Linear-Quadratic-Gaussian (LQG) Controllers

Emo Todorov

Applied Mathematics and Computer Science \& Engineering
University of Washington

Spring 2014

LQG in continuous time

Recall that for problems with dynamics and cost

$$
\begin{aligned}
d \mathbf{x} & =(\mathbf{a}(\mathbf{x})+B(\mathbf{x}) \mathbf{u}) d t+C(\mathbf{x}) d \boldsymbol{\omega} \\
\ell(\mathbf{x}, \mathbf{u}) & =q(\mathbf{x})+\frac{1}{2} \mathbf{u}^{\top} R(\mathbf{x}) \mathbf{u}
\end{aligned}
$$

the optimal control law is $\mathbf{u}^{*}=-R^{-1} B^{\top} v_{\mathbf{x}}$ and the HJB equation is

$$
-v_{t}=q+\mathbf{a}^{\top} v_{\mathbf{x}}+\frac{1}{2} \operatorname{tr}\left(C C^{\top} v_{\mathbf{x x}}\right)-\frac{1}{2} v_{\mathbf{x}}^{\top} B R^{-1} B^{\top} v_{\mathbf{x}}
$$

We now impose further restrictions (LQG system):

$$
\begin{aligned}
d \mathbf{x} & =(A \mathbf{x}+B \mathbf{u}) d t+C d \omega \\
\ell(\mathbf{x}, \mathbf{u}) & =\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u} \\
q_{\mathcal{T}}(\mathbf{x}) & =\frac{1}{2} \mathbf{x}^{\top} Q_{\mathcal{T}} \mathbf{x}
\end{aligned}
$$

Continuous-time Riccati equations

Substituting the LQG dynamics and cost in the HJB equation yields

$$
-v_{t}=\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\mathbf{x}^{\top} A^{\top} v_{\mathbf{x}}+\frac{1}{2} \operatorname{tr}\left(C C^{\top} v_{\mathbf{x x}}\right)-\frac{1}{2} v_{\mathbf{x}}^{\top} B R^{-1} B^{\top} v_{\mathbf{x}}
$$

We can now show that v is quadratic:

$$
v(\mathbf{x}, t)=\frac{1}{2} \mathbf{x}^{\top} V(t) \mathbf{x}+\alpha(t)
$$

At the final time this holds with $\alpha(T)=0$ and $V(T)=Q_{\mathcal{T}}$. Then

$$
-\dot{\alpha}-\frac{1}{2} \mathbf{x}^{\top} \dot{V} \mathbf{x}=\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\mathbf{x}^{\top} A^{\top} V \mathbf{x}+\frac{1}{2} \operatorname{tr}\left(C C^{\top} V\right)-\frac{1}{2} \mathbf{x}^{\top} V B R^{-1} B^{\top} V \mathbf{x}
$$

Using the fact that $\mathbf{x}^{\top} A^{\top} V \mathbf{x}=\mathbf{x}^{\top} V A \mathbf{x}$ and matching powers of \mathbf{x} yields

Theorem (Riccati equation)

$$
\begin{aligned}
-\dot{V} & =Q+A^{\top} V+V A-V B R^{-1} B^{\top} V \\
-\dot{\alpha} & =\frac{1}{2} \operatorname{tr}\left(C C^{\top} V\right)
\end{aligned}
$$

Linear feedback control law

When $v(\mathbf{x}, t)=\frac{1}{2} \mathbf{x}^{\top} V(t) \mathbf{x}+\alpha(t)$, the optimal control $\mathbf{u}^{*}=-R^{-1} B^{\top} v_{\mathbf{x}}$ is

$$
\begin{aligned}
\mathbf{u}^{*}(\mathbf{x}, t) & =-L(t) \mathbf{x} \\
L(t) & \triangleq R^{-1} B^{\top} V(t)
\end{aligned}
$$

The Hessian $V(t)$ and the matrix of feedback gains $L(t)$ are independent of the noise amplitude C. Thus the optimal control law $\mathbf{u}^{*}(\mathbf{x}, t)$ is the same for stochastic and deterministic systems (the latter is called LQR).

