Linear-Quadratic-Gaussian (LQG) Controllers

Emo Todorov

Emo Todorov (UW)

Applied Mathematics and Computer Science & Engineering
University of Washington

Spring 2014

CSE P590, Spring 2014

Spring 2014

1/7



LQG in continuous time

Recall that for problems with dynamics and cost

dx = (a(x)+B(x)u)dt+C(x)dw

C(x,u) = q(x)+ %uTR (x)u
the optimal control law is u* = —R~!BTvy and the HJB equation is

1 1
- =q+ alo,+ 5 tr (CCTUXX> — EUIBR*BTUX

We now impose further restrictions (LQG system):

dx = (Ax+ Bu)dt+ Cdw
o T
l(x,u) = 5X Ox + Su Ru
1
97 (x) = 5x'Qrx
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Continuous-time Riccati equations

Substituting the LQG dynamics and cost in the HJB equation yields
1 1 1 -
—or = X Qx+xTATo + St (cchxx) — oV BR'B o,
We can now show that v is quadratic:
1
v (xt) = ExTV () x+a(t)

At the final time this holds with « (T) = 0and V (T) = Q7. Then

I O O U ¢ T AT 1 T L Topp—1pT

b= ox T Vx = oxTQx+xTATVx+ S tr (cc V) 5x"VBR'BT Vx
Using the fact that x" AT Vx = x" VAx and matching powers of x yields

Theorem (Riccati equation)

-V = Q+A"V+VA-VBR BTV
o1 T
i = Etr(cc v)
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Linear feedback control law

When v (x,t) = IxTV (t)x+a (t), the optimal control u* = —R~!BT oy is

u* (x,t) = —L(#)x
L(t) R7IBTV (1)

(>

The Hessian V () and the matrix of feedback gains L (t) are independent of
the noise amplitude C. Thus the optimal control law u* (x, t) is the same for
stochastic and deterministic systems (the latter is called LQR).
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Linear feedback control law

When v (x,t) = IxTV (t)x+a (t), the optimal control u* = —R~!BT oy is

u* (x,t)

, —L(t)x
L(t)

R7IBTV (1)

>

The Hessian V () and the matrix of feedback gains L (t) are independent of
the noise amplitude C. Thus the optimal control law u* (x, t) is the same for
stochastic and deterministic systems (the latter is called LQR).

Example:

dx = wudt+02dw v(x,1) u*(x, 1)
C(x,u) = 0.5u
gr (x) = 25x%
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LQG in discrete time

Consider an optimal control problem with dynamics and cost
Xg+1 = Axg+ Bug

l(x,u) = %XTQX + %uTRu

Substituting in the Bellman equation vy (x) = miny {¢ (x,u) + 41 (x')} and
making the ansatz vy (x) = Ix' Vjx yields

; -'—ka—mm{1 TQx+;uTRu+ (Ax+Bu)' Vi (Ax+Bu)}

-1
The minimum is uj (x) = —Lyx where Ly = (R + BTVkHB) BTV, 1A.

Theorem (Riccati equation)

Vi = Q+AT Vi (A—BLy)
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Summary of Riccati equations

@ Finite horizon

e Continuous time
—V=Q+A"V4+VA-VBR BTV
o Discrete time
Vi=Q+A"ViA— ATV 1B (R + BTVkHB) BTV A

@ Average cost

e Continuous time ("care’ in Matlab)
0=Q+A"V+VA—VBR'B'V
o Discrete time (‘dare’ in Matlab)
-1
V=Q+ATVA—ATVB (R + BTVB) BTVA

@ Discounted cost is similar; first exit does not yield Riccati equations.
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Encoding targets as quadratic costs

The matrices A, B, Q, R can be time-varying, which is useful for specifying
reference trajectories x;, and for approximating non-LQG problems.

The cost ||x; — x} ||* can be represented in the LQG framework by augmenting

the state vector as
~ X ~ A 0
x—[l], A_[O 1], etc.

and writing the state cost as

%~TQk§ - %iT (D,{Dk) X

where Dy = [I, —x}| and so DX = X — X}

If the target x* is stationary we can instead include it in the state, and use
D = [I, —I]. This has the advantage that the resulting control law is
independent of x* and therefore can be used for all targets.
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