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n  Univariate Gaussian 

n  Multivariate Gaussian 

n  Law of Total Probability 

n  Conditioning (Bayes’ rule) 

Disclaimer: lots of linear algebra in next few lectures.  See course 
homepage for pointers for brushing up your linear algebra.   

In fact, pretty much all computations with Gaussians will be reduced 
to linear algebra! 

Outline 



Univariate Gaussian 

n  Gaussian distribution with mean µ, and standard deviation σ: 



n  Densities integrate to one:  

n  Mean: 

n  Variance: 

Properties of Gaussians 



Central limit theorem (CLT) 

n  Classical CLT: 

n  Let X1, X2, … be an infinite sequence of independent 
random variables with E Xi = µ, E(Xi - µ)2 = σ2 

n  Define Zn =  ((X1 + … + Xn) – n µ) / (σ n1/2) 

n  Then for the limit of n going to infinity we have that Zn is 
distributed according to N(0,1) 

n  Crude statement: things that are the result of the addition of 
lots of small effects tend to become Gaussian. 



Multi-variate Gaussians 



§  µ = [1; 0] 
§  Σ = [1  0; 0  1] 

§  µ = [-.5; 0] 
§  Σ = [1  0; 0  1] 

§  µ = [-1; -1.5] 
§  Σ = [1  0; 0  1] 

Multi-variate Gaussians: examples 



Multi-variate Gaussians: examples 

n  µ = [0; 0] 

n  Σ = [1 0 ; 0 1] 

§  µ = [0; 0] 
§  Σ = [.6 0 ; 0 .6] 

§  µ = [0; 0] 
§  Σ = [2 0 ; 0 2] 



§  µ = [0; 0] 
§  Σ = [1  0; 0  1] 

§  µ = [0; 0] 
§  Σ = [1  0.5; 0.5 1] 

§  µ = [0; 0] 
§  Σ = [1  0.8; 0.8  1] 

Multi-variate Gaussians: examples 



§  µ = [0; 0] 
§  Σ = [1  0; 0  1] 

§  µ = [0; 0] 
§  Σ = [1  0.5; 0.5  1] 

§  µ = [0; 0] 
§  Σ = [1  0.8; 0.8  1] 

Multi-variate Gaussians: examples 



§  µ = [0; 0] 
§  Σ = [1  -0.5 ; -0.5  1] 

§  µ = [0; 0] 
§  Σ = [1  -0.8 ; -0.8  1] 

§  µ = [0; 0] 
§  Σ = [3  0.8 ; 0.8  1] 

Multi-variate Gaussians: examples 



Partitioned Multivariate Gaussian 

n  Consider a multi-variate Gaussian and partition 
random vector into (X, Y). 



Partitioned Multivariate Gaussian: Dual 
Representation 

n  Precision matrix 

n  Straightforward to verify from (1) that:  

n  And swapping the roles of ¡ and §: 

(1) 



If 
 
 
 
Then 
 
 
 
 
 

Marginalization Recap 



If 
 
 
 
Then 
 
 
 
 
 

Conditioning Recap 



Optimal estimation in linear-Gaussian systems
Consider the partially-observed system

xk+1 = Axk + Cωk

yk = Hxk +Dεk

with hidden state xk, measurement yk, and noise εk, ωk � N (0, I).

Given a Gaussian prior x0 � N (bx0, Σ0) and a sequence of measurements
y0, y1, � � � yk, we want to compute the posterior pk+1 (xk+1).

We can show by induction that the posterior is Gaussian at all times.
Let pk (xk) be N (bxk, Σk). This will act as a prior for estimating xk+1.
Now xk+1 and yk are jointly Gaussian, with mean and covariance

E
�

xk+1
yk

�
=

�
Abxk
Hbxk

�
Cov

�
xk+1
yk

�
=

�
CCT +AΣkAT AΣkHT

HΣkAT DDT +HΣkHT

�
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Kalman filter

Lemma
If u, v are jointly Gaussian with means bu, bv and covariances Σuu, Σvv, Σuv = ΣTvu,
then u given v is Gaussian with mean and covariance

E [ujv] = bu+ ΣuvΣ�1
vv (v� bv)

Cov [ujv] = Σuu � ΣuvΣ�1
vv Σvu

Applying this to our problem with u = xk+1 and v = yk yields

Theorem (Kalman filter)
The mean bx and covariance Σ of the Gaussian posterior satisfy

bxk+1 = Abxk + Kk (yk �Hbxk)

Σk+1 = CCT + (A� KkH)ΣkAT

Kk , AΣkHT
�

DDT +HΣkHT
��1
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Duality of LQG control and Kalman filtering

LQG controller

State dynamics:

xk+1 = (A� BLk) xk + Cεk

Gain matrix:

Lk =
�

R+ BTVk+1B
��1

BTVk+1A

Backward Riccati equation:

Vk = Q+ATVk+1 (A� BLk)

Kalman filter

Estimated state dynamics:

bxk+1 = (A� KkH)bxk + Kkyk

Gain matrix:

Kk = AΣkHT
�

DDT +HΣkHT
��1

Forward Riccati equation:

Σk+1 = CCT + (A� KkH)ΣkAT

This form of duality does not generalize to non-LQG systems. However there is a
different duality which does generalize (see later). It involves an information filter,
computing Σ�1 instead of Σ.
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