Linear feedback control law

When $v(\mathbf{x}, t)=\frac{1}{2} \mathbf{x}^{\top} V(t) \mathbf{x}+\alpha(t)$, the optimal control $\mathbf{u}^{*}=-R^{-1} B^{\top} v_{\mathbf{x}}$ is

$$
\begin{aligned}
\mathbf{u}^{*}(\mathbf{x}, t) & =-L(t) \mathbf{x} \\
L(t) & \triangleq R^{-1} B^{\top} V(t)
\end{aligned}
$$

The Hessian $V(t)$ and the matrix of feedback gains $L(t)$ are independent of the noise amplitude C. Thus the optimal control law $\mathbf{u}^{*}(\mathbf{x}, t)$ is the same for stochastic and deterministic systems (the latter is called LQR).

Example:

$$
d x=u d t+0.2 d \omega
$$

LQG in discrete time

Consider an optimal control problem with dynamics and cost

$$
\begin{aligned}
\mathbf{x}_{k+1} & =A \mathbf{x}_{k}+B \mathbf{u}_{k} \\
\ell(\mathbf{x}, \mathbf{u}) & =\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}
\end{aligned}
$$

Substituting in the Bellman equation $v_{k}(\mathbf{x})=\min _{\mathbf{u}}\left\{\ell(\mathbf{x}, \mathbf{u})+v_{k+1}\left(\mathbf{x}^{\prime}\right)\right\}$ and making the ansatz $v_{k}(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} V_{k} \mathbf{x}$ yields

$$
\frac{1}{2} \mathbf{x}^{\top} V_{k} \mathbf{x}=\min _{\mathbf{u}}\left\{\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\frac{1}{2} \mathbf{u}^{\top} R \mathbf{u}+\frac{1}{2}(A \mathbf{x}+B \mathbf{u})^{\top} V_{k+1}(A \mathbf{x}+B \mathbf{u})\right\}
$$

The minimum is $\mathbf{u}_{k}^{*}(\mathbf{x})=-L_{k} \mathbf{x}$ where $L_{k} \triangleq\left(R+B^{\top} V_{k+1} B\right)^{-1} B^{\top} V_{k+1} A$.

Theorem (Riccati equation)

$$
V_{k}=Q+A^{\top} V_{k+1}\left(A-B L_{k}\right)
$$

Summary of Riccati equations

- Finite horizon
- Continuous time

$$
-\dot{V}=Q+A^{\top} V+V A-V B R^{-1} B^{\top} V
$$

- Discrete time

$$
V_{k}=Q+A^{\top} V_{k+1} A-A^{\top} V_{k+1} B\left(R+B^{\top} V_{k+1} B\right)^{-1} B^{\top} V_{k+1} A
$$

- Average cost
- Continuous time ('care' in Matlab)

$$
0=Q+A^{\top} V+V A-V B R^{-1} B^{\top} V
$$

- Discrete time ('dare' in Matlab)

$$
V=Q+A^{\top} V A-A^{\top} V B\left(R+B^{\top} V B\right)^{-1} B^{\top} V A
$$

- Discounted cost is similar; first exit does not yield Riccati equations.

Encoding targets as quadratic costs

The matrices A, B, Q, R can be time-varying, which is useful for specifying reference trajectories \mathbf{x}_{k}^{*}, and for approximating non-LQG problems.

The cost $\left\|\mathbf{x}_{k}-\mathbf{x}_{k}^{*}\right\|^{2}$ can be represented in the LQG framework by augmenting the state vector as

$$
\widetilde{\mathbf{x}}=\left[\begin{array}{l}
\mathbf{x} \\
1
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right], \quad \text { etc. }
$$

and writing the state cost as

$$
\frac{1}{2} \widetilde{\mathbf{x}}^{\top} \widetilde{Q}_{k} \widetilde{\mathbf{x}}=\frac{1}{2} \widetilde{\mathbf{x}}^{\top}\left(D_{k}^{T} D_{k}\right) \widetilde{\mathbf{x}}
$$

where $D_{k}=\left[I,-\mathbf{x}_{k}^{*}\right]$ and so $D_{k} \widetilde{\mathbf{x}}_{k}=\mathbf{x}_{k}-\mathbf{x}_{k}^{*}$.
If the target \mathbf{x}^{*} is stationary we can instead include it in the state, and use $D=[I,-I]$. This has the advantage that the resulting control law is independent of \mathbf{x}^{*} and therefore can be used for all targets.

