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n  Often state of robot and state of its environment are 
unknown and only noisy sensors available 

n  Probability provides a framework to fuse sensory 
information 

à  Result: probability distribution over possible states of 
robot and environment 

n  Dynamics is often stochastic, hence can’t optimize for a 
particular outcome, but only optimize to obtain a good 
distribution over outcomes   

n  Probability provides a framework to reason in this setting 

à  Result: ability to find good control policies for stochastic 
dynamics and environments 

 

Why probability in robotics? 



n  State: position, orientation, velocity, angular rate 

n  Sensors:  
n  GPS : noisy estimate of position (sometimes also velocity) 

n  Inertial sensing unit: noisy measurements from  
(i)  3-axis gyro [=angular rate sensor],  
(ii)  3-axis accelerometer [=measures acceleration + 

gravity; e.g., measures (0,0,0) in free-fall], 
(iii)  3-axis magnetometer 

n  Dynamics: 
n  Noise from: wind, unmodeled dynamics in engine, servos, 

blades 

Example 1: Helicopter 



n  State: position and heading 

n  Sensors: 
n  Odometry (=sensing motion of actuators): e.g., wheel 

encoders  

n  Laser range finder:  
n  Measures time of flight of a laser beam between 

departure and return  
n  Return is typically happening when hitting a surface 

that reflects the beam back to where it came from 

n  Dynamics: 

n  Noise from: wheel slippage, unmodeled variation in floor 

Example 2: Mobile robot inside building 
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Axioms of Probability Theory 

1)Pr(0 ≤≤ A

Pr(!) =1

Pr(A!B) = Pr(A)+Pr(B)"Pr(A#B)

Pr(!) = 0

Pr(A) denotes probability that the outcome ω is an 
element of the set of possible outcomes A. A is often 
called an event.  Same for B. 

Ω is the set of all possible outcomes. 
ϕ is the empty set. 
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A Closer Look at Axiom 3 

A!BA B

Pr(A!B) = Pr(A)+Pr(B)"Pr(A#B)

!
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Discrete Random Variables 

n  X denotes a random variable. 

n  X can take on a countable number of values in {x1, x2, 
…, xn}. 

n  P(X=xi), or P(xi), is the probability that the random 
variable X takes on value xi.  

n  P( ) is called probability mass function. 
 

n  E.g., X models the outcome of a coin flip, x1 = head, x2 = 
tail, P( x1 ) = 0.5 , P( x2 ) = 0.5  

. 

x1 

! x2 

x4 

x3 
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Continuous Random Variables 

n  X takes on values in the continuum. 

n  p(X=x), or p(x), is a probability density function. 
 

n  E.g. 

∫=∈
b

a

dxxpbax )()),(Pr(

x 

p(x) 
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Joint and Conditional Probability 

n  P(X=x and Y=y) = P(x,y) 

n  If X and Y are independent then  
  P(x,y) = P(x) P(y) 

n  P(x | y) is the probability of x given y 
  P(x | y) = P(x,y) / P(y) 
  P(x,y)   = P(x | y) P(y) 

n  If X and Y are independent then 
  P(x | y) = P(x) 

n  Same for probability densities, just P à p 
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Law of Total Probability, Marginals 
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Discrete case 

∫ =1)( dxxp

Continuous case 
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Bayes Formula 

evidence
prior likelihood
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Bayes Rule with Background Knowledge 
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Simple Example of State Estimation 

n  Suppose a robot obtains measurement z 

n  What is P(open|z)? 



18 

Causal vs. Diagnostic Reasoning 

n  P(open|z) is diagnostic. 

n  P(z|open) is causal. 

n  Often causal knowledge is easier to obtain. 

n  Bayes rule allows us to use causal knowledge: 

)(
)()|()|( zP

openPopenzPzopenP =

count frequencies! 
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Actions 

n  Often the world is dynamic since 

n  actions carried out by the robot, 

n  actions carried out by other agents, 

n  or just the time passing by 

 change the world. 

