Kushner and Dupois)

