Gaussians
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Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics



Outline

m Univariate Gaussian
m Multivariate Gaussian
= Law of Total Probability

= Conditioning (Bayes’ rule)

Disclaimer: lots of linear algebra in next few lectures. See course
homepage for pointers for brushing up your linear algebra.

In fact, pretty much all computations with Gaussians will be reduced
to linear algebra!



Univariate Gaussian

»s  Gaussian distribution with mean u, and standard deviation ©:
X ~ N(p,0?)
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Properties of Gaussians

= Densities integrate to one:
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Central limit theorem (CLT)

m Classical CLT:

= Let X, X,, ... be an infinite sequence of independent
random variables with E X. = u, E(X - n)? = o?

s DefineZ = (X, +...+X)—nu)/ (on'?

= Then for the limit of n going to infinity we have that Z_is
distributed according to N(0O, 1)

m Crude statement: things that are the result of the addition of
lots of small effects tend to become Gaussian.



Multi-variate Gaussians

. _ 1 1 Ts-1
e e e CIi) (= CRDIE R CRYD)

/ (27T)”/12|Z|1/2 =P <_%(x —w) = e - u)) do =1

For a matrix A € R"*" |A| denotes the determinant of A.

For a matrix A € R"*" A~! denotes the inverse of A, which satisfies A='A =
I = AA~! with T € R™*" the identity matrix with all diagonal entries equal to
one, and all off-diagonal entries equal to zero.

Hint: often when trying to understand matrix equations, it’s easier to first
consider the special case of the dimensions of the matrices being one-by-one.
Once parsing them that way makes sense, a good second step can be to parse
them assuming all matrices are diagonal matrices. Once parsing them that way
makes sense, usually it is only a small step to understand the general case.




Multi-variate Gaussians: examples
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examples

Multi-variate Gaussians
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examples

Multi-variate Gaussians
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Multi-variate Gaussians: examples

u = [0; 0] u = [0; 0] u =
>=[1 -0.5;-0.5 1] >=[1 -0.8;-0.8 1] > =




Partitioned Multivariate Gaussian

» Consider a multi-variate Gaussian and partition
random vector into (X,Y).

N (1Y) =N ([ux] | [Zxx zxyD

py |1 Yyx  Zyy
Gl = Gmsmee (3 (G- [2]) B 321 (- 1)
Py "= = o)z P\ 72 |y Py Yyx Xyy Y Iy
Hx = E(X,Y)NN(;L,Z) X]
vy = Exy)unvus|Y]
Sxx = Exy)onvn) (X —ux)(X —px) ']
Yyy = Exyv)enun) (Y — py)(Y — py)']
Yxy = Exy)~ns) (X —px)(Y - MY)T] = Z}fo
Yyx = Exy)~ns) (Y — py ) (X — ,UX)T] = Z)T(Y




Partitioned Multivariate Gaussian: Dual
Representation

—1
s Precision matrix p—y-1- |=xx Zxv|  _lxx Dxvi (1)
Yyx 2yy I'vx T'yy

(3] %) = Gy o (‘% (5] - [ZfDT e ([5]- lﬁfm

= Straightforward to verify from (1) that:

—1

“xx = (Cxx —TxylyyTyx)

Syy = (Dyy - FYXF)_(IXFXY)_l

Sxy = -I'yIxy Tyy — FYXF)_<1XFXY)_1 =Syx
YSyx = —Tyylyx (Oxx — FXYF;%/FYX)_I =Sxy

= And swapping the roles of ['and J:

xx = (Exx-— EXYZ;%/EYX)_l

Lyy = (Zyy - ZYXZ)_(IXEXY)_l

Ixy = —X%xSxy Cvy — EYXZ)_(%XEXY)_I =Tyx
Fyx = —-ZyySyx (Sxx — EXYE;%/ZYX)_I =Ty



Marginalization Recap

If

(X,Y) ~ N (1,8) =N (H | [EXX zxyD

20% YXyx Xyy
Then

X ~ N(ux,Yxx)
Y o~ N(/J’YazYY)



Conditioning Recap

If

(X,Y) ~ N (1,%) = N ( [ﬂx] | lzxx zxy] )

Ky 23YX Eyy

Then

XY =yo ~ N(ux+ZxvEyy o — py), Exx — ZxyEyy Syx)
YI X =20 ~ N(py +SyxEZ5x (@0 — ix), vy — Ly xExx 2xY)



Optimal estimation in linear-Gaussian systems

Consider the partially-observed system

Xer1 = Axg+ Cwy
yr = Hxg+ Degg

with hidden state x, measurement yy, and noise &, wy ~ N (0,I).

Given a Gaussian prior xg ~ N (Xp, £) and a sequence of measurements
Y0, Y1, - - Yk, We want to compute the posterior prq (Xg41)-

We can show by induction that the posterior is Gaussian at all times.
Let px (xx) be N (Xk, Z¢). This will act as a prior for estimating xj 1.
Now xx;1 and yy are jointly Gaussian, with mean and covariance

o[5] - %]
Yk Hxy
Con | X1 ] _ CCT +AZ AT A HT
Vi HZ, AT DDT + HE HT

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 9/11



Kalman filter

If u, v are jointly Gaussian with means U,V and covariances Lyy, vy, Lav = Zlu,
then u given v is Gaussian with mean and covariance

Efulv] = G+ ZywZey (v—¥)
Cov[ulv] = Zyu— ZuvZeywZvu

Applying this to our problem with u = x;1 and v = y; yields

Theorem (Kalman filter)

The mean X and covariance ¥. of the Gaussian posterior satisfy

X1 = Axg+ Ky (yr — HX)
Yip1 = CCT 4+ (A—-KH)ZAT

-1
K, 2 ARH' (DDT +H2kHT)

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 10 /11



Duality of LQG control and Kalman filtering

LQG controller
State dynamics:
X1 = (A — BLg) x¢ + Cé
Gain matrix:
T 1ot
L = (R+B Vk+1B) BTV A
Backward Riccati equation:

Vi=Q+A Vi1 (A—BL)

Emo Todorov (UW)

AMATH/CSE 579, Winter 2014

Kalman filter

Estimated state dynamics:
Xir1 = (A — KeH) Xic + Ky

Gain matrix:

K, = ASHT (DDT + szHT) -

Forward Riccati equation:

Yip1 = CCT + (A — KH) AT

Winter 2014

11 /11



Duality of LQG control and Kalman filtering

LQG controller Kalman filter
State dynamics: Estimated state dynamics:

Xt1 = (A — BLg) i + Cey Xir1 = (A — KeH) Xic + Ky
Gain matrix: Gain matrix:

L = (R +BT Vk+1B) TBVA K= ASHT (DDT + szHT) -
Backward Riccati equation: Forward Riccati equation:
Vi=Q+ATVi 1 (A—BL) Tpi1 = CCT + (A — KeH) AT
This form of duality does not generalize to non-LQG systems. However there is a

different duality which does generalize (see later). It involves an information filter,
computing £ ! instead of X.

Emo Todorov (UW) AMATH/CSE 579, Winter 2014 Winter 2014 11 /11
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