 

n  How can we incorporate such actions? 
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Typical Actions 

n  The robot turns its wheels to move 

n  The robot uses its manipulator to grasp an object 

n  Plants grow over time… 

n  Actions are never carried out with absolute 
certainty. 

n  In contrast to measurements, actions generally 
increase the uncertainty.  
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Modeling Actions 

n  To incorporate the outcome of an action u into the current 
“belief”, we use the conditional pdf  

P(x|u,x’) 

 

n  This term specifies the pdf that executing u changes the 
state from x’ to x. 
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Integrating the Outcome of Actions 

∫= ')'()',|()|( dxxPxuxPuxP

∑= )'()',|()|( xPxuxPuxP

Continuous case: 
 
 
 
 
 
Discrete case: 



n  Bayes rule 

Measurements 

P(x z) = P(z | x) P(x)
P(z)

=
likelihood !prior

evidence
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Bayes Filters: Framework 

n  Given: 

n  Stream of observations z and action data u: 

n  Sensor model P(z|x). 

n  Action model P(x|u,x’). 

n  Prior probability of the system state P(x). 

n  Wanted:  

n  Estimate of the state X of a dynamical system. 

n  The posterior of the state is also called Belief: 

),,,|()( 11 tttt zuzuxPxBel …=

},,,{ 11 ttt zuzud …=
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Markov Assumption 

Underlying Assumptions 

n  Static world 

n  Independent noise 

n  Perfect model, no approximation errors 

p(xt | x1:t!1, z1:t!1,u1:t ) = p(xt | xt!1,ut )
p(zt | x0:t, z1:t!1,u1:t ) = p(zt | xt )
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111 )(),|()|( −−−∫= ttttttt dxxBelxuxPxzPη

Bayes Filters 

),,,|(),,,,|( 1111 ttttt uzuxPuzuxzP ……η=Bayes 

z  = observation 
u  = action 
x  = state 

),,,|()( 11 tttt zuzuxPxBel …=

Markov ),,,|()|( 11 tttt uzuxPxzP …η=

Markov 
11111 ),,,|(),|()|( −−−∫= tttttttt dxuzuxPxuxPxzP …η

1111

111

),,,|(

),,,,|()|(

−−

−∫=

ttt

ttttt

dxuzuxP

xuzuxPxzP

…

…ηTotal prob. 

Markov 
111111 ),,,|(),|()|( −−−−∫= tttttttt dxzzuxPxuxPxzP …η



13 

Bayes Filter Algorithm  
1.   Algorithm Bayes_filter( Bel(x),d ): 

2.   η = 0	



3.   If d is a perceptual data item z then 

4.       For all x do 

5.    

6.    

7.       For all x do 

8.    

9.   Else if d is an action data item u then 

10.       For all x do 

11.    

12.   Return Bel’(x)       

)()|()(' xBelxzPxBel =

)(' xBel+=ηη

)(')(' 1 xBelxBel −=η

')'()',|()(' dxxBelxuxPxBel ∫=

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η



Example Applications 
n  Robot localization: 

n  Observations are range readings (continuous) 

n  States are positions on a map (continuous) 

n  Speech recognition HMMs: 
n  Observations are acoustic signals (continuous valued) 

n  States are specific positions in specific words (so, tens of thousands) 

n  Machine translation HMMs: 
n  Observations are words (tens of thousands) 

n  States are translation options 
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Summary 

n  Bayes rule allows us to compute probabilities that are hard to 
assess otherwise. 

n  Under the Markov assumption, recursive Bayesian updating can 
be used to efficiently combine evidence. 

n  Bayes filters are a probabilistic tool for estimating the state of 
dynamic systems. 



Example: Robot Localization 

t=0 

Sensor model: never more than 1 mistake 

Know the heading (North, East, South or West) 

Motion model: may not execute action with small prob. 

1 0 Prob 

Example from 
Michael Pfeiffer 



Example: Robot Localization 

t=1 

Lighter grey: was possible to get the reading, but less likely b/
c required 1 mistake 

1 0 Prob 



Example: Robot Localization 

t=2 

1 0 Prob 



Example: Robot Localization 

t=3 

1 0 Prob 



Example: Robot Localization 

t=4 

1 0 Prob 



Example: Robot Localization 

t=5 

1 0 Prob 


