Probability: Review

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Why probability in robotics?

- Often state of robot and state of its environment are unknown and only noisy sensors available
 - Probability provides a framework to fuse sensory information
 - Result: probability distribution over possible states of robot and environment
- Dynamics is often stochastic, hence can't optimize for a particular outcome, but only optimize to obtain a good distribution over outcomes
 - Probability provides a framework to reason in this setting
 - Result: ability to find good control policies for stochastic dynamics and environments

Example 1: Helicopter

- State: position, orientation, velocity, angular rate
- Sensors:
 - GPS: noisy estimate of position (sometimes also velocity)
 - Inertial sensing unit: noisy measurements from
 - (i) 3-axis gyro [=angular rate sensor],
 - (ii) 3-axis accelerometer [=measures acceleration + gravity; e.g., measures (0,0,0) in free-fall],
 - (iii) 3-axis magnetometer

Dynamics:

 Noise from: wind, unmodeled dynamics in engine, servos, blades

Example 2: Mobile robot inside building

- State: position and heading
- Sensors:
 - Odometry (=sensing motion of actuators): e.g., wheel encoders
 - Laser range finder:
 - Measures time of flight of a laser beam between departure and return
 - Return is typically happening when hitting a surface that reflects the beam back to where it came from
- Dynamics:
 - Noise from: wheel slippage, unmodeled variation in floor

Axioms of Probability Theory

$$0 \le \Pr(A) \le 1$$

$$Pr(\Omega) = 1$$

$$Pr(\phi) = 0$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Pr(A) denotes probability that the outcome ω is an element of the set of possible outcomes A. A is often called an event. Same for B.

 Ω is the set of all possible outcomes. φ is the empty set.

A Closer Look at Axiom 3

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\{x_1, x_2, \dots, x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .
- $P(\cdot)$ is called probability mass function.
- E.g., X models the outcome of a coin flip, $x_1 = \text{head}$, $x_2 = \text{tail}$, $P(x_1) = 0.5$, $P(x_2) = 0.5$

Continuous Random Variables

- X takes on values in the continuum.
- p(X=x), or p(x), is a probability density function.

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x) dx$$

E.g.

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then

$$P(x,y) = P(x) P(y)$$

• $P(x \mid y)$ is the probability of x given y

$$P(x \mid y) = P(x,y) / P(y)$$

$$P(x,y) = P(x \mid y) P(y)$$

If X and Y are independent then

$$P(x \mid y) = P(x)$$

• Same for probability densities, just $P \rightarrow p$

Law of Total Probability, Marginals

Discrete case

Continuous case

$$\sum_{x} P(x) = 1$$

$$\int p(x) \, dx = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) \, dy$$

$$P(x) = \sum_{y} P(x | y)P(y)$$
 $p(x) = \int p(x | y)p(y) dy$

$$p(x) = \int p(x \mid y) p(y) \, dy$$

Bayes Formula

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Bayes Rule with Background Knowledge

$$P(x | y, z) = \frac{P(y | x, z) P(x | z)}{P(y | z)}$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is *P*(open|z)?

Causal vs. Diagnostic Reasoning

- P(open|z) is diagnostic.
- \blacksquare P(z|open) is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use ca count frequencies!

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Bayes Filters

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by change the world.

How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...

- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

This term specifies the pdf that executing u changes the state from x' to x.

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x') P(x')$$

Measurements

Bayes rule

$$P(x|z) = \frac{P(z|x) P(x)}{P(z)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_1, ..., u_t, z_t\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters

z = observationu = action

x = state

$$\begin{aligned} & \underline{Bel(x_t)} = P(x_t \mid u_1, z_1 \dots, u_t, z_t) \\ & = \eta \ P(z_t \mid x_t, u_1, z_1, \dots, u_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ & = \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ & = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ & \qquad \qquad P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ & = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ & = \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) \ dx_{t-1} \end{aligned}$$
 Markov
$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) \ dx_{t-1}$$

 $= \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$

- I. Algorithm **Bayes_filter**(Bel(x),d):
- $\eta = 0$
- 3. If d is a perceptual data item z then
- 4. For all x do

Bel'(x) =
$$P(z \mid x)Bel(x)$$

$$\eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

- 9. Else if d is an action data item u then
- 10. For all x do

Bel'(x) =
$$\int P(x \mid u, x') Bel(x') dx'$$

12. Return Bel'(x)

Example Applications

- Robot localization:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

Example from Michael Pfeiffer

Prob 0 t=0 1

Sensor model: never more than I mistake

Know the heading (North, East, South or West)

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/ c required 1 mistake

